[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0126879B2 - - Google Patents

Info

Publication number
JPH0126879B2
JPH0126879B2 JP57102579A JP10257982A JPH0126879B2 JP H0126879 B2 JPH0126879 B2 JP H0126879B2 JP 57102579 A JP57102579 A JP 57102579A JP 10257982 A JP10257982 A JP 10257982A JP H0126879 B2 JPH0126879 B2 JP H0126879B2
Authority
JP
Japan
Prior art keywords
group
coating
laser
recording medium
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57102579A
Other languages
Japanese (ja)
Other versions
JPS58219090A (en
Inventor
Kazuharu Katagiri
Yoshihiro Oguchi
Yoshio Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57102579A priority Critical patent/JPS58219090A/en
Publication of JPS58219090A publication Critical patent/JPS58219090A/en
Priority to US07/512,587 priority patent/US5079127A/en
Publication of JPH0126879B2 publication Critical patent/JPH0126879B2/ja
Priority to US07/512,588 priority patent/US5079128A/en
Priority to US07/769,397 priority patent/US5278026A/en
Priority to US07/769,636 priority patent/US5246814A/en
Priority to US08/086,113 priority patent/US5320930A/en
Priority to US08/221,904 priority patent/US5382497A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、レーザ特に半導体レーザによる書込
み記録に適した光学記録媒体に関し、詳しくは光
デイスク技術に用いうる改善された光学記録媒体
に関するものである。 一般に、光デイスクは、基板の上に設けた薄い
記録層に形成された光学的に検出可能な小さな
(例えば、約1μビツトをらせん状又は円形のトラ
ツク形態にして高密度情報を記憶することができ
る。この様なデイスクに情報を書込むには、レー
ザ感応層の表面に集束したレーザを走査し、この
レーザ光線が照射された表面のみがピツトを形成
し、このピツトをらせん状又は円形トラツクの形
態で形成する。レーザ感応層は、レーザ・エネル
ギーを吸収して光学的に検出可能なピツトを形成
できる。例えば、ヒートモード記録方式では、レ
ーザ感応層は熱エネルギーを吸収し、その個所に
蒸発又は融解により小さな凹部(ピツト)を形成
できる。また、別のヒートモード記録方式では、
照射されたレーザ・エネルギーの吸収により、そ
の個所に光学的に検出可能な濃度差を有するピツ
トを形成できる。 この光デイスクに記録された情報は、レーザを
トラツクに沿つて走査し、ピツトが形成された部
分とピツトが形成されていない部分の光学的変化
を読み取ることによつて検出される。例えば、レ
ーザがトラツクに沿つて走査され、デイスクによ
り反射されたエネルギーがフオトデイテクターに
よつてモニターされる。ピツトが形成されていな
い時、フオトデイテクターの出力は低下し、一方
ピツトが形成されている時はレーザ光線は下層の
反射面によつて充分に反射されフオトデイテクタ
ーの出力は大きくなる。 この様な光デイスクに用いる記録媒体として、
これまでアルミニウム蒸着膜などの金属薄膜、ビ
スマス薄膜、酸化テルル薄膜やカルコゲナイト系
非晶質ガラス膜などの無機物質を主に用いたもの
が提案されている。これらの薄膜は、一般に350
〜800nm付近の波長光で感応性であるとともに、
レーザ光に対する反射率が高いため、レーザ光の
利用率が低いなどの欠点がある。 この様なことから、近年比較的長波長(例え
ば、780nm以上)の光エネルギーで光学的な動
性変化可能な有機被膜の研究がなされている。こ
の様な有機薄膜は、例えば発振波長が830nm付
近の半導体レーザによりピツトを形成できる点で
有効なものである。 しかし、一般に長波長側に吸収特性をもつ有機
化合物は、熱に対して不安定で、しかも昇華性の
点でも技術的な問題点があるなどから、必ずしも
特性上、満足できる有機被膜が開発されているも
のとは言えないのが現状である。 本発明の目的は、長波長側に吸収帯をもつ有機
被膜を有する光学記録媒体を提供することにあ
る。 本発明の別の目的は、熱に対して安定な有機被
膜を有する光学記録媒体を提供することにある。 本発明の光学記録媒体は、下記一般式(1)で示さ
れるポリメチン化合物を含有する有機被膜を有す
ることに特徴を有している。 一般式(1) R1、R2、R3、R4およびR5は水素原子又はアル
キル基(例えば、メチル基、エチル基、n−プロ
ピル基、iso−プロピル基、n−ブチル基、sec−
ブチル基、iso−ブチル基、t−ブチル基、n−
アミル基、t−アミル基、n−ヘキシル基、n−
オクチル基、t−オクチル基など)を示し、さら
に他のアルキル基、例えば置換アルキル基(例え
ば、2−ヒドロキシエチル基、3−ヒドロキシプ
ロピル基、4−ヒドロキシブチル基、2−アセト
キシエチル基、カルボキシメチル基、2−カルボ
キシエチル基、3−カルボキシプロピル基、2−
スルホニエチル基、3−スルホプロピル基、4−
スルホブチル基、3−スルフエートプロピル基、
4−スルフエートブチル基、N−(メチルスルホ
ニル)−カルバミルメチル基、3−(アセチルスル
フアミル)プロピル基、4−(アセチルスルフア
ミル)ブチル基など)、環式アルキル基(例えば、
シクロヘキシル基など)、アリル基(CH2=CH−
CH2−)、アラルキル基(例えば、ベンジル基、
フエネチル基、α−ナフチルメチル基、β−ナフ
チルメチル基など)、置換アラルキル基(例えば、
カルボキシベンジル基、スルホベンジル基、ヒド
ロキシベンジル基など)を包含する。さらに、
R1、R2、R3、R4およびR5は置換もしくは未置換
のアリール基(例えば、フエニル基、ナフチル
基、トリル基、キシリル基、メトキシフエニル
基、ジメトキシフエニル基、トリメトキシフエニ
ル基、エトキシフエニル基、ジメチルアミノフエ
ニル基、ジエチルアミノフエニル基、ジプロピル
アミノフエニル基、ジベンジルアミノフエニル
基、ジフエニルアミノフエニル基など)、置換も
しくは未置換の複素環基(例えば、ピリジル基、
キノリル基、レピジル基、メチルピリジル基、フ
リル基、チエニル基、インドリル基、ピロール
基、カルバゾリル基、N−エチルカルバゾリル基
