JPH0127665B2 - - Google Patents
Info
- Publication number
- JPH0127665B2 JPH0127665B2 JP56113047A JP11304781A JPH0127665B2 JP H0127665 B2 JPH0127665 B2 JP H0127665B2 JP 56113047 A JP56113047 A JP 56113047A JP 11304781 A JP11304781 A JP 11304781A JP H0127665 B2 JPH0127665 B2 JP H0127665B2
- Authority
- JP
- Japan
- Prior art keywords
- punched
- plate
- punching
- joining
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 15
- 238000004080 punching Methods 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 7
- 238000005304 joining Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000000750 progressive effect Effects 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/022—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Manufacture Of Motors, Generators (AREA)
Description
本発明は、鉄心歯部の両端面に軸方向へ延出し
た磁束収束部分を有する電機子鉄心について、磁
束収束部分を鉄心と同時に積層形成する板抜き積
層方法に関する。
界磁手段に永久磁石を使用した電動機等におい
ては、永久磁石の磁束を有効利用して運転効率を
高めるために、例えば回転子の永久磁石部分より
も電機子鉄心の軸方向寸法を短かくし、この短か
い分だけ軸方向に延出する別ピースの磁束収束部
分を電機子鉄心の歯部両端面に取り付け固定する
ことが行なわれている。
しかしながらこの種の方法においては、磁束収
束部分の製作および電機子鉄心への取り付け固定
に多大の工数を必要とするという実用上大きな問
題を有していた。
本発明はこのような事情に鑑みてなされたもの
であり、鉄心の板抜き積層工程内で磁束収束部分
も一体的に積層形成することに着目してなされた
ものである。
以下に本発明を図面に示された一実施例に基づ
いて説明する。
第1図は本発明により製作される電動機の電機
子鉄心の形状をわかり易く示す図であり、第2図
はその平面図である。
また、第3図は電機子鉄心を構成する抜き板を
帯状の鋼板から打ち抜いて積層する工程をわかり
易く示す図であり、第4図は抜型による板抜き積
層状態を示す図である。
第5図は、鉄心歯部と磁束収束部分が分るよう
に示された分割鉄心の斜視図である。
第1図、第2図において、1は外周に永久磁石
を取り付けて形成される電動機の回転子であり、
2は電機子鉄心、3は電機子鉄心2の歯部4の両
端面に形成された磁束収束部分である。
磁束収束部分3は、歯部4を形成する歯片8と
同じものを打抜き軸方向に積層して形成されてい
る。
電機子鉄心2は三分割された分割鉄心5をそれ
ぞれ分割面で突き合わせ固定して形成されるもの
であつて、この固定手段としては溶接等の種々の
慣用技術を適宜使用することができる。
また、6は巻線(図示せず)を収納するための
スロツトであり、このスロツト6の継鉄部分にマ
グネツトワイヤを巻き回すことにより巻線が施こ
される。
次に電機子鉄心2の分割鉄心5をプレス順送型
により形成する板抜き積層工程を第3図、第4図
に基づいて説明する。
なお、電機子鉄心2全体の積層枚数をn、磁束
収束部分3の積層枚数をそれぞれn1、n2としてお
り、帯状の鋼板20は矢印Pで示される方向へ所
定の送りピツチで順次間欠的に移送される。
(3−1)は第1枚目の抜き板7の加工工程を
示しており、それぞれの工程a1〜d1は下記のよ
うに作動する。
(a1);帯状鋼板20の抜き板7となる部位に対
して、歯部4を形成する歯片8と継鉄部分を形
成する継鉄片9とを切り離すための切離線10
を打ち抜き形成する。
(b1);帯状鋼板20の抜き板7となる部位に対
して、歯片8および継鉄片9に積層接合のため
の抜孔11を打ち抜き形成する。
(c1);何も加工を行なわずに次工程へ移送する。
(d1);抜型14により帯状鋼板20から抜き板
7を打ち抜いて下型13内に圧入する。
(3−2)は第二枚目以後であつて磁束収束部
3を形成するのに必要な所定枚数(n1−1、n2)
の抜き板7の加工工程を示しており、それぞれの
工程a2〜d2は下記のように作動する。
(a2);(a1)と同様の動作。
(b2);何も加工を行なわずに次工程へ移送する。
(c2);帯状鋼板20の抜き板7となる部位に対
して、歯片8および継鉄片9に積層接合のため
の突起部12を押し出し成形する。
(d2);(d1)と同様の動作。
(3−3)は、歯片8と継鉄片9とを切り離さ
ない抜き板7を所定枚数(n−n1−n2)加工する
工程を示しており、それぞれの工程a3〜d3は下記
のように作動する。
(a3);何も加工を行なわずに次工程へ移送する。
(b3);何も加工を行なわずに次工程へ移送する。
(c3);(c2)と同様の動作。
(d3);(d1)と同様の動作。
すなわち、上記各工程においては帯状鋼板20
をa〜dの四つの工程に別けてP方向へ順次間欠
的に移送を行なつており、工程aでは磁束収束部
分3を形成するために必要な所定枚数(=n1、
n2)だけ逐次歯片8と継鉄片9との間を切離線1
0で切り離し、工程bでは第1枚目の抜き板7と
なる部位に対して接合のための抜孔11を形成す
る。
工程cでは第2枚目以後の全ての抜き板7とな
る部位に対して接合のための突起部12を押し出
し成形し、工程dでは全ての抜き板7を抜型14
によつて帯状鋼板20から打ち抜いて、順次下型
13内に圧挿入する。
そして、下型13内に圧挿入された抜き板7は
下型13の側圧によつて支持されるため、抜型1
4で打ち抜かれた抜き板7が下型13内に圧挿入
される毎に抜孔11および突起部12相互を順次
嵌合させて接合状態に積層すると共に、一枚分の
厚さ寸法ずつ順次押し下げるようにして下方への
移送がなされる。
したがつて、分割鉄心5を板抜き積層するため
には、まず(3−1)の一連の工程により第一枚
目の抜き板7を打ち抜き、次に(3−2)の一連
の工程によりn1−1枚の抜き板7を打ち抜き、次
に(3−3)の一連の工程によりn−n1−n2枚の
抜き板7を打ち抜き、次に(3−2)の一連の工
程によりn2枚の抜き板7を打ち抜くことにより、
下型13内には第4図に示されるように各抜き板
7が接合状態に積層され、作業の進行につれて順
次下型13の下方に排出される。
このとき、それぞれの抜き板7の接合について
は、第一枚目の抜孔11に第二枚目の突起部12
が嵌合され、第二枚目の突起部12の反押し出し
側部分に第三枚目の突起部12が嵌合され、……
…以後n枚の抜き板7が突起部12で相互に嵌合
されて接合が行なわれる。
また、繰り返し作業により第n枚目の抜き板7
の次に打ち抜かれる第一枚目の抜き板7には抜孔
11が形成されるために第n枚目の突起部12の
反押し出し側に嵌合することがないので、抜き板
7を確実にn枚毎のブロツクに積層することがで
きる。
以上の工程をわかり易く表にまとめると下記の
ようになる。
