[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0126253B2 - - Google Patents

Info

Publication number
JPH0126253B2
JPH0126253B2 JP56076076A JP7607681A JPH0126253B2 JP H0126253 B2 JPH0126253 B2 JP H0126253B2 JP 56076076 A JP56076076 A JP 56076076A JP 7607681 A JP7607681 A JP 7607681A JP H0126253 B2 JPH0126253 B2 JP H0126253B2
Authority
JP
Japan
Prior art keywords
power
voltage
terminal
converters
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56076076A
Other languages
Japanese (ja)
Other versions
JPS57193937A (en
Inventor
Buichi Sakurai
Kyoshi Goto
Koji Imai
Tsunero Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP56076076A priority Critical patent/JPS57193937A/en
Publication of JPS57193937A publication Critical patent/JPS57193937A/en
Publication of JPH0126253B2 publication Critical patent/JPH0126253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 本発明は複数台の変換装置から成る直流多端子
送電系統に於て、順変換はすべて送電端子、逆変
換側がすべて受電端子である場合、1個以上の電
圧決定端子を設けることによつてその端子以外の
すべての端子は全く独立に自由に送、受電量を配
分することができる信頼度の高い直流多端子送電
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In a DC multi-terminal power transmission system consisting of a plurality of converters, when all forward conversions are power transmitting terminals and all inverse conversions are power receiving terminals, one or more voltage determining terminals are used. The present invention relates to a highly reliable DC multi-terminal power transmission system in which all terminals other than that terminal can freely transmit and receive power completely independently.

従来の直流多端子送電では各端子の負荷配分、
起動・停止などはすべて1箇所に集中された中央
制御装置からの通信回線等を介しての制御に依在
している。このため、たとえば直流送電線のある
箇所に於て発生した地絡故障などの除去は、停止
すべき変換器、負荷の再配分などすべて中央制御
装置からの指令により行なわれる。このため通信
回線に極めて高信頼度が要求される一方中央演算
装置の機能が複雑化し、系統構成の自由度が著し
く損なわれていた。
In conventional DC multi-terminal power transmission, load distribution for each terminal,
Starting, stopping, etc. all depend on control via communication lines etc. from a central control unit that is centralized at one location. Therefore, for example, when a ground fault occurs at a certain point in a DC power transmission line, all the converters to be stopped, the load redistribution, etc., are removed by commands from the central control unit. For this reason, communication lines are required to have extremely high reliability, while the functions of the central processing unit become complicated, significantly reducing the degree of freedom in system configuration.

本発明の目的は、このような従来方式を改良し
て交流送電なみの自由度のある直流多端子送電方
式を提供するものである。
An object of the present invention is to improve such a conventional system and provide a DC multi-terminal power transmission system that has a degree of freedom comparable to that of AC power transmission.

以下本発明を例えば第1図の多端子系統に適用
する場合にとつて説明する。
Below, the present invention will be explained in the case where it is applied to, for example, the multi-terminal system shown in FIG.

中央制御の機能を、単に送電側の交流発電機の
電気出力定常値の指定にとどめるとすれば、現在
の交流送電と同等な通信回線依存度にすることが
可能である。直流多端子系で、この系統に含まれ
る順変換装置はすべて発電機と接続される送電端
子とし、逆変換装置は負荷系統と接続される受電
端子とするならば、これらの送電端子について
は、指定された出力を定常的に送電する機能をも
つように制御すれば良い。すなわちこれらの送電
端子を集めて直流送電網を構成したとき、その送
電線の少くともある一地点に於ける電圧を一定値
に保つならば、各順変換器はその電圧よりも線路
電圧降下分だけ高い出力電圧で運転することによ
つて所要の電力を送電することが可能になる。受
電端子となる各逆変換装置は、所定の交流出力が
得られるように周知の定電流制御運転を行えば良
く、その電流指定値は、各逆変換装置毎に全く独
立に選定できる。しかし乍ら、順変換装置の全送
電電力をこえる受電電力を定常的に得ることは不
可能であり、このことは交流送電系に於ても許容
されてもいない。従つて定常運転時は中央制御装
置から、各順変換装置の送電電力及び各逆変換装
置の受電電力が指定される運転形態がとられるこ
とになる。
If the central control function were to simply specify the steady-state electrical output value of the alternating current generator on the power transmission side, it would be possible to make it as dependent on communication lines as current AC power transmission. In a DC multi-terminal system, if the forward converters included in this system are all power transmission terminals connected to the generator, and the inverse converters are power receiving terminals connected to the load system, then these power transmission terminals are as follows: It is sufficient to control the power supply so that it has the function of constantly transmitting the specified output. In other words, when these power transmission terminals are collected to form a DC power transmission network, if the voltage at at least one point on the transmission line is kept constant, each forward converter will have a line voltage drop less than that voltage. By operating at a higher output voltage, it becomes possible to transmit the required power. Each inverter serving as a power receiving terminal may perform well-known constant current control operation so as to obtain a predetermined alternating current output, and the specified current value can be selected completely independently for each inverter. However, it is impossible to constantly obtain received power that exceeds the total transmitted power of the forward converter, and this is not allowed even in an AC power transmission system. Therefore, during steady operation, the central control device specifies the power to be transmitted to each forward converter and the power to receive to each inverse converter.