など)又は置換もしくは未置換のスチリル基(例
えば、スチリル基、メトキシスチリル基、ジメト
キシスチリル基、トリメトキシスチリル基、エト
キシスチリル基、ジメチルアミノスチリル基、ジ
エチルアミノスチリル基、ジプロピルアミノスチ
リル基、ジベンジルアミノスチリル基、ジフエニ
ルアミノスチリル基、2,2−ジフエニルビニル
基、2−フエニル−2−メチルビニル基、2−
(ジメチルアミノフエニル)−2−フエニルビニル
基、2−(ジエチルアミノフエニル)−2−フエニ
ルビニル基、2−(ジベンジルアミノフエニル)−
2−フエニルビニル基、2,2−ジ(ジエチルア
ミノフエニル)ビニル基、2,2−ジ(メトキシ
フエニル)ビニル基、2,2−ジ(エトキシフエ
ニル)ビニル基、2−(ジメチルアミノフエニル)
−2−メチルビニル基、2−(ジメチルアミノフ
エニル)−2−エチルビニル基など)を示す。m
は、0又は1であり、nは0、1又は2である。
X は、塩化物イオン、臭化物イオン、ヨウ化物
イオン、過塩素酸塩イオン、ベンゼンスルホン酸
塩イオン、P−トルエンスルホン酸塩イオン、メ
チル硫酸塩イオン、エチル硫酸塩イオン、プロピ
ル硫酸塩イオンなどの陰イオンを表わす。 次に、前記一般式(1)で示されるポリメチン化合
物の代表例を挙げる。
The present invention relates to an optical recording medium suitable for writing and recording with a laser, particularly a semiconductor laser, and more particularly to an improved optical recording medium usable in optical disk technology. In general, optical disks are optically detectable small (e.g., approximately 1 microbit) tracks formed in a thin recording layer on a substrate in the form of spiral or circular tracks that can store high-density information. To write information on such a disk, a focused laser beam is scanned over the surface of the laser-sensitive layer, and only the surface irradiated with this laser beam forms a pit, which is then traced in a spiral or circular track. The laser-sensitive layer can absorb laser energy and form optically detectable pits.For example, in heat mode recording, the laser-sensitive layer absorbs thermal energy and creates optically detectable pits. Small pits can be formed by evaporation or melting.Another heat mode recording method uses
Absorption of the irradiated laser energy can form pits with optically detectable concentration differences at that location. The information recorded on this optical disk is detected by scanning a laser along the track and reading the optical changes in the pitted and non-pitted areas. For example, a laser is scanned along a track and the energy reflected by the disk is monitored by a photodetector. When pits are not formed, the output of the photodetector is reduced, while when pits are formed, the laser beam is sufficiently reflected by the underlying reflective surface and the output of the photodetector is increased. As a recording medium used for such optical discs,
So far, methods have been proposed that mainly use inorganic materials such as metal thin films such as aluminum vapor-deposited films, bismuth thin films, tellurium oxide thin films, and chalcogenite amorphous glass films. These thin films are generally 350
It is sensitive to wavelength light around ~800nm, and
Since the reflectance to laser light is high, there are drawbacks such as low utilization rate of laser light. For this reason, in recent years, research has been carried out on organic films whose optical dynamics can be changed by light energy of relatively long wavelengths (for example, 780 nm or more). Such an organic thin film is effective in that pits can be formed using, for example, a semiconductor laser whose oscillation wavelength is around 830 nm. However, organic compounds that generally have absorption characteristics on the long wavelength side are unstable to heat and have technical problems in terms of sublimability, so it is not always possible to develop an organic film that is satisfactory in terms of