[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0126755B2 - - Google Patents

Info

Publication number
JPH0126755B2
JPH0126755B2 JP58045058A JP4505883A JPH0126755B2 JP H0126755 B2 JPH0126755 B2 JP H0126755B2 JP 58045058 A JP58045058 A JP 58045058A JP 4505883 A JP4505883 A JP 4505883A JP H0126755 B2 JPH0126755 B2 JP H0126755B2
Authority
JP
Japan
Prior art keywords
ions
calcium
precipitate
fluoride
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58045058A
Other languages
Japanese (ja)
Other versions
JPS59169595A (en
Inventor
Yoshihiro Eto
Tadashi Takadoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4505883A priority Critical patent/JPS59169595A/en
Publication of JPS59169595A publication Critical patent/JPS59169595A/en
Publication of JPH0126755B2 publication Critical patent/JPH0126755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフツ化物イオンおよび硫酸イオン含
有排脱硫または脱硝廃水の処理方法、特にスケー
ル障害を発生させることなく、フツ化物イオンお
よび硫酸イオンを沈殿物として除去するフツ化物
イオンおよび硫酸イオン含有排脱硫または脱硝廃
水の処理方法に関するものである。 フツ化物イオン含有水の処理方法として、フツ
化物イオンの2倍当量程度のカルシウムイオンを
添加し、沈殿物を生成させてこれを除去する処理
方法が知られているが、この方法によつて得られ
る処理水のフツ化物イオン濃度は高く、完全な処
理方法とはいえなかつた。 しかも、原水中にフツ化物イオンの他に硫酸イ
オンが共存する場合には、フツ化物イオンを沈殿
させるために添加したカルシウム化合物と原水中
の硫酸イオンとが反応し、一部は石膏となつて沈
殿するものの、残部はスケールとなつて反応槽や
沈殿槽、あるいは管壁などに析出する。石膏スケ
ールが析出すると、操業不能に至るため、時々運
転を中断し、人力によつてスケールを除去してい
るが、石膏スケールは酸を用いても、十分には除
去されず、極めて厄介視されていた。 この発明はこのような従来法を改善し、スケー
ル障害を発生させることなく、原水中のフツ化物
イオンを効率良く除去する方法を提供することを
目的としている。 すなわち、この発明はフツ化物イオンおよび硫
酸イオン含有排煙脱硫または脱硝廃水にカルシウ
ム化合物を添加して懸濁液を得る工程と、前記工
程の懸濁液を処理水と硫酸カルシウム及びフツ化
カルシウムを主体とする沈殿物とに分離する工程
とを含む水の処理方法において、さらに、前記沈
殿物を前記カルシウム化合物を添加する工程に返
送する工程を含むことを特徴とする水の処理方法
に関するものである。 以下この発明を図面の実施例により説明する。
図面は本発明者らが先に提案した特願昭56−
104241号の発明に適用したこの発明の好ましい実
施態様を示す系統図であり、1は溶解槽、2は第
1反応槽、3は沈殿槽、4は第2反応槽、5は最
終沈殿槽である。 まず、溶解槽1に原水管6から原水を導入し、
さらに返送管7から最終沈殿槽5の沈殿物を導入
し、必要に応じて薬注管9から酸を加えてPH4以
下に調整し、返送された沈殿物を溶解する。この
沈殿物は後述のように水酸化マグネシウムおよび
炭酸カルシウムを含んでいるので、溶解によりマ
グネシウムイオンおよびカルシウムイオンが溶出
する。PH4以下に調整するのは沈殿物を完全に溶
解するためと、溶解槽での石膏スケールの生成を
防止するためである。原水が酸性で、沈殿物を溶
解したのちPH4以下になるときは酸を添加する必
要はないが、それ以外の場合は添加する。酸とし
