JPH01279680A - Light quantity detecting device - Google Patents
Light quantity detecting deviceInfo
- Publication number
- JPH01279680A JPH01279680A JP63109644A JP10964488A JPH01279680A JP H01279680 A JPH01279680 A JP H01279680A JP 63109644 A JP63109644 A JP 63109644A JP 10964488 A JP10964488 A JP 10964488A JP H01279680 A JPH01279680 A JP H01279680A
- Authority
- JP
- Japan
- Prior art keywords
- photometry
- tracking
- frame
- deltaf
- video signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005375 photometry Methods 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 230000010354 integration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、撮像素子等の撮像手段からのビデオ信号によ
り光量を測定する光量検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light amount detection device that measures the amount of light using a video signal from an imaging means such as an image sensor.
ビデオ・カメラでは、撮影状況、具体的には照度に応し
てアイリスを自動制御して光量を調節している。この露
光制御装置は、ビデオ信号中の輝度信号レベルから光量
を検出し、当該輝度レベルが常に一定になるようにアイ
リスを制御する。Video cameras automatically control the iris to adjust the amount of light depending on the shooting situation, specifically the illuminance. This exposure control device detects the amount of light from the brightness signal level in the video signal, and controls the iris so that the brightness level is always constant.
また本出願人により、撮像面上の指定領域の内外の平均
ビデオ信号レベル差を検出し、その差が最大になるよう
に当該指定領域を移動させ、このように移動する指定領
域からのビデオ信号に基づき光量を検出する追尾式の測
光方式が提案されている(特願昭62−277382号
、特願昭62−277384号)。The applicant has also detected the average video signal level difference between the inside and outside of a specified area on the imaging surface, moves the specified area so that the difference is maximized, and detects the video signal from the specified area that moves in this way. A tracking photometry method has been proposed that detects the amount of light based on the following (Japanese Patent Application No. 62-277382, Japanese Patent Application No. 62-277384).
上記の追尾式測光方式は、被写体のビデオ信号レベルと
、背景のビデオ信号レベルとの差が一般に大きいことに
着目したものであるが、被写体と背景とでビデオ信号レ
ベルの差が小さいときには、被写体追尾の精度が低下す
るという問題点がある。The above-mentioned tracking metering method focuses on the fact that the difference between the video signal level of the subject and the video signal level of the background is generally large. There is a problem that the tracking accuracy decreases.
そこで本発明は、上記追尾方式の欠点を解消し、被写体
と背景とのビデオ信号レベル差が小さいときにも状況に
応じて適切に作動する光量検出装置を提示することを目
的とする。SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light amount detection device that eliminates the drawbacks of the above tracking method and operates appropriately depending on the situation even when the difference in video signal level between the subject and the background is small.
本発明に係る光量検出装置は、撮像面全体の平均ビデオ
信号レベルに従い光量を測定する第1の測光方式と、撮
像面の所定位置の測光領域内のビデオ信号に重点をおい
て光量を測定する第2の測光方式と、被写体を追尾して
測光領域を移動させ、当該測光領域内のビデオ信号に重
点をおいて光量を測定する第3の測光方式とを具備し、
上記3つの測光方式を適応的に切り換えることを特徴と
する。The light amount detection device according to the present invention uses a first photometry method that measures the amount of light according to the average video signal level of the entire imaging surface, and a method that measures the amount of light with emphasis on the video signal within a photometric area at a predetermined position on the imaging surface. A second photometry method, and a third photometry method that tracks a subject and moves a photometry area, and measures the amount of light with emphasis on the video signal within the photometry area,
It is characterized by adaptively switching between the above three photometry methods.
測光領域内外の輝度レベル差が所定値以上のときには、
上記第3の測光モードで測光することにより、被写体の
移動に即した光量検出を行える。When the difference in brightness level inside and outside the photometry area is greater than a predetermined value,
By performing photometry in the third photometry mode, the amount of light can be detected in accordance with the movement of the subject.
また、上記輝度レベル差が上記所定値よりも少し小さい
場合には、第2の測光モードにより中央重点測光を行い
、より以上小さい場合には全画面平均測光を行う。この
ようにすることにより、撮影対象の状況に応じて適切な
測光値を得ることができる。Furthermore, if the luminance level difference is slightly smaller than the predetermined value, center-weighted photometry is performed in the second photometry mode, and if it is even smaller than the predetermined value, whole-screen average photometry is performed. By doing so, it is possible to obtain an appropriate photometric value depending on the situation of the object to be photographed.