properties. The current situation is that it cannot be said that this is true. An object of the present invention is to provide an optical recording medium having an organic coating having an absorption band on the long wavelength side. Another object of the invention is to provide an optical recording medium having a thermally stable organic coating. The optical recording medium of the present invention is characterized by having an organic coating containing a polymethine compound represented by the following general formula (1). General formula (1) R 1 , R 2 , R 3 , R 4 and R 5 are hydrogen atoms or alkyl groups (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-
Butyl group, iso-butyl group, t-butyl group, n-
amyl group, t-amyl group, n-hexyl group, n-
octyl group, t-octyl group, etc.), and further includes other alkyl groups, such as substituted alkyl groups (e.g., 2-hydroxyethyl group, 3-hydroxypropyl group, 4-hydroxybutyl group, 2-acetoxyethyl group, carboxy Methyl group, 2-carboxyethyl group, 3-carboxypropyl group, 2-
Sulfonyethyl group, 3-sulfopropyl group, 4-
Sulfobutyl group, 3-sulfatepropyl group,
4-sulfatebutyl group, N-(methylsulfonyl)-carbamylmethyl group, 3-(acetylsulfamyl)propyl group, 4-(acetylsulfamyl)butyl group, etc.), cyclic alkyl group (e.g. ,
cyclohexyl group, etc.), allyl group (CH 2 = CH−
CH 2 −), aralkyl group (e.g. benzyl group,
phenethyl group, α-naphthylmethyl group, β-naphthylmethyl group, etc.), substituted aralkyl group (e.g.
carboxybenzyl group, sulfobenzyl group, hydroxybenzyl group, etc.). moreover,
R 1 , R 2 , R 3 , R 4 and R 5 are substituted or unsubstituted aryl groups (e.g., phenyl group, naphthyl group, tolyl group, xylyl group, methoxyphenyl group, dimethoxyphenyl group, trimethoxyphenyl group) enyl group, ethoxyphenyl group, dimethylaminophenyl group, diethylaminophenyl group, dipropylaminophenyl group, dibenzylaminophenyl group, diphenylaminophenyl group, etc.), substituted or unsubstituted heterocyclic group (For example, pyridyl group,
quinolyl group, lepidyl group, methylpyridyl group, furyl group, thienyl group, indolyl group, pyrrole group, carbazolyl group, N-ethylcarbazolyl group, etc.) or substituted or unsubstituted styryl group (e.g. styryl group, methoxystyryl group) group, dimethoxystyryl group, trimethoxystyryl group, ethoxystyryl group, dimethylaminostyryl group, diethylaminostyryl group, dipropylaminostyryl group, dibenzylaminostyryl group, diphenylaminostyryl group, 2,2-diphenylvinyl group, 2 -phenyl-2-methylvinyl group, 2-
(dimethylaminophenyl)-2-phenylvinyl group, 2-(diethylaminophenyl)-2-phenylvinyl group, 2-(dibenzylaminophenyl)-
2-phenyl vinyl group, 2,2-di(diethylaminophenyl) vinyl group, 2,2-di(methoxyphenyl) vinyl group, 2,2-di(ethoxyphenyl) vinyl group, 2-(dimethylaminophenyl) vinyl group enil)
-2-methylvinyl group, 2-(dimethylaminophenyl)-2-ethylvinyl group, etc.). m
is 0 or 1, and n is 0, 1 or 2.
X is a chloride ion, bromide ion, iodide ion, perchlorate ion, benzenesulfonate ion, P-toluenesulfonate ion, methylsulfate ion, ethylsulfate ion, propylsulfate ion, etc. Represents an anion. Next, representative examples of the polymethine compound represented by the general formula (1) will be listed.

【表】【table】

【表】【table】

【表】【table】

【表】 これらのポリメチン化合物は、Bernard S.