ては特に限定されないが、硫酸はカルシウムイオ
ンを消費するので好ましくなく、また硝酸は窒素
源となるため好ましくなく、塩酸が最適である。 次に本発明の工程にはいり、溶解槽1からの流
出水と、返送管8を介して返送される沈殿槽3の
沈殿物を第1反応槽2に導入し、カルシウムイオ
ンの存在下にPH5〜8.5、好ましくは6〜7に調
整し、さらに沈殿物を生成させる。この場合カル
シウムイオンのほかにアルミニウムイオンが存在
していてもよい。カルシウムイオンとしてはもと
もと原水中に存在するもの、返送された沈殿物か
ら溶出したもの等が反応に関与するが、不足する
場合は薬注管10からカルシウム塩を添加する。
薬注管10から添加するカルシウム塩としては、
例えば塩化カルシウム、炭酸カルシウム、水酸化
カルシウム等がある。カルシウムイオンの必要な
存在量はCaF2としてのCa当量あたり1〜3倍程
度であり、特に2倍当量程度が望ましい。しかし
排煙脱硫および(または)脱硝廃水には多量のア
ルミニウムイオンが含まれているからカルシウム
イオンの添加量を減少させることもでき、このほ
か廃水の塩類濃度などにより必要量は異なるが、
カルシウムイオンの添加量は簡単に実験的に確認
することができる。 PHの調整は必要により薬注管11からPH調整剤
を注入して行う。PH調整剤としては、水酸化ナト
リウム、炭酸ナトリウム、水酸化カルシウム等が
使用でき、このうち水酸化カルシウムはカルシウ
ムイオン源としても利用でき好ましい。このよう
なPH調整剤を添加して前記PH範囲に調整すること
により、沈殿物が生成する。沈殿物はカルシウム
イオンが硫酸イオンと反応したCaSO4およびフツ
化物イオンと反応したCaF2が主体であり、アル
ミニウムイオンが存在する場合はAl(OH)3がフ
ツ化物を抱き込んだ形で含まれると推定される
が、詳細は不明である。この工程におけるPH範囲
はCaF2とAl(OH)3の沈殿生成物の溶解度が小さ
く、かつ後述の工程において返送される水酸化マ
グネシウムの沈殿生成の少ない範囲、すなわちPH
5〜8.5であり、特にPH6〜7が好ましい。 第1反応槽2の反応液は沈殿槽3において固液
分離を行い、沈殿物の一部は返送管8を介して、
カルシウム化合物が添加される第1反応槽2へ返
送され残部は、排泥管12を介して系外へ排出さ
れる。一方上澄液は第2反応槽4へ流出させる。 沈殿槽から排出される沈殿物の一部を、第1反
応槽に返送するのは、フツ化カルシウムの生成と
同時に生成する硫酸カルシウムが、一部沈殿とな
らずに、反応槽や管壁などにスケールとして析出
するのを防止するためである。 すなわち、沈殿物の存在下に、原水にカルシウ
ム化合物を添加すると、沈殿物中のCaSO4が結晶
の核となり、反応槽内で晶析的に石膏を析出させ
ることにより、石膏をスケール化させることな
く、沈降性の良好な沈殿物とするものである。 沈殿物中にはフツ化カルシウムも含まれている
ため、やはり、フツ化カルシウム結晶の核とな
り、沈降性の極めて悪いフツ化カルシウムの微細
粒子の生成量が低減されるとともに、石膏とフツ
化カルシウムの共沈現象も認められ、フツ化物イ
オン除去効果を大巾に改善する。更に、沈殿物を
利用することにより、沈殿物中の未溶解カルシウ
ムが、硫酸イオンやフツ化物イオンの固定化剤と
して有効に利用されるメリツトもある。 なお、副成石膏などを沈殿物のかわりに用いた
場合には、硫酸イオン以外に対する効果がなくな
り、好ましくない。 このように、水中の硫酸イオンとフツ化物イオ
ンが可及的に除去された処理水は、次いで第2反
応槽4へ送られる。 第2反応槽4では、さらにマグネシウムイオン
および炭酸イオン(重炭酸イオンを含む)の存在
下に、PH9.5以上に調整して沈殿物を生成させて、
水中の残留フツ化物イオンをさらに低減させる。
なお、この工程では水中の残留カルシウムイオン
も同時に除去され、脱硬度処理工程を兼ねてい
る。第2反応槽4では、必要に応じて薬注管13
からマグネシウム塩を、薬注管14から炭酸塩
を、薬注管15からPH調整剤を添加する。マグネ
シウム塩としては塩化マグネシウム等が使用でき
るが、反応液中にすでに存在する場合には添加し
なくてもよい。炭酸塩としては炭酸ナトリウム、
重炭酸ナトリウム等が使用できるが、炭酸ガスを
吹込んでもよい。またPH調整剤はマグネシウム塩
および炭酸塩を添加してなお所定のPHにならない
ときに添加するもので、最初の工程と同様のもの
が使用できる。反応液中に存在させるマグネシウ
ムイオンの量はフツ化物イオンに対し重量比で20
倍以上とすると、残留フツ化物イオン量を1mg/