このように構成された直流多端子送電方式に於
て、その送電線の電圧をある地点に於て基準に保
つことが必要になる。これには以下に述べる二つ
の方式が適用できる。
In the DC multi-terminal power transmission system configured in this manner, it is necessary to maintain the voltage of the power transmission line at a reference point at a certain point. The following two methods can be applied to this.

その一つは、1台の順変換装置の送電電力が変
動してもその変動と全く無関係に一定の直流出力
電圧を保持するように電圧制御される少くとも1
台の順変換装置を設ける方法であり、他の一つ
は、1台の逆変換装置の受電電力の変動と全く無
関係に一定の直流入力電圧を保持するように電圧
制御される少くとも1台の逆変換装置を設置する
方法である。
One of them is at least one forward converter that is voltage controlled so as to maintain a constant DC output voltage regardless of fluctuations in the transmitted power of one forward converter.
One method is to provide at least one forward converter, and the other method is to provide at least one inverter whose voltage is controlled so as to maintain a constant DC input voltage completely independent of fluctuations in the received power of one inverter. This is a method of installing an inverse conversion device.

今、直流送電線の電圧を規定する送電端子を第
1図に於けるREC1と仮定する。REC1は交流
送電に於ける周波数維持のための負荷調整用発電
機に相当したものと考えることが出来る。周知の
ように交流系では有効電力変動は周波数変化とな
るので、周波数一定に維持するためには有効電力
変動を吸収して周波数変化を抑制する負荷調整発
電機が交流全系統送電電力の数%〜10数%程度設
けられている。直流系に於ても、例えば第1図の
REC1の直流出力Ps1と直流出力電圧Vdとの関係
を第2図に示すように制御するならば、全系統の
送電電力と受電電力との不平衡がREC1の制御
範囲内の電力変動Pcにとどまるならば、送電線
電圧を第1図の地点で一定電圧Vdnに保持する
ことができる。第2図に於て負荷電力がある量か
ら抑制されているのは、変換装置保護の目的のた
めであつて、後に詳述する。
Now, assume that the power transmission terminal that regulates the voltage of the DC transmission line is REC1 in Fig. 1. REC1 can be considered to be equivalent to a load adjustment generator for frequency maintenance in AC power transmission. As is well known, in an AC system, active power fluctuations result in frequency changes, so in order to maintain a constant frequency, a load adjustment generator that absorbs active power fluctuations and suppresses frequency changes requires several percent of the total AC power transmitted. Approximately 10% or so. Even in a DC system, for example, as shown in Figure 1.
If the relationship between the DC output Ps 1 of REC1 and the DC output voltage Vd is controlled as shown in Figure 2, the unbalance between the transmitted power and received power of the entire system will be reduced to the power fluctuation Pc within the control range of REC1. If the voltage remains constant, the line voltage can be held at a constant voltage Vdn at the point in FIG. The reason why the load power is suppressed from a certain amount in FIG. 2 is for the purpose of protecting the converter, and will be explained in detail later.