以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例の構成ブロック図を示す。第
1図において、10は撮影レンズ、12は絞り、14は
絞り12を開閉する絞り制御回路、16はレンズ10に
より撮像面に結像した光学像を電気信号に変換し、ビデ
オ信号の形態で出力する例えばCCDなどの撮像素子、
18はアンプ、20はアンプ18の出力を輝度信号Yと
2つの色差信号(R−Y) 、 (B−Y)に変換する
信号処理回路、22は信号処理回路20からのコンポー
ネント信号をコンポジット信号に変換するエンコーダで
ある。FIG. 1 shows a block diagram of an embodiment of the present invention. In FIG. 1, 10 is a photographing lens, 12 is an aperture, 14 is an aperture control circuit that opens and closes the aperture 12, and 16 is a circuit that converts an optical image formed on the imaging surface by the lens 10 into an electrical signal, which is converted into a video signal. An image sensor such as a CCD that outputs
18 is an amplifier, 20 is a signal processing circuit that converts the output of the amplifier 18 into a luminance signal Y and two color difference signals (RY) and (B-Y), and 22 is a composite signal that converts the component signals from the signal processing circuit 20. This is an encoder that converts to .
24は本実施例における測光動作を制御するマイクロコ
ンピュータ、26は、マイクコンピュータ24からの指
令によって、撮像面上の所定位置に設定された測光枠内
の測光領域(第3図のA)内に応じた輝度信号Yを通過
させるゲート回路、28はインバータ30により、測光
枠EF外の測光領域(第3図のB)に応じた輝度信号Y
を通過させるゲート回路、32.34はゲート回路26
゜28の出力を1フイ一ルド期間にわたって積分する積
分回路、36.38は積分回路32.34の出力を測光
枠内外の面積で正規化して測光領域A。24 is a microcomputer that controls the photometry operation in this embodiment; 26 is a microcomputer that controls the photometry operation in this embodiment; A gate circuit 28 passes the luminance signal Y corresponding to the photometry area outside the photometry frame EF (B in FIG. 3) by an inverter 30.
32.34 is the gate circuit 26 that passes through the gate circuit.
An integration circuit 36.38 integrates the output of 28 over one field period, and 36.38 normalizes the output of the integration circuit 32.34 by the area inside and outside the photometry frame to obtain the photometry area A.
Bの面積の差にもとづく積分値の差を補正する面積補正
回路、40は面積補正回路36の出力に可変係数kを乗
算する係数乗算回路、42は面積補正回路38の出力の
可変係数(1−k)を乗算する係数乗算回路、44は、
係数乗算回路40.42の出力を加算する加算器である
。絞り制御回路14は、加算器44の出力に従って絞り
12を制御する。40 is a coefficient multiplication circuit that multiplies the output of the area correction circuit 36 by a variable coefficient k; 42 is a variable coefficient (1) of the output of the area correction circuit 38; -k), the coefficient multiplication circuit 44 is
This is an adder that adds the outputs of the coefficient multiplication circuits 40 and 42. The aperture control circuit 14 controls the aperture 12 according to the output of the adder 44.
46は、マイクロコンピュータ24から指令される追尾
枠TF(第3図)の内側(即ち、追尾領域)の領域に応
じた輝度信号を通過させるゲート回路、48は、インバ
ータ50により追尾枠の外の領域に応じた輝度信号を通
過させるゲート回路、52.54はゲート回路46.4
8の出力を1フイ一ルド期間にわたって積分する積分回
路、56゜58は積分回路52.54の出力を追尾枠内
外の面積で正規化する面積補正回路である。46 is a gate circuit that passes a luminance signal corresponding to the area inside (i.e., tracking area) of the tracking frame TF (FIG. 3) commanded by the microcomputer 24; A gate circuit 52.54 is a gate circuit 46.4 that passes a luminance signal according to the area.
56. 58 is an area correction circuit that normalizes the output of the integration circuits 52 and 54 by the area inside and outside the tracking frame.