The present invention relates to an armature core having magnetic flux converging portions extending in the axial direction on both end faces of the core teeth, and to a method for laminating the armature core by laminating the magnetic flux converging portions at the same time as the core. In electric motors that use permanent magnets as field means, in order to effectively utilize the magnetic flux of the permanent magnets and increase operating efficiency, for example, the axial dimension of the armature core is made shorter than the permanent magnet portion of the rotor. A magnetic flux convergence portion of a separate piece extending in the axial direction by this short distance is attached and fixed to both end surfaces of the tooth portion of the armature core. However, this type of method has a practical problem in that it requires a large number of man-hours to manufacture the magnetic flux convergence part and to attach and fix it to the armature core. The present invention was made in view of these circumstances, and focused on the fact that the magnetic flux convergence portion is also integrally laminated during the core board lamination process. The present invention will be explained below based on an embodiment shown in the drawings. FIG. 1 is a diagram clearly showing the shape of an armature core of a motor manufactured according to the present invention, and FIG. 2 is a plan view thereof. Further, FIG. 3 is a diagram that clearly shows the process of punching and laminating punched plates constituting the armature core from strip-shaped steel plates, and FIG. 4 is a diagram showing the stacked state of punched plates using a cutting die. FIG. 5 is a perspective view of the split core showing the core teeth and the magnetic flux convergence portion. In FIGS. 1 and 2, 1 is a rotor of an electric motor formed by attaching permanent magnets to the outer periphery;
2 is an armature core, and 3 is a magnetic flux convergence portion formed on both end surfaces of the tooth portion 4 of the armature core 2. The magnetic flux convergence portion 3 is formed by punching out the same tooth pieces 8 as the teeth 8 forming the tooth portion 4 and laminating them in the axial direction. The armature core 2 is formed by abutting and fixing three split cores 5 at their respective split surfaces, and various conventional techniques such as welding can be used as appropriate for this fixing means. Further, 6 is a slot for storing a winding wire (not shown), and the winding is performed by winding a magnet wire around the yoke portion of this slot 6. Next, a blanking and laminating process for forming the divided cores 5 of the armature core 2 using a progressive press die will be described with reference to FIGS. 3 and 4. Note that the number of laminated sheets in the entire armature core 2 is n, and the number of laminated sheets in the magnetic flux convergence portion 3 is n 1 and n 2 , respectively. will be transferred to. (3-1) shows the processing steps for the first punched board 7, and each step a1 to d1 operates as follows. (a1); A separation line 10 for separating the tooth piece 8 forming the tooth part 4 and the yoke piece 9 forming the yoke part from the part of the strip steel plate 20 that will become the punched plate 7