WildiらのJ.Am.Chem.Soc(ジヤーナル・オブ・
アメリカン・ケミカルソサエテイ)80 3772〜
3777(1958)やH.SchmidtらのAnn(リービツヒ・
アンナーレンデル・ケミー)623 204〜216ある
いはR.WlzingerらのHeln.Chim.Acta(ヘルペテ
イカ・シミカ・アクタ)24 369などによつて開
示された合成法に準じて合成することによつて容
易に得られる。 本発明の有機被膜は、光デイスク記録に用いる
ことができる。例えば、第1図に示す様な基板1
の上に前述の有機被膜2を形成した記録媒体とす
ることができる。かかる有機被膜2は、前述の一
般式(1)で示される化合物を真空蒸着によつて形成
でき、またバインダー中に前述のポリメチン化合
物を含有させた塗工液を塗布することによつても
形成することができる。塗工によつて被膜を形成
する際、前述のポリメチン化合物はバインダー中
に分散状態で含有されていてもよく、あるいは非
晶質状態で含有されていてもよい。好適なバイン
ダーとしては、広範な樹脂から選択することがで
きる。具体的にはニトロセルロース、リン酸セル
ロース、硫酸セルロース、酢酸セルロース、プロ
ピオン酸セルロース、酪酸セルロース、ミリスチ
ン酸セルロース、パルミチン酸セルロース、酢
酸・プロピオン酸セルロース、酢酸・酪酸セルロ
ースなどのセルロースエステル類、メチルセルロ
ース、エチルセルロース、プロピルセルロース、
ブチルセルロース、などのセルロースエーテル
類、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビ
ニル、ポリビニルブチラール、ポリビニルアセタ
ール、ポリビニルアルコール、ポリビニルピロリ
ドンなどのビニル樹脂類、スチレン−ブタジエン
コポリマー、スチレン−アクリロニトリルコポリ
マー、スチレン−ブタジエン−アクリロニトリル
コポリマー、塩化ビニル−酢酸ビニルコポリマー
などの共重合樹脂類、ポリメチルメタクリレー
ト、ポリメチルアクリレート、ポリブチルアクリ
レート、ポリアクリル酸、ポリメタクリル酸、ポ
リアクリルアミド、ポリアクリロニトリルなどの
アクリル樹脂類、ポリスチレンテレフタレートな
どのポリエステル類、ポリ(4,4′−イソプロピ
リデンジフエニレン−コ−1,4−シクロヘキシ
レンジメチレンカーボネート)、ポリ(エチレン
ジオキシ−3,3′−フエニレンチオカーボネー
ト)、ポリ(4,4′−イソプロピリデンジフエニ
レンカーボネート−コ−テレフタレート)、ポリ
(4,4′−イソプロピリデンジフエニレンカーボ
ネート)、ポリ(4,4′−sec−ブチリデンジフエ
ニレンカーボネート)、ポリ(4,4′−イソプロ
ピリデンジフエニレンカーボネート−ブロツク−
オキシエチレン)などのポリアリレート樹脂類、
あるいはポリアミド類、ポリイミド類、エポキシ
樹脂類、フエノール樹脂類、ポリエチレン、ポリ
プロピレン、塩素化ポリエチレンなどのポリオレ
フイン類などを用いることができる。 塗工の際に使用できる有機溶剤は、バインダー
の種類や前述の化合物をバインダー中に含有させ
る際、分散状態とするか、あるいは非晶質状態と
するかによつて異なつてくるが、一般には、メタ
ノール、エタノール、イソプロパノールなどのア
ルコール類、アセトン、メチルエチルケトン、シ
クロヘキサノンなどのケトン類、N,N−ジメチ
ルホルムアミド、N,N−ジメチルアセトアミド
などのアミド類、ジメチルスルホキシドなどのス
ルホキシド類、テトラヒドロフラン、ジオキサ
ン、エチレングリコールモノメチルエーテルなど
のエーテル類、酢酸メチル、酢酸エチル、酢酸ブ
チルなどのエステル類、クロロホルム、塩化メチ
レン、ジクロルエチレン、四塩化炭素、トリクロ
ルエチレンなどの樹脂族ハロゲン化炭化水素類、
あるいはベンゼン、トルエン、キシレン、リグロ
イン、モノクロルベンゼン、ジクロルベンゼンな
どの芳香族類などを用いることができる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。 バインダーとともに有機被膜2を形成する際、
前述のポリメチン化合物の含有量は、有機被膜2
中において1〜90重量%、好ましくは20〜70重量
%である。また、有機被膜2の乾燥膜厚あるいは
蒸着膜厚は10ミクロン以下、好ましくは2ミクロ
ン以下である。 基板1としては、ポリエステル、アクリル樹
脂、ポリオレフイン樹脂、フエノール樹脂、エポ
キシ樹脂、ポリアミド、ポリイミドなどのプラス
チツク、ガラスあるいは金属類などを用いること
ができる。 また、本発明は、第2図に示す様に基板1と有
機被膜2の間に反射層3を設けることができる。
反射層3は、アルミニウム、銀、クロムなどの反
射性金属の蒸着層又はラミネート層とすることが
できる。 有機被膜2は、第3図に示す集束されたレーザ
ー光線4の照射によつてピツト5を形成すること
ができる。ピツト5の深さを有機被膜2の膜厚と
同一にすると、ピツト領域における反射率を増加
させることができる。読み出しの際、書込みに用
いたレーザー光線と同一の波長を有するが、強度
の小さいレーザー光線を用いれば、読み出し光が
ピツト領域で大きく反射されるが、非ピツト領域
においては吸収される。また、別の方法は有機被
膜2が吸収する第1の波長のレーザー光線で実時
間書込みを行ない、読み出しに有機被膜2を実質
的に透過する第2の波長のレーザ光線を用いるこ
とである。読み出しレーザ光線は、ピツト領域と
非ピツト領域における異なる膜厚によつて生じる
反射相の変化に応答することができる。 本発明の有機被膜は、アルコンレーザ(発振波
長488nm)、ヘリウム−ネオンレーザ(発振波長
633nm)、ヘリウム−カドミウムレーザ(発振波
長442nm)などのガスレーザーの照射によつて
記録することも可能であるが、好ましくは750n