l以下にすることができる。 また、炭酸イオンの量はカルシウムイオンに対
して1/2当量程度以上とする。前記PHに調整する
ことにより、Mg(OH)2および炭酸カルシウムの
沈殿物が生成し、液中のフツ化物もこれらに抱き
込まれて沈殿する。この場合、炭酸カルシウムと
水酸化マグネシウムが混合された状態で析出する
ため、生成するフロツクは緻密で重質のものとな
り、水酸化マグネシウム単独の場合よりもフツ化
物の除去率が高く、しかも固液分離性も良好とな
り、高濃縮された状態で返送することができる。 第2反応槽4の反応液は最終沈殿槽5において
固液分離を行い、上澄水は処理水として処理水管
16から系外へ排出し、必要に応じて中和等の処
理を行う。また沈殿物は返送管7から溶解槽1に
返送する。なお特に排煙脱硫廃水では最終沈殿槽
5から排出される沈殿物中にマンガンや鉄などの
金属水酸化物も含まれているので、沈殿物を返送
する際、カルシウム化合物添加工程で確実にこれ
らを除去するために曝気する方が好ましい。 返送された沈殿物は溶解槽1で溶解し、放出さ
れたフツ化物イオンは原水中のフツ化物イオンと
ともに前述の処理を受ける。この場合、溶離した
カルシウムイオンはフツ化物イオンと反応するの
で、カルシウム化合物添加工程におけるカルシウ
ム化合物の添加量は原水中のカルシウムイオンお
よびアルミニウムイオンならびに沈殿物から溶離
するカルシウムイオンで不足する水を補給するだ
けでよい。また溶離したマグネシウムイオンはそ
のまま第2反応槽に流出して、循環使用される。
このため第2反応槽におけるマグネシウムイオン
の添加量は沈殿槽3から排出されるマグネシウム
沈殿物に対応する量だけでよいが、第1反応槽2
においてPH7以下に調整する場合には、マグネシ
ウムがほとんど沈殿しないので、マグネシウムイ
オンの添加は最初だけでよいことになる。また原
水中にマグネシウムイオンが含まれる場合は、第
2反応槽におけるPH調整剤の添加量を適当量に調
節しておくことにより、フツ化物イオン除去に必
要なマグネシウムが系内で循環し、余剰のものが
処理水中に排出されることになる。また処理水中
のマグネシウムイオンの量を少なくしたい場合
は、第2反応槽でその量に見合うPH調整剤を加
え、最終沈殿槽で余剰分のマグネシウム沈殿物を
取り出せばよい。 以上の通り、この発明の好ましい実施態様によ
れば、フツ化物イオン及び硫酸イオン含有排煙脱
硫または脱硝廃水をスケール障害を発生させるこ
となく、カルシウムイオンと反応させて沈殿分離
したのち、水酸化マグネシウムおよび炭酸カルシ
ウムの沈殿物を生成させて返送するようにしたの
で、フツ化物イオンを効率的かつ高度に除去する
ことができ、得られる処理水中のフツ化物イオン
濃度は低くなる。また未反応のカルシウムイオン
は沈殿物として返送されるので、処理水中のカル
シウムイオン濃度を低下させるとともに、カルシ
ウムイオンを有効に使用でき、第1反応槽におけ
るカルシウム塩の添加量を少なくすることができ
る。そして処理水を弱塩基性等の合成吸着剤によ
りさらに処理する場合、あらかじめ脱硬度処理さ
れているため、樹脂層におけるカルシウム等の析
出が防止され、樹脂を有効に使用することができ
る。また第2反応槽で添加されるカルシウムイオ
ンは循環使用されるため損失分だけ補給すればよ
く、このマグネシウムイオンの沈殿のために使用
されたアルカリ剤も水酸化物の形で第1反応槽に
返送され、酸性原水の中和剤として有効利用され
る。さらに汚泥処理の対象となる沈殿物は沈殿層
3からの沈殿物のみであり、このため処理すべき
汚泥量が少なくなるとともに、難脱水性の水酸化
マグネシウムの量が少ないため処理も簡単にな
る。また溶解槽におけるPHを4以下に調整するの
でスケールが生成せず、処理効果もよくなるなど
の効果がある。 次に実施例および比較例について説明する。 実施例 F508mg/l、SO44400mg/l、Ca653mg/l、
PH1.6の排煙脱硫廃水に表の通り、Ca(OH)2と沈
殿物とを添加し、45分間撹拌して反応させたの
ち、アニオン性高分子凝集剤を1ppm添加して沈
殿させた。 その上澄水を過して得られた過水の水質分
析を行なうと共に、その過水を3日間放置後の
スケール析出具合を観察した。 結果を表に示す。 なお、添加した沈殿物はケースNo.2おける懸濁
液を30分静置した後の沈殿物を用いた。
This invention relates to a method for treating wastewater containing fluoride ions and sulfate ions, particularly for removing fluoride ions and sulfate ions as precipitates without causing scale damage. This invention relates to a method for treating denitrified wastewater. As a method for treating water containing fluoride ions, there is a known treatment method in which calcium ions are added in an amount equivalent to about twice the amount of fluoride ions to form a precipitate and then removed. The fluoride ion concentration of the treated water was high, and it could not be said to be a perfect treatment method. Moreover, when sulfate ions coexist in addition to fluoride ions in the raw water, the calcium compounds added to precipitate the fluoride ions react with the sulfate ions in the raw water, and some of them become gypsum. Although it precipitates, the remainder becomes scale and deposits on the reaction tank, precipitation tank, or pipe wall. When gypsum scale precipitates, it becomes impossible to operate, so operations are sometimes interrupted and the scale is removed manually, but gypsum scale cannot be removed sufficiently even with acid, and is considered an extremely troublesome problem. was. The present invention aims to improve upon such conventional methods and provide a method for efficiently removing fluoride ions from raw water without causing scale damage. That is, this invention includes a step of adding a calcium compound to flue gas desulfurization or denitrification wastewater containing fluoride ions and sulfate ions to obtain a suspension, and adding the suspension of the above step to treated water and calcium sulfate and calcium fluoride. The present invention relates to a water treatment method comprising a step of separating the precipitate and a precipitate as a main component, further comprising a step of returning the precipitate to the step of adding the calcium compound. be. The present invention will be explained below with reference to embodiments of the drawings.
The drawings are based on the patent application filed in 1983 by the inventors.