Form by punching. (b1); At a portion of the strip steel plate 20 that will become the punched plate 7, a punched hole 11 for laminated bonding is formed in the tooth piece 8 and the yoke piece 9. (c1); Transfer to the next process without performing any processing. (d1); A punching plate 7 is punched out from the strip steel plate 20 using the punching die 14 and press-fitted into the lower die 13. (3-2) is the predetermined number of sheets (n 1 -1, n 2 ) required to form the magnetic flux convergence part 3 after the second sheet.
The processing steps for the punched plate 7 are shown, and each step a 2 to d 2 operates as follows. (a 2 ); Same operation as (a 1 ). (b 2 ); Transfer to the next process without performing any processing. (c 2 ); Projections 12 for laminated bonding are extruded onto the tooth pieces 8 and the yoke pieces 9 at a portion of the band-shaped steel plate 20 that will become the punched plate 7. (d 2 ); Operation similar to (d 1 ). (3-3) shows the process of processing a predetermined number (n-n 1 - n 2 ) of punched plates 7 that do not separate the tooth piece 8 and the yoke piece 9, and each process a 3 to d 3 is It works as follows. (a 3 ); Transfer to the next process without performing any processing. (b 3 ); Transfer to the next process without performing any processing. (c 3 ); Same operation as (c 2 ). (d 3 ); Operation similar to (d 1 ). That is, in each of the above steps, the strip steel plate 20
is divided into four steps a to d and sequentially and intermittently transferred in the P direction. In step a, a predetermined number of sheets (=n 1 ,
The separation line 1 is successively separated between the tooth piece 8 and the yoke piece 9 by n 2 ).
0, and in step b, a punching hole 11 for joining is formed in a portion that will become the first punched board 7. In step c, protrusions 12 for joining are extruded to the parts that will become all the punched plates 7 after the second sheet, and in step d, all the punched plates 7 are molded into the cutting die 14.
The belt-shaped steel plate 20 is punched out by the following steps and press-inserted into the lower mold 13 one after another. Since the punching plate 7 press-inserted into the lower die 13 is supported by the lateral pressure of the lower die 13, the cutting die 1
Each time the punched plate 7 punched out in step 4 is press-inserted into the lower die 13, the punched holes 11 and the protrusions 12 are successively fitted to each other to form a bonded state, and the punched plate 7 is successively pushed down by the thickness of one sheet. In this way, the downward transfer is performed. Therefore, in order to punch out and stack the split cores 5, first punch out the first punched board 7 through the series of steps (3-1), and then punch out the first punched board 7 through the series of steps (3-2). Punch out n 1 -1 punched board 7, then punch out n-n 1 -n 2 punched boards 7 through the series of steps (3-3), and then perform the series of steps (3-2). By punching out two punching boards 7,
Inside the lower mold 13, the punched plates 7 are stacked in a bonded state as shown in FIG. 4, and are sequentially discharged below the lower mold 13 as the work progresses. At this time, for joining the respective punched plates 7, the projections 12 of the second plate are inserted into the punched holes 11 of the first plate.
are fitted, the third protrusion 12 is fitted to the opposite side of the second protrusion 12, and...