たとえば、逆変換装置INV4が事故しや断さ
れたような場合に、第1図に示す各順変換器の送
電電力をPs1〜Ps4とすれば、その総和、Ps1+Ps2
+Ps3+Ps4が、各逆変換器の受電電力をPr1〜Pr5
としたときの総和Pr1+Pr2+Pr3+Pr5に等しくな
るようにPs1が自動的に変化することによつて
点の電圧は一定に保たれ全系は擾乱を生じること
なく運転が継続され、送電側のREC2〜REC4
の負荷再配分は全く不要である。
For example, in the case where the inverse converter INV4 is cut off due to an accident, if the transmitted power of each forward converter shown in Fig. 1 is Ps 1 to Ps 4 , then the sum of them is Ps 1 + Ps 2
+Ps 3 +Ps 4 represents the power received by each inverter from Pr 1 to Pr 5
By automatically changing Ps 1 so that it becomes equal to the sum Pr 1 + Pr 2 + Pr 3 + Pr 5 , the voltage at the point is kept constant, and the entire system continues to operate without disturbance. , REC2 to REC4 on the power transmission side
No load redistribution is necessary.

系統が安定に運転するためには、前述の電圧決
定端子に於ける電力変動Pcと、全送電電力 〓n Psn
≡Psと、全受電電力 〓n Prn≡Prとの間に|Ps|
−|Pr|≦|Pc| の関係が満たされることが必要十分な条件となる
ことは上述のことから明白になる。
In order for the grid to operate stably, the power fluctuation Pc at the voltage determining terminal mentioned above and the total transmitted power 〓 n Psn
Between ≡Ps and total received power 〓 n Prn≡Pr|Ps|
It is clear from the above that it is a necessary and sufficient condition that the relationship −|Pr|≦|Pc| is satisfied.

電圧決定端子となる発電機および順変換装置に
於ては迅速な負荷変化に対応できることが要求さ
れる。その制御の一例を第3図に示す。第3図の
1は原動機、3は原動機1の出力制御のための調
速装置、4は周波数制御測置、fdetは検出される
周波数、frefは基準周波数、2は交流発電機、5
は周波数検出装置、6は順変換装置、7は直流電
圧検出器、8は変換装置の位相制御装置、9は増
幅器、10は交流電圧自動制御器、11は界磁用
サイリスタ装置、12は交流発電機2の界磁巻線
をそれぞれ示している。
The generator and forward converter, which serve as voltage determining terminals, are required to be able to respond to rapid load changes. An example of this control is shown in FIG. In Fig. 3, 1 is a prime mover, 3 is a governor for controlling the output of the prime mover 1, 4 is a frequency control measurement, f det is a detected frequency, f ref is a reference frequency, 2 is an alternator, 5
is a frequency detection device, 6 is a forward conversion device, 7 is a DC voltage detector, 8 is a phase control device for the conversion device, 9 is an amplifier, 10 is an AC voltage automatic controller, 11 is a field thyristor device, 12 is an AC Each field winding of the generator 2 is shown.

この制御回路の動作を説明する。第3図直流電
圧検出器7、位相制御装置8、増幅器9からなる
制御回路は、順変換装置6の出力直流電圧Vdを
一定の基準値Vrefと一致させるべく、順変換装
置6の各サイリスタの位相制御するものである。
今、順変換装置6の負荷が減少し、電圧Vdがそ
の為に高くなろうとしても順変換装置6は前記の
位相制御によつて電圧を一定に保つが、その負荷
が減少しているため交流発電機2の速度が増大し
ようとする。これを周波数検出装置5によつて検
知し、その周波数を一定の基準値frefになるよう
に周波数制御装置4、調速装置3の回路によつて
原動機1の出力を低下させてその速度を一定値に
おさえる。この制御によつて、出力変動に応答で
きることになる。交流発電機2の出力交流電圧は
順変換装置6の動作と無関係に一定に保つため、
10の自動電圧調整装置を介して11の界磁用サ
イリスタ装置を制御して界磁巻線12の電流を制
御する。原動機1は、その出力を大幅にかつ迅速
に変化できるものが好ましく、水力、ピーク火力
などを適用する。
The operation of this control circuit will be explained. FIG. 3 A control circuit consisting of a DC voltage detector 7, a phase control device 8, and an amplifier 9 controls each thyristor of the forward conversion device 6 in order to make the output DC voltage Vd of the forward conversion device 6 match a constant reference value Vref. This is for phase control.
Now, even if the load on the forward converter 6 decreases and the voltage Vd tries to increase accordingly, the forward converter 6 will keep the voltage constant through the above-mentioned phase control, but since the load is decreasing, The speed of the alternator 2 is about to increase. This is detected by the frequency detection device 5, and the output of the prime mover 1 is reduced by the circuits of the frequency control device 4 and speed governor 3 so that the frequency becomes a constant reference value fref , and its speed is adjusted. Keep it at a constant value. This control makes it possible to respond to output fluctuations. In order to keep the output AC voltage of the AC generator 2 constant regardless of the operation of the forward converter 6,
The current in the field winding 12 is controlled by controlling the 11 field thyristor devices via the 10 automatic voltage regulators. The prime mover 1 is preferably one that can change its output significantly and quickly, and hydraulic power, peak thermal power, etc. are applied.

第1図の他の順変換装置REC2〜REC4及び
その交流電源G2〜G4は、例えば中央制御装置
(第1図には図示していない)からの指定された
出力を送電するための簡単な制御を行えば良い。
その一例を第4図に示す。第4図の1は原動機、
2は交流発電機、3は原動機の出力制御装置、5
は交流発電機2の出力周波数検出装置、fdetは検
出された周波数、frefは周波数の基準値、4は周
波数制御装置、13は信号変換装置、6は順変換
装置、7は直流電圧検出装置、14は直流電流検
出装置、15は直流電力検出装置、Pdetは検出
された直流出力、Prefは中央制御装置から与えら
れる電力の指定値、16は電力制御装置、17は
界磁サイリスタ位相制御装置、11は界磁用サイ
リスタ装置、12は界磁巻線をそれぞれ示す。
The other forward converters REC2 to REC4 and their AC power supplies G2 to G4 in FIG. All you have to do is control it.
An example is shown in FIG. 1 in Figure 4 is the prime mover,
2 is an alternating current generator, 3 is a prime mover output control device, 5
is the output frequency detection device of the AC generator 2, f det is the detected frequency, f ref is the frequency reference value, 4 is the frequency control device, 13 is the signal conversion device, 6 is the forward conversion device, 7 is the DC voltage detection 14 is a DC current detection device, 15 is a DC power detection device, Pdet is a detected DC output, Pref is a specified value of power given from the central control device, 16 is a power control device, 17 is a field thyristor phase control 11 is a field thyristor device, and 12 is a field winding.

この制御回路の動作を以下に説明する。第4図
の順変換装置6は、定常時は固定された最小位相
制御角をもつて運転する。従つて、後述のように
故障保護のために直流回路に直流しや断器を設け
るならば順変換装置は単にダイオードであつても
何等支障はない。この順変換装置にサイリスタを
用いるのは、後述の如く直流線路故障、インバー
タの転流失敗などの保護を行う目的であつて直流
しや断器が適用できない場合を考慮したものであ
る。中央制御装置からの電力指定値Prefは、原動
機1の出力制御回路及び交流発電機2の界磁制御
回路の両者に並列に与えられる。周知の通り直流
送電に於ては、直流電圧の制御で出力電力を制御
できる。したがつて、直流回路に設けられた電圧
検出回路7と電流検出装置14とによつて直流電
圧・電流を検出し、電力検出装置15でそれらを
合成してその出力信号Pdetを指定値Prefと比較、
電力制御回路16によつて増幅及び信号レベルの
変換を行い、位相制御装置17を介して界磁用サ
イリスタ装置11を制御し、交流発電機2の界磁
巻線12の電流を調整し所定の電圧を発生させ、
所定の直流電力を送電させる。
The operation of this control circuit will be explained below. The forward conversion device 6 shown in FIG. 4 operates with a fixed minimum phase control angle during steady state. Therefore, if a DC circuit or a disconnector is provided in the DC circuit for failure protection as described later, there is no problem even if the forward converter is simply a diode. The purpose of using a thyristor in this forward conversion device is to protect against DC line failures, inverter commutation failures, etc., as will be described later, and in consideration of cases where DC current or disconnectors cannot be applied. The specified power value Pref from the central control device is given to both the output control circuit of the prime mover 1 and the field control circuit of the alternator 2 in parallel. As is well known, in DC power transmission, output power can be controlled by controlling DC voltage. Therefore, the voltage detection circuit 7 and current detection device 14 provided in the DC circuit detect the DC voltage and current, and the power detection device 15 synthesizes them and outputs the output signal Pdet as the specified value Pref. comparison,
The power control circuit 16 performs amplification and signal level conversion, controls the field thyristor device 11 via the phase control device 17, adjusts the current in the field winding 12 of the alternator 2, and achieves a predetermined value. generate voltage,
A predetermined DC power is transmitted.