第2図及び第4図を参照して、第1図の動作を説明する
。第2図は、第1図の装置の基本動作のフローチャート
を示す。第2図において、電源投入により先ず、追尾枠
TF及び測光枠EFを第3図に示す如く画面中央部に初
期設定する(Sl)。次に、追尾枠TF内外の平均ビデ
オ信号レベルの差ΔFを面積補正回路56.58の出力
から算出する。ΔFは面積補正回路56.58の出力差
に等しい。ΔFが所定の閾値THIより大きいとき(S
2)、即ち被写体と背景とでビデオ信号レベルの差が大
きいときには、係数乗算回路40.42におけるkを例
えば0.8としくS3)、被写体の位置に応じて追尾枠
を移動し、被写体に対して重点的に測光する追尾測光モ
ードに移行する(S4)。これによって測光枠内外の重
み付けが8:2になり、枠内重点測光になる。この追尾
測光モードについては後述する。The operation shown in FIG. 1 will be explained with reference to FIGS. 2 and 4. FIG. 2 shows a flowchart of the basic operation of the device of FIG. In FIG. 2, when the power is turned on, the tracking frame TF and the photometry frame EF are initially set at the center of the screen as shown in FIG. 3 (Sl). Next, the difference ΔF between the average video signal levels inside and outside the tracking frame TF is calculated from the output of the area correction circuits 56 and 58. ΔF is equal to the output difference of the area correction circuits 56 and 58. When ΔF is larger than a predetermined threshold THI (S
2), that is, when there is a large difference in video signal level between the subject and the background, set k in the coefficient multiplication circuit 40.42 to, for example, 0.8 (S3), move the tracking frame according to the position of the subject, and move the tracking frame to the subject. The camera shifts to a tracking photometry mode in which the photometry is performed intensively (S4). As a result, the weighting of the inside and outside of the photometry frame becomes 8:2, resulting in frame-weighted photometry. This tracking photometry mode will be described later.
ΔFがTHI以下のときには(S2)、追尾枠TF及び
測光枠EFを画面中央に再設定する(S5)。続いて、
再度ΔFを取り込み、闇値THIと比較しくS6)、−
〇−
Tl−11より大きいときにはS3に進み、THI以下
のときには、ΔFを別の閾値TH2(<Tl11) と
比較する(S7)。ΔFがTl2より大きいときには、
係数乗算回路40.42におけるkを0.8にしてS6
に戻る。When ΔF is less than or equal to THI (S2), the tracking frame TF and photometry frame EF are reset to the center of the screen (S5). continue,
Take in ΔF again and compare it with the dark value THI S6), -
○- If it is greater than Tl-11, the process proceeds to S3, and if it is less than THI, ΔF is compared with another threshold TH2 (<Tl11) (S7). When ΔF is larger than Tl2,
S6 with k in coefficient multiplication circuit 40.42 set to 0.8
Return to
このとき、測光枠EFは画面中央に固定されており、画
面中央部分のビデオ信号が重点的に考慮されているので
、言わば中央重点測光モードと呼ぶことができる。S7
でΔFがT82以下のときには、例えばkを0.5とし
てS9に戻る。このとき、測光枠EFは画面中央に固定
されており、且つ測光枠内外の重み付けは1;1となっ
て画面全体のビデオ信号を平均的に考慮することから平
均測光モードと呼ぶことができる。At this time, the photometry frame EF is fixed at the center of the screen, and the video signal at the center of the screen is given priority, so it can be called a center-weighted photometry mode. S7
If ΔF is less than T82, k is set to 0.5, for example, and the process returns to S9. At this time, the photometry frame EF is fixed at the center of the screen, and the weighting inside and outside the photometry frame is 1:1, so that the video signal of the entire screen is considered on the average, so it can be called an average photometry mode.
第4図は、第2図の34における追尾測光モードの動作
フローチャートを示す。基本原理を簡単に説明すると、
追尾枠を例えば、予め設定された1区画ずつ上、下、左
又は右にシフトし、それぞれの位置における追尾枠内外
の平均輝度レベルの差の絶対値を計算し、それが最大に
なる位置に被写体が移動したと判断して、当該追尾枠か
らのビデオ信号に重点を置いて測光する。第4図を説明
する。上記ΔFを算出し、変数F1に代入する(SIO
)。追尾枠を1区画分布にシフトして(S11)、再び
ΔFを取り込み、変数F2に代入する(S12)。Fl
とF2を比較しく513) 、F2≦F1の場合には、
右シフトによってもΔFが大きくならないことを示して
いるので、追尾枠を左に1区画シフトする(S14)。FIG. 4 shows an operation flowchart of the tracking photometry mode at 34 in FIG. A simple explanation of the basic principle:
For example, shift the tracking frame up, down, left, or right by one preset section, calculate the absolute value of the difference between the average brightness levels inside and outside the tracking frame at each position, and move to the position where it is maximum. It is determined that the subject has moved, and photometry is performed with emphasis on the video signal from the tracking frame. FIG. 4 will be explained. Calculate the above ΔF and assign it to variable F1 (SIO
). The tracking frame is shifted to a one-section distribution (S11), and ΔF is taken in again and substituted into the variable F2 (S12). Fl
Compare F2 with 513), and in the case of F2≦F1,
Since it is shown that ΔF does not increase even by shifting to the right, the tracking frame is shifted to the left by one block (S14).