m以上の波長を有するレーザ、特にガリウム−ア
ルミニウム−ヒ素半導体レーザ(発振波長780n
m)などの近赤外ある赤外領域に発振波長を有す
るレーザ光線の照射によつて記録する方法が適し
ている。また、読み出しのためには、前述のレー
ザ光線を用いることができる。この際、書込みと
読み出しを同一波長のレーザで行なうことがで
き、また異なる波長のレーザで行なうことができ
る。 本発明によれば、十分に改善されたS/N比を
得ることができ、しかも本発明で用いる有機被膜
は相反則不軌が小さく、レーザ光線の如く強照度
エネルギー光線の利用度を高くすることができ
る。さらに、発振波長750nm以上の波長を有す
るレーザ光線による記録を可能にすることができ
る。 以下、本発明を実施例に従つて詳細に説明す
る。 実施例 1 ニトロセルロース溶液(ダイセル化学工業(株)))
製;オーハーレスラツカー:ニトロセルロース25
重量%のメチルエチルケトン溶液)12重量部、前
述の化合物No.(3)の化合物3重量部およびメチルエ
チルケトン70重量部をボールミルで十分に混合し
た。この混合した液をアルミ蒸着ガラス板上に浸
漬コーテイング法により塗布した後、乾燥して
0.6g/m2の記録層を得た。 こうして作成した光デイスク記録体をターンテ
ーブル上に取り付け、ターンテーブルをモータで
1800rpmの回転を与えながら、スポツトサイズ
1.0ミクロンに集束した5mWおよび8MHzのガリ
ウム−アルミニウム−ヒ素半導体レーザ(発振波
長780nm)を記録層面にトラツク状で照射して
記録を行なつた。 この記録された光デイスクの表面を走査型電子
顕微鏡で観察したところ、鮮明なピツトが認めら
れた。また、この光デイスクに低出力のガリウム
−アルミニウム−ヒ素半導体レーザを入射し、反
射光の検知を行なつたところ、十分なS/N比を
有する波形が得られた。 実施例 2 前述の化合物No.5の化合物を実施例1と同様の
方法でアルミ蒸着ガラス板の上に浸漬コーテイン
グ法により塗工して0.6g/m2の記録層を有する
光デイスク記録体を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記録させてから再生したところ、十分な
S/N比を有する波形が認められた。又情報を書
き込みした後の記録層面を走査型電子顕微鏡で観
察したところ、鮮明なピツトが形成されていた。 実施例 3 前述の化合物No.(10)の化合物を実施例1と同様の
方法でアルミ蒸着ガラス板の上に浸漬コーテイン
グ法により塗工して0.6g/m2の記録層を有する
光デイスク記録体を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記憶させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。 実施例 4 前述の化合物No.(14)の化合物を実施例1と同
様の方法でアルミ蒸着ガラス板の上に浸漬コーテ
イング法により塗工して0.8g/m2の記録層を有
する光デイスク記録体を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記憶させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。 実施例 5 前述の化合物No.(17)の化合物を実施例1と同
様の方法でアルミ蒸着ガラス板の上に浸漬コーテ
イング法により塗工して0.6g/m2の記録層を有
する光デイスク記録体を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記録させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。 実施例 6 前述の化合物No.(20)の化合物を実施例1と同
様の方法でアルミ蒸着ガラス板の上に浸漬コーテ
イング法により塗工して0.6g/m2の記録層を有
する光デイスク記録体を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記憶させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。 実施例 7 前述の化合物No.(1)の化合物500mgを蒸着用モリ
ブデンボートに入れ、1×10-6mmHg以下に排気
した後、アルミ蒸着ガラス板に蒸着した。蒸着中
は真空室内の圧力が10-5mmHg以上に上昇しない
様にヒーターを制御しながら、0.2ミクロンの蒸
着膜を形成させた。 こうして作成した光デイスク記録体に実施例1
と同様の方法で情報を記憶させたところ、実施例
1と同様の鮮明なピツトが認められ、また実施例
1と同様の方法で情報を再生したが、この際十分
なS/N比を有する波形が認められた。 実施例 8 前述の化合物No.(5)の化合物を実施例7と同様の
方法でアルミ蒸着ガラス板の上に蒸着して、0.2
ミクロンの記録層を有する光デイスク記録体を作
成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記憶させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。 実施例 9 前述の化合物No.(13)の化合物を実施例7と同
様の方法でアルミ蒸着ガラス板の上に蒸着して、
0.2ミクロンの記録層を有する光デイスク記録体
を作成した。 この光デイスク記録体に実施例1と同様の方法
で情報を記憶させてから再生したところ、十分な
S/N比を有する波形が認められた。又、情報を
書き込みした後の記録層面を走査型電子顕微鏡で
観察したところ、鮮明なピツトが形成されてい
た。
[Table] These polymethine compounds are described by Bernard S.