...Thereafter, the n punched plates 7 are fitted into each other at the projections 12 and joined together. Also, due to repeated work, the nth punched board 7
Since the punching hole 11 is formed in the first punched plate 7 to be punched out next, the punched plate 7 will not fit into the opposite side of the n-th protrusion 12. It is possible to laminate every n blocks. The above steps can be summarized in an easy-to-understand table as shown below.
【表】
そして、以上の工程を経て下型13から取り出
された積層ブロツク15に対して、側方からプツ
シヤー(図示せず)等によつて図中点線で示され
る継鉄片9の積層部分16を剥離させることによ
り第5図に示されるような形状の分割鉄心5を形
成することができる。
一方、本実施例においては、抜型14で打ち抜
かれた抜き板7を下型13の側圧で支持するもの
について説明したが、他の支持手段、例えば下方
から油圧機構により支持する等の慣用技術手段を
適宜使用することができるのはもちろんのことで
ある。
また、工程a、b、cについては、その順序を
適宜入れ替えて作業を行なうこともできる。
以上説明の通り本発明によれば、板抜き積層工
程内で磁束収束部分を鉄心と一体的に積層形成す
ることができるため、工程の大幅低減が行なえ、
かつ大量生産にきわめて適合した板抜き積層方法
を得ることができる。[Table] The laminated block 15 taken out from the lower die 13 through the above steps is then laterally moved by a pusher (not shown), etc. to the laminated portion 16 of the yoke piece 9 shown by the dotted line in the figure. By peeling off the split core 5, it is possible to form a split core 5 having a shape as shown in FIG. On the other hand, in this embodiment, the punched plate 7 punched with the cutting die 14 is supported by the lateral pressure of the lower die 13, but other supporting means, such as conventional technical means such as supporting from below by a hydraulic mechanism, are described. Of course, you can use it as appropriate. Furthermore, the order of steps a, b, and c can be changed as appropriate. As explained above, according to the present invention, the magnetic flux convergence portion can be integrally laminated with the iron core during the plate lamination process, so the number of processes can be significantly reduced.
Moreover, it is possible to obtain a sheet-cutting and laminating method that is extremely suitable for mass production.
第1図は本発明により製作される電機子鉄心を
わかり易く示す図、第2図はその平面図、第3図
は板抜き積層工程を示す図、第4図は抜型による
積層状態をわかり易く示す図である。第5図は、
鉄心歯部と磁束収束部分が分るように示された分
割鉄心の斜視図である。
2……電機子鉄心、3……磁束収束部分、4…
…歯部、5……分割鉄心、7……抜き板、10…
…切離線、11……抜孔、12……突起部、20
……帯状鋼板。
Fig. 1 is an easy-to-understand diagram showing the armature core produced according to the present invention, Fig. 2 is a plan view thereof, Fig. 3 is a diagram showing the board cutting lamination process, and Fig. 4 is a diagram clearly showing the lamination state using a cutting die. It is. Figure 5 shows
FIG. 2 is a perspective view of a split core showing core teeth and magnetic flux convergence portions; 2... Armature core, 3... Magnetic flux convergence part, 4...
...Tooth portion, 5...Segmented iron core, 7...Punched plate, 10...
...Separation line, 11...Drilling hole, 12...Protrusion, 20
...Striped steel plate.
Claims (1)
束部分を有する電機子鉄心の製造方法であつて、
下記の工程を備えることを特徴とするプレス順送
型による電機子鉄心の板抜き積層方法。 (a) 積層始め分と終り分の所定枚数の抜き板とな
る帯状鋼板の部位に歯片と継鉄片との間にスリ
ツト状の切離線を形成し、中間部分の抜き板と
なる部位にはこの切離線を形成しない工程。 (b) 第一枚目の抜き板となる部位に接合のための
抜孔を形成する工程。 (c) 第二枚目以後の抜き板となる部位に接合のた
めの突起部を押し出し成形する工程。 (d) 上記(a)(b)(c)の工程終了後に抜き板を帯状鋼板
から打ち抜いて順送型内に圧入し、抜孔および
突起部相互を嵌合させて前記抜き板を接合する
工程。[Scope of Claims] 1. A method for manufacturing an armature core having magnetic flux convergence portions extending in the axial direction on both end faces of the core teeth, comprising:
A method for punching and laminating armature cores using a progressive press die, which is characterized by comprising the following steps. (a) A slit-shaped separation line is formed between the tooth piece and the yoke piece at the part of the strip steel plate that will be the predetermined number of punched sheets at the beginning and end of the stack, and a slit-shaped separation line is formed at the part where the middle part will be the punched sheet. A process that does not form this separation line. (b) The process of forming a punching hole for joining in the part that will become the first punched board. (c) A process of extruding and molding protrusions for joining on the parts that will become the second and subsequent punched boards. (d) After completing the steps (a), (b), and (c) above, a step of punching out a punched plate from a strip steel plate, press-fitting it into a progressive die, and joining the punched plate by fitting the punched holes and protrusions with each other. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11304781A JPS5815457A (en) | 1981-07-21 | 1981-07-21 | Punching and laminating method for plates of armature core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11304781A JPS5815457A (en) | 1981-07-21 | 1981-07-21 | Punching and laminating method for plates of armature core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5815457A JPS5815457A (en) | 1983-01-28 |
JPH0127665B2 true JPH0127665B2 (en) | 1989-05-30 |
Family
ID=14602137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11304781A Granted JPS5815457A (en) | 1981-07-21 | 1981-07-21 | Punching and laminating method for plates of armature core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815457A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58215957A (en) * | 1982-06-08 | 1983-12-15 | Shibaura Eng Works Co Ltd | Manufacture of motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5095887A (en) * | 1973-12-20 | 1975-07-30 | ||
JPS5260221A (en) * | 1975-11-13 | 1977-05-18 | Mitsui Mfg | Method of manufacturing laminated iron cores and its metallic mould |
-
1981
- 1981-07-21 JP JP11304781A patent/JPS5815457A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5095887A (en) * | 1973-12-20 | 1975-07-30 | ||
JPS5260221A (en) * | 1975-11-13 | 1977-05-18 | Mitsui Mfg | Method of manufacturing laminated iron cores and its metallic mould |
Also Published As
Publication number | Publication date |
---|---|
JPS5815457A (en) | 1983-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7260880B2 (en) | Method for manufacturing a stator core for a dynamoelectric machine | |
US5142178A (en) | Apparatus for aligning stacked laminations of a dynamoelectric machine | |
JP5357187B2 (en) | Manufacturing method of laminated core and manufacturing jig thereof | |
CN102549881A (en) | Method of manufacturing molded stator of dynamo electric machine | |
JP5212129B2 (en) | Manufacturing method of laminated core and manufacturing jig thereof | |
JP3722539B2 (en) | Manufacturing method of annular laminated iron core and progressive mold apparatus | |
JP3313965B2 (en) | Manufacturing method of laminated iron core using amorphous alloy foil strip | |
JP3660532B2 (en) | Electric motor and method for manufacturing electric motor core | |
JP2008011615A (en) | Method of manufacturing laminated core, and that laminated core | |
JP6509373B2 (en) | Core sheet, divided laminated core and stator, and method of manufacturing divided laminated core | |
JPH06133501A (en) | Laminated stator core for motor and manufacture thereof | |
JP2556776B2 (en) | Manufacturing method of laminated core for stator of electric motor | |
JPH04117153A (en) | Manufacture of laminated core | |
JPH0127665B2 (en) | ||
JPH1080078A (en) | Laminated iron core and its manufacturing method | |
JP7292348B2 (en) | LAMINATED CORE MANUFACTURING METHOD AND LAMINATED CORE MANUFACTURING APPARATUS | |
JP2527498B2 (en) | Mold apparatus and method of manufacturing laminated core using the same | |
KR20040047320A (en) | Assembling structure of stator for liner motor and manufacturing method thereof | |
JP3842146B2 (en) | Manufacturing method of laminated iron core | |
JPH0480625B2 (en) | ||
JPH0518655B2 (en) | ||
JP4527213B2 (en) | Method for manufacturing unit laminated body for annular laminated iron core | |
JP2697256B2 (en) | Laminated core and method of manufacturing the same | |
JPS6142501B2 (en) | ||
JP2592368B2 (en) | Laminated mold device for laminated iron core for motor stator |