そして、測光枠EFの位置を追尾枠TFの位置に合わせ
る(S15)。Then, the position of the photometry frame EF is adjusted to the position of the tracking frame TF (S15).
316〜S21では、1区画分の上シフトを試みて、そ
の結果に応じて測光枠EFを移動し、322〜S27で
は、1区画分の左シフトを試みて、その結果に応じて測
光枠を移動し、528〜S33では、1区画分の下シフ
トを試みて、その結果に応じて測光枠を移動する。S3
3の後、SIOに戻る。In steps 316 to S21, an upward shift of one section is attempted, and the metering frame EF is moved according to the result, and in steps 322 to S27, a left shift of one section is attempted, and the metering frame is moved according to the result. In steps 528 to S33, a downward shift by one section is attempted, and the photometry frame is moved in accordance with the result. S3
After 3, return to SIO.
本実施例では、追尾枠と測光枠を別々に設定したが、こ
れは、追尾モードでは追尾枠がいわゆるウォーブリング
され、頻繁に移動するが、測光枠がそれほど頻繁に移動
すると不自然になるからであり、これを気にしなければ
共用しても差し支えない。また、係数には上記数値例に
限定されない。In this example, the tracking frame and the photometry frame are set separately. This is because in the tracking mode, the tracking frame undergoes so-called wobbling and moves frequently, but if the photometry frame moves that frequently, it will look unnatural. So, if you don't mind this, you can share it. Further, the coefficients are not limited to the above numerical examples.
以上の説明から容易に理解できるように、本発明によれ
ば、被写体と背景との輝度差が比較的大きく追尾可能な
ときにのみ被写体に追尾して被写体に重点測光し、背景
との輝度差が小さく追尾できないときには、追尾を行わ
ず、更に段階に応じて中央重点測光又は全画面平均測光
に切り換わるので、撮影状況に応じて最適な光量検出を
行うことができる。As can be easily understood from the above description, according to the present invention, only when the brightness difference between the subject and the background is relatively large and tracking is possible, the subject is tracked and focused metering is performed on the subject, and the brightness difference between the subject and the background is When tracking is not possible due to a small amount of light, tracking is not performed and the mode is switched to center-weighted metering or full-screen average metering depending on the stage, so it is possible to perform optimal light amount detection depending on the shooting situation.
第1図は本発明の一実施例の構成ブロック図、第2図は
第1図の基本動作のフローチャート、第3図は撮像面に
おける追尾枠及び測光枠の配置説明図、第4図は追尾モ
ードのフローチャートである。
1〇−撮影レンズ 12−絞り 14−絞り制御回路
16−撮像素子 18−アンプ 2〇−信号処理回路
22−エンコーダ 24−マイクロコンピュータ 26
.28.46.48−ゲート回路 30.50− イン
バータ 32,34,52.54−−一積分回路 36
. 38. 56. 58−面積補正回路 40.42
−係数乗算回路 44−加算器FIG. 1 is a block diagram of the configuration of an embodiment of the present invention, FIG. 2 is a flowchart of the basic operation of FIG. It is a flowchart of a mode. 10-Photographing lens 12-Aperture 14-Aperture control circuit
16-Image sensor 18-Amplifier 20-Signal processing circuit
22-Encoder 24-Microcomputer 26
.. 28.46.48-Gate circuit 30.50-Inverter 32,34,52.54--One integration circuit 36
.. 38. 56. 58-Area correction circuit 40.42
-Coefficient multiplier circuit 44-Adder
Claims (1)
る第1の測光方式と、撮像面の所定位置の測光領域内の
ビデオ信号に重点をおいて光量を測定する第2の測光方
式と、被写体を追尾して測光領域を移動させ、当該測光
領域内のビデオ信号に重点をおいて光量を測定する第3
の測光方式とを具備し、上記3つの測光方式を適応的に
切り換えることを特徴とする光量検出装置。A first photometry method that measures the amount of light according to the average video signal level of the entire imaging surface, a second photometry method that measures the amount of light with emphasis on the video signal within a photometry area at a predetermined position on the imaging surface; A third method that tracks and moves the photometric area and measures the amount of light with emphasis on the video signal within the photometric area.