Wildi et al., J.Am.Chem.Soc (Journal of
American Chemical Society) 80 3772~
3777 (1958) and H. Schmidt et al.
It can be easily synthesized according to the synthesis method disclosed by Annalendel Chemie ) 623 204-216 or R. Wlzinger et al. can get. The organic coating of the present invention can be used for optical disc recording. For example, a substrate 1 as shown in FIG.
The recording medium can have the above-mentioned organic film 2 formed thereon. Such an organic film 2 can be formed by vacuum deposition of the compound represented by the above-mentioned general formula (1), or can also be formed by applying a coating liquid containing the above-mentioned polymethine compound in a binder. can do. When forming a film by coating, the above-mentioned polymethine compound may be contained in a binder in a dispersed state or in an amorphous state. Suitable binders can be selected from a wide variety of resins. Specifically, cellulose esters such as nitrocellulose, cellulose phosphate, cellulose sulfate, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose myristate, cellulose palmitate, cellulose acetate/propionate, cellulose acetate/butyrate, methyl cellulose, ethyl cellulose, propyl cellulose,
Cellulose ethers such as butyl cellulose, polystyrene, polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, polyvinyl acetal, polyvinyl alcohol, vinyl resins such as polyvinylpyrrolidone, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-butadiene. Copolymer resins such as acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, polymethyl acrylate, polybutyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyacrylic resin such as polyacrylonitrile, polystyrene terephthalate, etc. polyesters of , 4'-isopropylidene diphenylene carbonate co-terephthalate), poly(4,4'-isopropylidene diphenylene carbonate), poly(4,4'-sec-butylidene diphenylene carbonate), poly(4,4'-sec-butylidene diphenylene carbonate), ,4'-isopropylidene diphenylene carbonate block-
polyarylate resins such as oxyethylene),
Alternatively, polyamides, polyimides, epoxy resins, phenolic resins, polyolefins such as polyethylene, polypropylene, and chlorinated polyethylene can be used. The organic solvent that can be used during coating varies depending on the type of binder and whether the above-mentioned compound is contained in the binder in a dispersed or amorphous state, but in general, , alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, tetrahydrofuran, dioxane, Ethers such as ethylene glycol monomethyl ether, esters such as methyl acetate, ethyl acetate, butyl acetate, resin group halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, trichloroethylene,
Alternatively, aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. When forming the organic film 2 together with the binder,
The content of the polymethine compound mentioned above is the same as that of the organic coating 2.
It is 1 to 90% by weight, preferably 20 to 70% by weight. Further, the dry film thickness or vapor deposited film thickness of the organic film 2 is 10 microns or less, preferably 2 microns or less. As the substrate 1, plastics such as polyester, acrylic resin, polyolefin resin, phenolic resin, epoxy resin, polyamide, and polyimide, glass, or metals can be used. Further, in the present invention, a reflective layer 3 can be provided between the substrate 1 and the organic coating 2 as shown in FIG.
The reflective layer 3 can be a deposited layer or a laminate layer of a reflective metal such as aluminum, silver, or chromium. The organic coating 2 can be formed into pits 5 by irradiation with a focused laser beam 4 as shown in FIG. By making the depth of the pits 5 the same as the thickness of the organic coating 2, the reflectance in the pit region can be increased. When reading, if a laser beam having the same wavelength as the laser beam used for writing but with low intensity is used, the reading light will be largely reflected in pit areas, but will be absorbed in non-pit areas. Another method is to perform real-time writing with a laser beam of a first wavelength that is absorbed by the organic coating 2, and to use a laser beam of a second wavelength that is substantially transmitted through the organic coating 2 for reading. The readout laser beam can respond to changes in the reflection phase caused by different film thicknesses in pitted and non-pitted regions. The organic coating of the present invention can be used for Alcon laser (oscillation wavelength: 488 nm), helium-neon laser (oscillation wavelength: 488 nm), helium-neon laser (oscillation wavelength:
It is also possible to record by irradiation with a gas laser such as a helium-cadmium laser (oscillation wavelength: 442 nm), but preferably 750 nm).
Lasers with wavelengths longer than m, especially gallium-aluminum-arsenic semiconductor lasers (oscillation wavelength 780n)
A method of recording by irradiation with a laser beam having an oscillation wavelength in a near-infrared region such as m) is suitable. Furthermore, the aforementioned laser beam can be used for reading. At this time, writing and reading can be performed using a laser of the same wavelength, or can be performed using lasers of different wavelengths. According to the present invention, a sufficiently improved S/N ratio can be obtained, and the organic coating used in the present invention has small reciprocity law failure, making it possible to increase the utilization of intense energy beams such as laser beams. Can be done. Furthermore, it is possible to perform recording using a laser beam having an oscillation wavelength of 750 nm or more. Hereinafter, the present invention will be explained in detail according to examples. Example 1 Nitrocellulose solution (Daicel Chemical Industries, Ltd.)
Manufactured by Ohares Latzker: Nitrocellulose 25
12 parts by weight of methyl ethyl ketone solution), 3 parts by weight of the aforementioned compound No. (3), and 70 parts by weight of methyl ethyl ketone were thoroughly mixed in a ball mill. This mixed solution was applied onto an aluminum vapor-deposited glass plate using the dip coating method, and then dried.
A recording layer of 0.6 g/m 2 was obtained. The optical disk recording medium created in this way is mounted on a turntable, and the turntable is driven by a motor.
Spot size while giving 1800rpm rotation
Recording was carried out by irradiating the surface of the recording layer in the form of a track with a 5 mW and 8 MHz gallium-aluminum-arsenide semiconductor laser (oscillation wavelength 780 nm) focused at 1.0 micron. When the recorded surface of the optical disc was observed using a scanning electron microscope, clear pits were observed. Furthermore, when a low-output gallium-aluminum-arsenic semiconductor laser was incident on this optical disk and reflected light was detected, a waveform with a sufficient S/N ratio was obtained. Example 2 The above-mentioned compound No. 5 was coated on an aluminum vapor-deposited glass plate by dip coating in the same manner as in Example 1 to produce an optical disk recording medium having a recording layer of 0.6 g/m 2 . Created. When information was recorded on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 3 An optical disk recording having a recording layer of 0.6 g/m 2 was prepared by applying the above compound No. (10) onto an aluminum vapor-deposited glass plate by dip coating in the same manner as in Example 1. Created a body. When information was stored on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 4 An optical disk recording having a recording layer of 0.8 g/m 2 was prepared by coating the above compound No. (14) on an aluminum vapor-deposited glass plate by dip coating in the same manner as in Example 1. Created a body. When information was stored on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 5 An optical disk recording having a recording layer of 0.6 g/m 2 was prepared by coating the above compound No. (17) on an aluminum vapor-deposited glass plate by dip coating in the same manner as in Example 1. Created a body. When information was recorded on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 6 An optical disk recording having a recording layer of 0.6 g/m 2 was prepared by coating the above compound No. (20) on an aluminum vapor-deposited glass plate by dip coating in the same manner as in Example 1. Created a body. When information was stored on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 7 500 mg of the above compound No. (1) was placed in a molybdenum boat for vapor deposition, and after evacuated to 1×10 -6 mmHg or less, it was vapor deposited on an aluminum vapor-deposited glass plate. During the deposition, a 0.2 micron deposited film was formed while controlling the heater so that the pressure in the vacuum chamber did not rise above 10 -5 mmHg. Example 1
When information was stored in the same manner as in Example 1, clear pits similar to those in Example 1 were observed, and information was reproduced in the same manner as in Example 1, but in this case, a sufficient S/N ratio was obtained. A waveform was observed. Example 8 The above-mentioned compound No. (5) was vapor-deposited on an aluminum vapor-deposited glass plate in the same manner as in Example 7.
An optical disc recording medium having a micron recording layer was prepared. When information was stored on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 9 The above-mentioned compound No. (13) was deposited on an aluminum-deposited glass plate in the same manner as in Example 7, and
An optical disk recording medium having a recording layer of 0.2 microns was prepared. When information was stored on this optical disk recording medium in the same manner as in Example 1 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の光デイスク記
録体の断面図で、第3図はこの光デイスク記録体
の実施態様を示す説明図である。 1……基板、2……有機被膜、3……反射層、
4……レーザ光線、5……ピツト。
1 and 2 are cross-sectional views of the optical disc recording body of the present invention, and FIG. 3 is an explanatory view showing an embodiment of this optical disc recording body. 1...Substrate, 2...Organic coating, 3...Reflection layer,
4... Laser beam, 5... Pit.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)で示される化合物を含有する有
機被膜を有することを特徴とする光学記録媒体。 一般式(1) (式中、R1、R2、R3、R4およびR5は、水素原
子、置換もしくは未置換のアルキル基、置換もし
くは未置換のアリール基、置換もしくは未置換の
スチリル基又は置換もしくは未置換の複素環基を
示す。mは、0又は1であり、nは0、1又は2
である。Xは、陰イオンである。)
[Scope of Claims] 1. An optical recording medium characterized by having an organic coating containing a compound represented by the following general formula (1). General formula (1) (In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted styryl group, or a substituted or unsubstituted styryl group) Represents a substituted heterocyclic group. m is 0 or 1, n is 0, 1 or 2
It is. X is an anion. )
JP57102579A 1982-04-06 1982-06-14 Optical recording medium Granted JPS58219090A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57102579A JPS58219090A (en) 1982-06-14 1982-06-14 Optical recording medium
US07/512,587 US5079127A (en) 1982-04-06 1989-04-24 Optical recording medium and process for recording thereupon
US07/512,588 US5079128A (en) 1982-04-06 1990-04-24 Optical recording medium and process for recording thereupon
US07/769,397 US5278026A (en) 1982-04-06 1991-10-01 Optical recording medium and process for recording thereupon
US07/769,636 US5246814A (en) 1982-04-06 1991-10-01 Process for recording on optical recording medium
US08/086,113 US5320930A (en) 1982-04-06 1993-07-06 Optical recording medium and process for recording thereon
US08/221,904 US5382497A (en) 1982-04-06 1994-04-01 Optical recording medium and process for recording thereupon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102579A JPS58219090A (en) 1982-06-14 1982-06-14 Optical recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP4071276A Division JPH05169822A (en) 1992-03-27 1992-03-27 Production of optical recording medium
JP4071271A Division JPH05169821A (en) 1992-03-27 1992-03-27 Data recording medium

Publications (2)

Publication Number Publication Date
JPS58219090A JPS58219090A (en) 1983-12-20
JPH0126879B2 true JPH0126879B2 (en) 1989-05-25

Family

ID=14331132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102579A Granted JPS58219090A (en) 1982-04-06 1982-06-14 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS58219090A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581317A (en) * 1984-03-01 1986-04-08 E. I. Du Pont De Nemours And Company Optical recording element
JPS61100496A (en) * 1984-10-23 1986-05-19 Ricoh Co Ltd Optical information-recording medium
DE3537539A1 (en) * 1984-10-23 1986-04-24 Ricoh Co., Ltd., Tokio/Tokyo Optical information recording material
JPS62239437A (en) * 1986-04-11 1987-10-20 Canon Inc Optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655289A (en) * 1979-08-01 1981-05-15 Philips Nv Layer containing dye of film forming highhmolecular binding agent and information recording element using said layer
JPS56109357A (en) * 1980-02-01 1981-08-29 Mitsubishi Paper Mills Ltd Electrophotographic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655289A (en) * 1979-08-01 1981-05-15 Philips Nv Layer containing dye of film forming highhmolecular binding agent and information recording element using said layer
JPS56109357A (en) * 1980-02-01 1981-08-29 Mitsubishi Paper Mills Ltd Electrophotographic material

Also Published As

Publication number Publication date
JPS58219090A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
JPH0126358B2 (en)
JPS58173696A (en) Optical recording medium
JPH05230B2 (en)
JPH0535489B2 (en)
JPH0126879B2 (en)
JPS59104996A (en) Optical recording medium
JPH05169822A (en) Production of optical recording medium
JP2630381B2 (en) Optical information recording medium
JPH05169821A (en) Data recording medium
JPH0568016B2 (en)
JP2649672B2 (en) Optical recording medium
JP2530443B2 (en) Optical recording medium
JPH0125718B2 (en)
JPH0155120B2 (en)
JPH0126357B2 (en)
JPH0729493B2 (en) Optical information recording medium
JPH0126356B2 (en)
JPS5914150A (en) Optical recording medium
JPS61179792A (en) Photo-thermal conversion recording medium
JPS58220792A (en) Optical recording medium
JPH0729494B2 (en) Optical information recording medium
JPH0729491B2 (en) Optical information recording medium
JPS63207693A (en) Optical recording medium
JPS62164594A (en) Optical information recording medium
JPH0729492B2 (en) Optical information recording medium