一方、この直流電力に対応した原動機出力が必
要であるから、中央制御装置Prefの信号レベル変
換のために装置13を介し、原動機1の出力制御
装置3によつて所定の出力が得られるように調整
する。順変換装置6の出力制御と、原動機1の出
力制御とは別個に行なわれるので両者に誤差が生
じるため、交流発電機の回転数すなわち周波数が
変動する。この変動は好ましくないので、周波数
一定制御のため装置5,4を介して原動機1の出
力制御をわずかに補正する。
On the other hand, since a prime mover output corresponding to this DC power is required, a predetermined output is obtained by the output control device 3 of the prime mover 1 via the device 13 for signal level conversion of the central control device Pref. adjust. Since the output control of the forward converter 6 and the output control of the prime mover 1 are performed separately, errors occur in both, and the rotational speed, that is, the frequency of the alternator changes. Since this variation is undesirable, the output control of the prime mover 1 is slightly corrected via the devices 5 and 4 for constant frequency control.

以上詳述したように、第4図に例示した制御は
順変換装置6を無制御にとどめているため、従来
の直流多端子系制御における通信回線により高速
制御信号の送受は、全く必要ない点に多大の特長
を有するものである。また、発電機G2〜G4は、
大形火力、原子力などの大幅な負荷変動を許容し
難いものであつても適用可能である。
As described in detail above, since the control illustrated in FIG. 4 leaves the forward converter 6 uncontrolled, there is no need to send and receive high-speed control signals through communication lines in conventional DC multi-terminal control. It has many features. In addition, generators G 2 to G 4 are
It is also applicable to large thermal power plants, nuclear power plants, and other plants that cannot tolerate large load fluctuations.

以上は電圧決定端子が順変換側におかれた場合
を説明したが、電圧決定端子を逆変換側に設ける
ことも勿論可能である。この場合は、第1図の例
えば逆変換装置INV1を周知の定電圧制御によ
つて、直流入力点の電圧を一定に制御する。勿
論いずれの逆変換装置を選択しても、直流送電系
電圧は指定された値に近く保持されるが、線路電
圧降下を考慮した場合には電圧決定端子はできる
だけその影響の少い地点に選ぶことが好ましい。
例えば線路末端の地点よりは、基幹送電線の地点
が好ましいことは明白である。
Although the case where the voltage determining terminal is placed on the forward conversion side has been described above, it is of course possible to provide the voltage determining terminal on the reverse conversion side. In this case, for example, the inverter INV1 shown in FIG. 1 is controlled to have a constant voltage at the DC input point by well-known constant voltage control. Of course, no matter which inverter you choose, the DC transmission system voltage will be maintained close to the specified value, but if line voltage drop is taken into account, the voltage determining terminal should be selected at a point where it is least affected as much as possible. It is preferable.
For example, it is clear that a point on a main power transmission line is preferable to a point at the end of a line.

上記は定常運転時について詳述したが、例えば
直流送電線に地絡を生じたり、または逆変換装置
が転流失敗を生じた場合など異常時の保護につい
て説明する。直流多端子系に於て、故障電流(少
くとも定常電流の5倍程度以上)をしや断し得る
直流しや断器が適用できる場合、あるいは定常電
流の2倍程度以下をしや断し得る負荷開閉器の場
合、または全く電流開閉装置が適用できない場合
についてそれぞれ保護方式が異なる。
Although the above description has been made in detail regarding steady operation, protection in the event of an abnormality, such as when a ground fault occurs in a DC power transmission line or a commutation failure occurs in the inverter, will be described. In a DC multi-terminal system, if a DC or disconnector that can cut off the fault current (at least 5 times the steady current) is applicable, or if it can cut the fault current (at least about 5 times the steady current) or The protection methods are different depending on the case where the load switchgear is used or where no current switchgear is applicable.

全く電流開閉装置が適用できない場合は、順変
換装置に過電流が検出されたとき、周知のゲート
ブロツク保護によつて電流を零とし、一旦全系統
を停止したのち再起動を行う方法をとるので、原
動機の種別によつては甚だ好ましからざる保護方
式となる。従つて、本発明の直流多端子送電には
少くとも直流負荷開閉装置が順、逆両変換装置に
接続されていることが必要である。
If a current switchgear cannot be applied at all, when an overcurrent is detected in the forward converter, the current will be reduced to zero using well-known gate block protection, and the entire system will be temporarily stopped and then restarted. , depending on the type of prime mover, this is an extremely undesirable protection method. Therefore, in the DC multi-terminal power transmission of the present invention, it is necessary that at least the DC load switching device is connected to both forward and reverse converters.

負荷開閉装置は過大な事故電流のしや断はでき
ないので、例えば順変換装置の全短絡電流の大半
が1台の転流失敗を生じた逆変換装置に流れ込む
と保護が不能になる。また線路故障が生じた場合
にも、順変換装置の全短絡電流がその地点に集中
することは好ましくない。この点に鑑み、本発明
の多端子送電系に於ては、周知の電圧依存電流低
下制御(CIGRE Report14−10、8/30〜9/
7、1978)を順及び逆変換装置に適用し、故障電
流を一旦低レベルに抑制し直流開閉器によつてそ
の故障電流をしや断可能ならしめる。該電圧依存
電流低下制御を行つた場合の順及び逆変換装置の
電圧−電流特性は第5図a,bに示す如くであ
る。第5図aは順変換、bは逆変換の場合を示し
ている。各順変換装置の短絡電流ISRoの総和と、
各逆変換装置の短絡電流ISIoの総和との差が例え
ば負荷開閉装置のしや断可能な電流をこえないよ
うに系統を構成すれば良い。
Since the load switching device cannot withstand or cut off an excessive fault current, protection becomes impossible if, for example, most of the total short-circuit current of a forward converter flows into one reverse converter in which commutation has failed. Furthermore, even if a line failure occurs, it is undesirable that the entire short-circuit current of the forward converter is concentrated at that point. In view of this point, in the multi-terminal power transmission system of the present invention, the well-known voltage-dependent current reduction control (CIGRE Report 14-10, 8/30-9/
7, 1978) is applied to forward and reverse converters to suppress the fault current to a low level and make it possible to interrupt the fault current using a DC switch. The voltage-current characteristics of the forward and inverse converter when the voltage-dependent current reduction control is performed are as shown in FIGS. 5a and 5b. FIG. 5a shows the case of forward transformation, and FIG. 5b shows the case of inverse transformation. The sum of the short circuit currents I SRo of each forward converter,
The system may be configured so that the difference between the short-circuit current ISIo of each inverter and the sum total does not exceed, for example, the current that can be cut off by the load switching device.

直流しや断装置に適用されれば、各順及び逆変
換装置には、第5図に示すような電圧−電流特性
の制御を行う必要は全く無く、故障検知と同時に
必要な個所のしや断装置の動作によつて故障の除
去ができる。従つて電圧決定端子を除く順変換装
置はサイリスタでなくダイオードで構成すること
が可能となり、全系統の信頼度が高度化すると同
時に直流多端子送電方式に交流送電と同等の自由
度をもたせることが可能となり、その効果は多大
なものである。
If it is applied to DC or disconnection devices, there is no need to control the voltage-current characteristics of each forward and reverse conversion device as shown in Figure 5, and it is possible to control the necessary parts at the same time as failure detection. The fault can be removed by operating the disconnection device. Therefore, the forward conversion device except for the voltage determining terminal can be configured with diodes instead of thyristors, which increases the reliability of the entire system and at the same time allows the DC multi-terminal power transmission system to have the same degree of freedom as AC power transmission. It is now possible, and the effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用できる直流多端子送電の
1例を示す図、第2図は電圧決定端子として使用
する場合の1個の順変換装置の負荷電力と直流電
圧との関係を示す図、第3図は電圧制御端子とな
る順変換装置の制御ブロツク図、第4図は電圧決
定端子以外の端子となる順変換装置の制御ブロツ
ク図、第5図は、電圧依存電流低下制御を行つた
場合の順変換装置の特性図a及び逆変換装置の特
性図bである。 REC1〜REC4……順変換装置、G1〜G4……
交流発電機、INV1〜INV5……逆変換装置、
AC1〜AC5……交流受電系統、1……原動機、
2……交流発電機、3……原動機の出力制御装
置、4……周波数制御装置、5……周波数検出装
置、6……順変換装置、7……直流電圧検出装
置、8……位相制御装置、9……増幅器、10…
…自動電圧調整装置、11……界磁用サイリスタ
装置、12……界磁巻線、13……信号変換装
置、14……直流電流検出装置、15……直流電
力検出装置、16……電力制御装置、17……界
磁サイリスタ位相制御装置。
Fig. 1 is a diagram showing an example of DC multi-terminal power transmission to which the present invention can be applied, and Fig. 2 is a diagram showing the relationship between the load power and DC voltage of one forward converter when used as a voltage determining terminal. , Fig. 3 is a control block diagram of a forward converter that serves as a voltage control terminal, Fig. 4 is a control block diagram of a forward converter that serves as a terminal other than the voltage determining terminal, and Fig. 5 shows a control block diagram of a forward converter that serves as a terminal other than the voltage determining terminal. FIG. 3 is a characteristic diagram a of the forward transform device and a characteristic diagram b of the inverse transform device when REC1 to REC4...Forward conversion device, G1 to G4 ...
AC generator, INV1 to INV5...inverse conversion device,
AC1 to AC5...AC power receiving system, 1...prime mover,
2... AC generator, 3... Prime mover output control device, 4... Frequency control device, 5... Frequency detection device, 6... Forward conversion device, 7... DC voltage detection device, 8... Phase control Device, 9...Amplifier, 10...
... Automatic voltage adjustment device, 11 ... Field thyristor device, 12 ... Field winding, 13 ... Signal conversion device, 14 ... DC current detection device, 15 ... DC power detection device, 16 ... Electric power Control device, 17... Field thyristor phase control device.

Claims (1)