1. A light amount detection device comprising: a photometry method; and adaptively switching between the three photometry methods.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63109644A JP2737919B2 (en) | 1988-05-02 | 1988-05-02 | Light intensity detector |
GB8909403A GB2219461B (en) | 1988-05-02 | 1989-04-25 | Exposure control device |
DE3913803A DE3913803A1 (en) | 1988-05-02 | 1989-04-26 | EXPOSURE CONTROL DEVICE |
US08/190,226 US5677733A (en) | 1988-05-02 | 1994-02-01 | Exposure control device having a plurality of light detecting areas |
US08/483,561 US6570620B1 (en) | 1988-05-02 | 1995-06-06 | Exposure control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63109644A JP2737919B2 (en) | 1988-05-02 | 1988-05-02 | Light intensity detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01279680A true JPH01279680A (en) | 1989-11-09 |
JP2737919B2 JP2737919B2 (en) | 1998-04-08 |
Family
ID=14515508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63109644A Expired - Fee Related JP2737919B2 (en) | 1988-05-02 | 1988-05-02 | Light intensity detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737919B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010124399A (en) * | 2008-11-21 | 2010-06-03 | Mitsubishi Electric Corp | Automatic tracking photographing apparatus from aerial mobile vehicle |
JP2010124398A (en) * | 2008-11-21 | 2010-06-03 | Mitsubishi Electric Corp | Automatic tracking photographing apparatus from aerial mobile vehicle |
JP2011142486A (en) * | 2010-01-07 | 2011-07-21 | Sanyo Electric Co Ltd | Electronic camera |
-
1988
- 1988-05-02 JP JP63109644A patent/JP2737919B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010124399A (en) * | 2008-11-21 | 2010-06-03 | Mitsubishi Electric Corp | Automatic tracking photographing apparatus from aerial mobile vehicle |
JP2010124398A (en) * | 2008-11-21 | 2010-06-03 | Mitsubishi Electric Corp | Automatic tracking photographing apparatus from aerial mobile vehicle |
JP2011142486A (en) * | 2010-01-07 | 2011-07-21 | Sanyo Electric Co Ltd | Electronic camera |
Also Published As
Publication number | Publication date |
---|---|
JP2737919B2 (en) | 1998-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2766067B2 (en) | Imaging device | |
US6570620B1 (en) | Exposure control device | |
JP3113259B2 (en) | Exposure control method and apparatus for video camera | |
KR100906166B1 (en) | Digital imaging apparatus with camera shake compensation and adaptive sensitivity switching function | |
JP2749921B2 (en) | Imaging device | |
JP4042432B2 (en) | Imaging device | |
JP2007259237A (en) | Apparatus and method for photographing | |
JP2899031B2 (en) | Automatic exposure control device | |
JPH04133576A (en) | Image pickup device | |
JPH01279680A (en) | Light quantity detecting device | |
JP2872833B2 (en) | Video camera | |
JP2817820B2 (en) | Exposure control device for video camera | |
JPH05122599A (en) | Exposure controller for video camera | |
JP4893642B2 (en) | Automatic exposure control device | |
JP2692854B2 (en) | Automatic exposure control device | |
JPH08237544A (en) | Exposure control method for video camera | |
JP3100815B2 (en) | Camera white balance control method | |
JP2631217B2 (en) | Automatic exposure control device | |
JP3205941B2 (en) | Automatic aperture adjustment device | |
JP2631215B2 (en) | Exposure control device | |
JP2715441B2 (en) | Imaging device | |
JP2001028760A (en) | White balance control method and exposure control method for camera | |
JPH05219431A (en) | Exposure controller for video camera | |
KR100203283B1 (en) | Auto-focus control method for camcorder | |
JPH02141731A (en) | Automatic exposure controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |