JPH01260369A - Life forcasting circuit for power supply apparatus - Google Patents
Life forcasting circuit for power supply apparatusInfo
- Publication number
- JPH01260369A JPH01260369A JP63089389A JP8938988A JPH01260369A JP H01260369 A JPH01260369 A JP H01260369A JP 63089389 A JP63089389 A JP 63089389A JP 8938988 A JP8938988 A JP 8938988A JP H01260369 A JPH01260369 A JP H01260369A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- power supply
- life
- circuit
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 23
- 238000007599 discharging Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
Landscapes
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、寿命部品である電解コンデンサを用いた電
源装置に関し、特に産業機器のように故障が許されない
分野に適用され電源寿命を予報することのできる電源装
置の寿命予報回路に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a power supply device using an electrolytic capacitor, which is a life-span component, and is particularly applicable to fields such as industrial equipment where failure is not allowed, and is used to predict the lifespan of a power supply. The present invention relates to a lifespan prediction circuit for a power supply device that can be used as a power supply device.
従来のこの種の電源装置の寿命予報回路は、第2図にブ
ロック構成図として示すものかあフた。A conventional life prediction circuit for this type of power supply device is shown as a block diagram in FIG.
同図において従来の電源装置の寿命予報回路は、電解コ
ンデンサにて形成される電源装置(7)と、該電源装置
(7)の外部に接続され、電源装置(7)への通電積算
時間を表示するアワーメータ (8)と、上記電源装置
(7)へ電荷を供給する電源(10)と電源装置(7)
との間に接続され、電源装置 (7)への電荷の供給を
オン・オフ制御する開閉器(9)とを備える構成である
。In the same figure, a conventional power supply life prediction circuit is connected to a power supply (7) formed of an electrolytic capacitor and to the outside of the power supply (7), and calculates the cumulative energization time to the power supply (7). An hour meter (8) to display, a power supply (10) that supplies charge to the power supply device (7), and a power supply device (7).
The configuration includes a switch (9) that is connected between the power supply device (7) and controls the supply of charge to the power supply device (7) on and off.
次に上記構成に基づ〈従来の寿命予報回路の動作につい
て説明する。まず、開閉器 (9)をオン状態にすると
電源装置 (7)が動作状態になると共に、アワーメー
タ (8)が動作し、このアワーメータ (8)には電
源装置 (7)の動作積算時間が表示されることになる
。そこで予め予測していた寿命時間に達したら、電源装
置(7)を交換する。わけである
〔発明が解決しようとする課題〕
上記のような従来の電源装置の寿命予報回路は以上のよ
うに構成されているので、電源装置に内蔵されたもので
はないことから、使用者が別途電源装置に接続する必要
があり、またこの寿命回路は電源装置を形成する電解コ
ンデンサの周囲温度の□変動を考慮に入れてないので予
報が不正確となるという課題があった。一般に電解コン
デンサの寿命は10℃だけ周囲温度が上昇すれば半分に
なると言われ周囲温度の影響は大きい。Next, the operation of the conventional life prediction circuit based on the above configuration will be explained. First, when the switch (9) is turned on, the power supply (7) becomes operational, and the hour meter (8) also operates. will be displayed. Therefore, when the previously predicted life time has been reached, the power supply device (7) is replaced. [Problem to be solved by the invention] Since the life prediction circuit of the conventional power supply device as described above is configured as described above, it is not built into the power supply device. It is necessary to connect it to a separate power supply, and this lifespan circuit does not take into account fluctuations in the ambient temperature of the electrolytic capacitor that forms the power supply, resulting in inaccurate predictions. Generally, the life of an electrolytic capacitor is said to be halved if the ambient temperature rises by 10°C, and the influence of ambient temperature is significant.
この発明はかかる課題を解決するためになされたもので
、電源装置に使用者が別途回路を追加することなく、温
度を考慮した正確な寿命予報ができる電源装置の寿命予
報回路を得ることを目的とする。This invention was made in order to solve this problem, and the purpose is to obtain a lifespan prediction circuit for a power supply device that can accurately predict lifespan in consideration of temperature without requiring the user to add a separate circuit to the power supply device. shall be.
この発明に係る電源装置の寿命予報回路は、電源装置内
部の電解コンデンサの温度を温度センサにて測定し、こ
の温度に基づき電源装置の寿命を予測し表示するもので
ある。A lifespan prediction circuit for a power supply device according to the present invention measures the temperature of an electrolytic capacitor inside the power supply device using a temperature sensor, and predicts and displays the lifespan of the power supply device based on this temperature.
この発明における寿命予報回路は、温度センサが寿命部
品である電解コンデンサの温度を直接測定しているので
、電解コンデンサ寿命に大きく関与する周囲温度の変動
を考慮に入れ正確に寿命の予報することができる。In the life prediction circuit according to the present invention, since the temperature sensor directly measures the temperature of the electrolytic capacitor, which is a lifespan component, it is possible to accurately predict the lifespan by taking into account fluctuations in ambient temperature, which greatly affects the lifespan of the electrolytic capacitor. can.
(実施例)
以下、この発明の一実施例に係る電源装置の寿命予報回
路を第1図に基づいて説明する。この第1図は本実施例
の寿命予報回路のブロック構成図を示す。同図において
本実施例に係る電源装置の寿命予報回路は、電源装置
(7)における電源回路(6)を形成する電解コンデン
サに取付けられ、該電解コンデンサの温度を測定する温
度センサ(1)と、該温度センサ(1)の検出値に基づ
いて温度と耐用時間との所定の関係から消耗指数の電圧
値を演算する演算回路 (2)と、該演算回路 (2)
の電圧値に比例した周波数パルスを出力するV/Fコン
バータ (3)と、該V/Fコンバータ (3)の周波
数パ スを積算する積算カウンタ(4)と、該積算カン
タ(4)の積算値を表示する表示器 (5)とを備える
構成である。(Example) Hereinafter, a life prediction circuit for a power supply device according to an example of the present invention will be explained based on FIG. FIG. 1 shows a block diagram of the life prediction circuit of this embodiment. In the same figure, the life prediction circuit of the power supply device according to this embodiment is
A temperature sensor (1) is attached to the electrolytic capacitor forming the power supply circuit (6) in (7) and measures the temperature of the electrolytic capacitor, and the temperature and service life are determined based on the detected value of the temperature sensor (1). an arithmetic circuit (2) that calculates a voltage value of a consumption index from a predetermined relationship;
A V/F converter (3) that outputs a frequency pulse proportional to the voltage value of the V/F converter (3), an integration counter (4) that integrates the frequency path of the V/F converter (3), and an integration counter (4) that integrates the frequency path of the V/F converter (3). This configuration includes a display device (5) that displays values.
上記のように構成された本実施例に係る電源装置 (7
)は、温度センサ(1)が電源装置内の電解コンデンサ
にて形成される電源回路 (6)の温度を測定し、つぎ
の演算回路 (2)によって基準の温度よりlO℃上昇
した時は2倍の電圧、10℃下降した時には半分の電圧
を出力する。The power supply device (7) according to this embodiment configured as described above
), the temperature sensor (1) measures the temperature of the power supply circuit (6) formed by the electrolytic capacitor in the power supply device, and when the temperature rises by 10°C from the reference temperature by the following calculation circuit (2), the temperature is 20°C. It outputs twice the voltage, and half the voltage when the temperature drops by 10 degrees Celsius.
即ち、この電解コンデンサにて形成される電源回路 (
6)の寿命カーブは、一般に「10℃2倍則」で定義さ
れ式(a)式で表される。In other words, the power supply circuit formed by this electrolytic capacitor (
The life curve 6) is generally defined by the "10° C. double rule" and is expressed by equation (a).
1、 、− L、 X 2 (TI−72/101
、、、 (a)LI:最高使用温度での有効寿
命
L2:使用温度での有効寿命
T1:最高使用温度
T2:使用温度
これをグラフにすると第2図のようになる。1, , - L, X 2 (TI-72/101
,,, (a) LI: Effective life at maximum operating temperature L2: Effective life at operating temperature T1: Maximum operating temperature T2: Operating temperature This is graphed as shown in Figure 2.
モしてV/Fコンバータ (3)により、この電圧に比
例した周波数のパルスを出力し、積算カウンタ(4)に
よって積算する。この積算カウンタ(4)は、・よ源装
置 (7)が動作状態でなくても積算値を保持しておく
ようにし、その積算値は表示器 (5)に常に表示され
ている。基準温度における電源回路 (6)の電解コン
デンサの寿命は、コンデンサメーカーによフて出されて
いるので、この基準温度の場合に寿命時間で積算カウン
タ(4)がカウントアツプするように設定しておく。こ
うしておけば基準温度より10℃上昇すれば、半分の時
間でカウントアツプし、10℃下降すると2倍の時間と
カウントアツプするようになる。Then, a V/F converter (3) outputs a pulse with a frequency proportional to this voltage, which is integrated by an integration counter (4). This integration counter (4) maintains an integrated value even when the source device (7) is not in operation, and the integrated value is always displayed on the display (5). The lifespan of the electrolytic capacitor in the power supply circuit (6) at the reference temperature is specified by the capacitor manufacturer, so set the integration counter (4) to count up according to the life time at this reference temperature. put. With this arrangement, if the temperature rises by 10°C from the reference temperature, the count will increase in half the time, and if the temperature falls by 10°C, it will take twice as long to count up.
例えば、室温時(25℃)において周期Tであるとする
と35℃ではT/2.15℃では2Tとなる。For example, if the period is T at room temperature (25°C), then at 35°C it is T/2. At 15°C it is 2T.
したがって、高温になるほどカウントアツプまでの時間
が短くなり電源装置 (7)の寿命が短くなると推測で
きる。また低温では逆のことがいえる。Therefore, it can be inferred that the higher the temperature, the shorter the time until count-up and the shorter the life of the power supply (7). The opposite is true at low temperatures.
そして電源装置 (7)が寿命の終了に近付いたと考え
られるカウント値に達したとき、積算カウンタ(4)は
カウントアツプ信号をCPU (図示を省略)へ返す。When the power supply device (7) reaches a count value that is considered to be nearing the end of its life, the integration counter (4) returns a count-up signal to the CPU (not shown).
これを受けてこのCPUは外部に対して警報信号に基づ
き表示器 (5)から出力する。In response to this, this CPU outputs an output from the display (5) based on the alarm signal to the outside.
このように常に電源回路 (6)の電解コンデンサの温
度を測定してカウント入力を変化させているので、温度
変動にも対応した正確な寿命予報が出来ることになる。In this way, since the temperature of the electrolytic capacitor in the power supply circuit (6) is constantly measured and the count input is changed, it is possible to accurately predict the lifespan in response to temperature fluctuations.
なお、上記実施例では電源回路 (6)の電解コンデン
サにおける温度を温度センサ(1)によって測定し、そ
の信号をCPUへ伝達することによって積算カウンタ(
4)の周期を変化させる方法について説明したが、電源
装置の寿命を推定する他の要因や使用部品があれば、そ
の規則性や測定方法を検討して回路を構成すれば良いし
、また、温度だけでなく、湿度、振動等の他のパラメー
タを使って寿命を推測しても良い。In the above embodiment, the temperature in the electrolytic capacitor of the power supply circuit (6) is measured by the temperature sensor (1), and the integration counter (
We have explained the method of changing the cycle in 4), but if there are other factors or parts used to estimate the lifespan of the power supply, you can configure the circuit by considering their regularity and measurement method. The lifespan may be estimated using not only temperature but also other parameters such as humidity and vibration.
この発明は以上説明したとおり、電源装置を形成する電
解コンデンサの温度を測定しこれをもとに寿命を予報す
る構成を採ったことにより、電解コンデンサの電源回路
寿命を温度と消耗指数に基づいて演算できることとなり
、使用者が外部に回路を付加することなく温度を考慮し
た正確な寿命予報ができる効果がある。また、故障して
からトラブルシューティングを行ったり、寿命に余裕が
あるにもかかわらず交換してしまうという無駄が無くな
り効率的にシステムを稼働することが可能となる。As explained above, this invention is configured to measure the temperature of the electrolytic capacitor that forms the power supply device and predict the life based on this, thereby predicting the life of the power circuit of the electrolytic capacitor based on the temperature and wear index. This allows the user to make accurate life predictions that take temperature into account without adding an external circuit. In addition, there is no need to troubleshoot after a failure occurs or to replace the device even though there is still plenty of time left in its life, making it possible to operate the system more efficiently.
4、図面の簡単説明
第1図はこの発明の一実施例に係る電源装置の寿命予報
回路の構成図、第2図は電源回路における電解コンデン
サの寿命を表した表口、第3図は温度によって変動する
積算カウンタの周期を表したパルス波形図、第4図は従
来の電源装置の寿命予報回路の構成図である。4. Brief explanation of the drawings Fig. 1 is a configuration diagram of a lifespan prediction circuit of a power supply device according to an embodiment of the present invention, Fig. 2 is a front diagram showing the lifespan of an electrolytic capacitor in a power supply circuit, and Fig. 3 is a diagram showing temperature FIG. 4 is a diagram of a pulse waveform showing the cycle of an integration counter that varies depending on the period of the integration counter. FIG.
図において、
(1)は温度センサ、 (2)は演算回路、(3)はV
/Fコンバータ、
(4)は積算カウンタ、(5)は表示器、(6)は電源
回路、 (7)は電源装置、(8)はアワーメータ、
(9)は開閉器である。In the figure, (1) is a temperature sensor, (2) is an arithmetic circuit, and (3) is a V
/F converter, (4) is integration counter, (5) is display, (6) is power supply circuit, (7) is power supply, (8) is hour meter,
(9) is a switch.
なお、図中同一符号は同−又は相当部分を示す。Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
電源を供給する電源装置において、上記電解コンデンサ
の温度を測定する温度測定手段と、該温度測定手段の測
定値と予め設定された消耗指数とに基づいて消耗電圧値
を演算する演算手段と、該演算手段の演算結果を保持し
、逐次積算する積算手段とを備え、該積算手段の積算結
果に基づいて電源寿命を予報する構成とすることを特徴
とする電源装置の寿命予報回路。In a power supply device that stores electric charge in an electrolytic capacitor and supplies power by discharging the electric charge, a temperature measuring means for measuring the temperature of the electrolytic capacitor, and a measured value of the temperature measuring means and a preset consumption index are provided. and an integrating means for holding and successively integrating the calculation results of the calculating means, and for predicting the life of the power supply based on the integrated results of the integrating means. Features a lifespan prediction circuit for power supply equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63089389A JPH01260369A (en) | 1988-04-12 | 1988-04-12 | Life forcasting circuit for power supply apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63089389A JPH01260369A (en) | 1988-04-12 | 1988-04-12 | Life forcasting circuit for power supply apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01260369A true JPH01260369A (en) | 1989-10-17 |
Family
ID=13969304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63089389A Pending JPH01260369A (en) | 1988-04-12 | 1988-04-12 | Life forcasting circuit for power supply apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01260369A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03261877A (en) * | 1990-03-12 | 1991-11-21 | Mitsubishi Electric Corp | Inverter apparatus |
JPH08223904A (en) * | 1995-02-14 | 1996-08-30 | Hitachi Ltd | Power conversion apparatus |
JPH08322141A (en) * | 1995-05-25 | 1996-12-03 | Fuji Electric Co Ltd | Lifetime alarm for electrolytic capacitor |
JP2006284605A (en) * | 2006-06-23 | 2006-10-19 | Omron Corp | Temperature detection structure and electronic equipment |
JP2007122945A (en) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Works Ltd | Lighting device, luminaire using it and signboard lamp |
JP2008517258A (en) * | 2004-10-16 | 2008-05-22 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for determining information on equipment exposed to temperature |
JP2012170267A (en) * | 2011-02-15 | 2012-09-06 | Toshiba Corp | Vehicular power supply apparatus |
JP2013080787A (en) * | 2011-10-03 | 2013-05-02 | Fuji Electric Co Ltd | Life estimation device, life estimation method and program |
CN106771715A (en) * | 2016-11-24 | 2017-05-31 | 中车永济电机有限公司 | A kind of electric transmission DC support electric capacity life-span checking test method |
US10627455B2 (en) | 2016-04-07 | 2020-04-21 | Fujitsu Limited | Capacitor life diagnosis apparatus and capacitor life diagnosis method |
-
1988
- 1988-04-12 JP JP63089389A patent/JPH01260369A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03261877A (en) * | 1990-03-12 | 1991-11-21 | Mitsubishi Electric Corp | Inverter apparatus |
JPH08223904A (en) * | 1995-02-14 | 1996-08-30 | Hitachi Ltd | Power conversion apparatus |
JPH08322141A (en) * | 1995-05-25 | 1996-12-03 | Fuji Electric Co Ltd | Lifetime alarm for electrolytic capacitor |
JP2008517258A (en) * | 2004-10-16 | 2008-05-22 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for determining information on equipment exposed to temperature |
JP4561593B2 (en) * | 2005-10-26 | 2010-10-13 | パナソニック電工株式会社 | Lighting device, lighting fixture using the same, and signboard lamp |
JP2007122945A (en) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Works Ltd | Lighting device, luminaire using it and signboard lamp |
JP4508163B2 (en) * | 2006-06-23 | 2010-07-21 | オムロン株式会社 | Temperature detection structure and electronic equipment |
JP2006284605A (en) * | 2006-06-23 | 2006-10-19 | Omron Corp | Temperature detection structure and electronic equipment |
JP2012170267A (en) * | 2011-02-15 | 2012-09-06 | Toshiba Corp | Vehicular power supply apparatus |
JP2013080787A (en) * | 2011-10-03 | 2013-05-02 | Fuji Electric Co Ltd | Life estimation device, life estimation method and program |
US10627455B2 (en) | 2016-04-07 | 2020-04-21 | Fujitsu Limited | Capacitor life diagnosis apparatus and capacitor life diagnosis method |
CN106771715A (en) * | 2016-11-24 | 2017-05-31 | 中车永济电机有限公司 | A kind of electric transmission DC support electric capacity life-span checking test method |
CN106771715B (en) * | 2016-11-24 | 2019-03-08 | 中车永济电机有限公司 | A kind of electric transmission DC support capacitor service life checking test method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4949046A (en) | Battery state of charge indicator | |
TWI399530B (en) | Electronic thermometer and control method thereof | |
JPH08136628A (en) | Device for monitoring capacity of battery | |
JPH01260369A (en) | Life forcasting circuit for power supply apparatus | |
JP2016170034A (en) | Remaining battery life prediction device and battery pack | |
JP2002093465A (en) | Battery life estimating device for gas meter | |
JP5378028B2 (en) | Electronic thermometer and operation control method | |
JP2000243459A (en) | Service life determining method and service life determining device using the method | |
JPH05281001A (en) | Life time estimating device for part | |
JP2013160505A (en) | Temperature transmitter | |
JPH08196082A (en) | Service life decision unit for filter capacitor in power converter | |
JP5432066B2 (en) | Electronic thermometer and its control method | |
JPH0476799A (en) | Device for deciding and forecasting service life of thermocouple temperature sensor | |
RU193162U1 (en) | Device for monitoring resource consumption and predicting the start time of product maintenance | |
CN208334596U (en) | Battery monitoring device and battery modules | |
JP6063366B2 (en) | Elevator monitoring device | |
KR100760005B1 (en) | Solution concentration measuring device | |
CN106918354B (en) | Sensing system and applicable sensing information determination method | |
JPH03165270A (en) | Monitoring device for life of capacitor | |
JP2961775B2 (en) | Electronic equipment with battery level detection function | |
JP3816582B2 (en) | Demand monitoring device | |
JP5497322B2 (en) | Electronic thermometer | |
JPS634971Y2 (en) | ||
JPS5856421B2 (en) | temperature measuring device | |
JP2003075492A (en) | Life prediction system of power supply |