【特許請求の範囲】 1 複数台の変換装置から成り、全順変換装置は
1台以上の交流発電機と接続されて構成される直
流多端子送電系統において、順変換装置のうち少
くとも1台の変換装置を、直流出力電圧が一定に
なるように制御することによつて送電線の電圧決
定端子として動作させ、この電圧決定端子以外の
すべての順変換装置はそれらの位相制御角を固定
して運転し、これらの順変換装置の直流出力電圧
をその変換装置に接続される交流発電機の界磁電
流によつて制御し、その結果指定された電力を送
電し、全逆変換装置は各々が指定された交流負荷
電力を供給するように制御され、全送電電力Ps
と全受電電力Prと全送電電力の一部である電圧
決定端子に於ける送電電力Pcとの間に|Ps|−
|Pr|≦|Pc|が成立するようにしたことを特
徴とする直流多端子送電方式。 2 複数台の変換装置から成り、全順変換装置は
1台以上の交流発電機と接続されて構成される直
流多端子送電系統において、逆変換装置のうち少
くとも1台の変換装置を、直流入力電圧が一定に
なるように制御することによつて送電線の電圧決
定端子として動作させ、全順変換装置はそれらの
位相制御角を固定して運転し、これらの変換装置
の直流電圧を指定された電力が得られるように、
各々の変換装置に接続される交流発電機の界磁電
流によつて制御し、電圧決定端子以外のすべての
逆変換装置は各々が指定された交流負荷電力を供
給するように制御し、全送電電力Psと全受電電
力Prと全受電電力の一部である電圧決定端子に
おける受電電力Pcとの間に|Ps|−|Pr|≦|
Pc|が成立するようにしたことを特徴とする直
流多端子送電方式。
[Claims] 1. In a DC multi-terminal power transmission system consisting of a plurality of converters, all forward converters being connected to one or more alternating current generators, at least one of the forward converters is connected to one or more alternating current generators. The converter is operated as a voltage determining terminal for the transmission line by controlling the DC output voltage to be constant, and all forward converters other than this voltage determining terminal have their phase control angles fixed. The DC output voltage of these forward converters is controlled by the field current of the alternator connected to the converter, so that the specified power is transmitted, and the total inverter is is controlled to supply the specified AC load power, and the total transmitted power Ps
and between the total received power Pr and the transmitted power Pc at the voltage determination terminal, which is a part of the total transmitted power, |Ps|−
A DC multi-terminal power transmission system characterized in that |Pr|≦|Pc| is established. 2. In a DC multi-terminal power transmission system consisting of a plurality of converters, in which all forward converters are connected to one or more alternating current generators, at least one of the inverse converters is connected to a DC converter. By controlling the input voltage to be constant, it is operated as a voltage determining terminal for power transmission lines, and all forward converters are operated with their phase control angles fixed, and the DC voltage of these converters is specified. so that you can get the power
It is controlled by the field current of the alternator connected to each converter, and all inverters other than the voltage determining terminal are controlled so that they each supply the specified AC load power, and all power transmission Between the power Ps, the total received power Pr, and the received power Pc at the voltage determining terminal, which is a part of the total received power, |Ps|−|Pr|≦|
A DC multi-terminal power transmission system characterized by ensuring that Pc| holds true.
JP56076076A 1981-05-20 1981-05-20 Dc multiterminal transmission system Granted JPS57193937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56076076A JPS57193937A (en) 1981-05-20 1981-05-20 Dc multiterminal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56076076A JPS57193937A (en) 1981-05-20 1981-05-20 Dc multiterminal transmission system

Publications (2)

Publication Number Publication Date
JPS57193937A JPS57193937A (en) 1982-11-29
JPH0126253B2 true JPH0126253B2 (en) 1989-05-23

Family

ID=13594711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56076076A Granted JPS57193937A (en) 1981-05-20 1981-05-20 Dc multiterminal transmission system

Country Status (1)

Country Link
JP (1) JPS57193937A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005008932D1 (en) * 2005-09-22 2010-03-11 Siemens Ag CONTROL METHOD FOR A DC TRANSMISSION WITH SEVERAL CURRENT TRANSDUCERS

Also Published As

Publication number Publication date
JPS57193937A (en) 1982-11-29

Similar Documents

Publication Publication Date Title
CN108418237B (en) Method and device for controlling inter-station communication fault of multi-terminal direct-current power transmission system
EP2140534B1 (en) Method and system to influence the power generation of an adjustable speed generator
US6118676A (en) Dynamic voltage sag correction
US20130334887A1 (en) Multi-terminal dc transmission system and method and means for control there-of
KR20120030556A (en) Controlling an inverter device of a high voltage dc system for supporting an ac system
Foerst et al. Multiterminal operation of HVDC converter stations
CN108695883B (en) Control system in converter and method of operating converter
JPS6358022B2 (en)
WO2015043602A1 (en) Detecting faults in electricity grids
US6232751B1 (en) Excitation control system
US3707669A (en) Method of regulating high voltage direct current transmission system operating with several converter stations connected in a multipoint network
JPH0254012B2 (en)
CA1101055A (en) Hvdc floating current order system
EP0186849B1 (en) Control apparatus of ac/dc power converter
CA1101932A (en) Method and apparatus for controlling the real and reactive power behavior of a high voltage d. c. transmission (hdt) system
CA2623263C (en) Control method for direct-current transmission
US10116234B2 (en) DC/AC converter comprising control means for inrush current protection
KR20090032528A (en) Dual pwm digital excitation system of regeneration type
JPH0126253B2 (en)
JPH1028319A (en) Protective device for series compensation system
EP4211770B1 (en) A phase voltage regulator and a method for regulating phase voltage
US3543129A (en) Power transmission equipment for high voltage direct current
US12129834B2 (en) Wind turbine auxiliary power system
US3573603A (en) Device in current converters
JPH08308096A (en) Self-excitation type inverter control circuit for adjusting effective and reactive power