It is a system diagram showing a preferred embodiment of this invention applied to the invention of No. 104241, in which 1 is a dissolution tank, 2 is a first reaction tank, 3 is a precipitation tank, 4 is a second reaction tank, and 5 is a final precipitation tank. be. First, raw water is introduced into the dissolution tank 1 from the raw water pipe 6,
Further, the precipitate from the final precipitation tank 5 is introduced from the return pipe 7, and if necessary, acid is added from the chemical injection pipe 9 to adjust the pH to 4 or less, thereby dissolving the returned precipitate. Since this precipitate contains magnesium hydroxide and calcium carbonate as described below, magnesium ions and calcium ions are eluted by dissolution. The reason for adjusting the pH to below 4 is to completely dissolve the precipitate and to prevent the formation of gypsum scale in the dissolution tank. If the raw water is acidic and the pH drops to below 4 after dissolving the precipitate, there is no need to add acid, but in other cases it is necessary to add acid. Although the acid is not particularly limited, sulfuric acid is not preferred because it consumes calcium ions, nitric acid is not preferred because it becomes a nitrogen source, and hydrochloric acid is most suitable. Next, in the process of the present invention, the outflow water from the dissolution tank 1 and the precipitate from the settling tank 3, which is returned via the return pipe 8, are introduced into the first reaction tank 2, and the water is heated to pH 5 in the presence of calcium ions. ~8.5, preferably 6-7, and further generate a precipitate. In this case, aluminum ions may be present in addition to calcium ions. Calcium ions that originally exist in the raw water and those eluted from the returned precipitate are involved in the reaction, but if there is a shortage, calcium salts are added from the chemical injection tube 10.
The calcium salt added from the drug injection tube 10 is as follows:
Examples include calcium chloride, calcium carbonate, calcium hydroxide, and the like. The required amount of calcium ions is about 1 to 3 times the equivalent of Ca as CaF 2 , and preferably about 2 times the equivalent of CaF 2 . However, since flue gas desulfurization and/or denitrification wastewater contains a large amount of aluminum ions, it is possible to reduce the amount of calcium ions added.In addition, the amount required varies depending on the salt concentration of the wastewater, etc.
The amount of calcium ions added can be easily confirmed experimentally. Adjustment of PH is performed by injecting a PH adjusting agent from the drug injection pipe 11 if necessary. As the pH adjuster, sodium hydroxide, sodium carbonate, calcium hydroxide, etc. can be used, and among these, calcium hydroxide is preferred because it can also be used as a calcium ion source. A precipitate is generated by adding such a pH adjuster to adjust the pH to the above range. The precipitate is mainly composed of CaSO4 , which is the reaction of calcium ions with sulfate ions, and CaF2 , which is the reaction with fluoride ions.If aluminum ions are present, Al(OH) 3 is included in the form of fluoride. It is assumed that this is the case, but the details are unknown. The PH range in this step is the range in which the solubility of the precipitated products of CaF 2 and Al(OH) 3 is low and the precipitation of magnesium hydroxide to be returned in the process described later is small, that is, the PH range.
5 to 8.5, particularly preferably PH6 to 7. The reaction liquid in the first reaction tank 2 undergoes solid-liquid separation in the precipitation tank 3, and a part of the precipitate is passed through the return pipe 8.
The sludge is returned to the first reaction tank 2 where the calcium compound is added, and the remainder is discharged outside the system via the sludge pipe 12. On the other hand, the supernatant liquid is allowed to flow out into the second reaction tank 4. Part of the precipitate discharged from the settling tank is returned to the first reaction tank because calcium sulfate, which is produced at the same time as calcium fluoride, does not partially precipitate, but instead is deposited on the reaction tank or pipe walls. This is to prevent it from precipitating as scale. In other words, when a calcium compound is added to raw water in the presence of precipitate, CaSO 4 in the precipitate becomes a crystal nucleus, causing gypsum to crystallize in the reaction tank, causing gypsum to scale. The purpose is to form a precipitate with good sedimentation properties. Since calcium fluoride is also included in the precipitate, it becomes the core of calcium fluoride crystals, reducing the amount of fine particles of calcium fluoride that have extremely poor sedimentation properties, and reducing the amount of calcium fluoride that is formed between gypsum and calcium fluoride. A coprecipitation phenomenon was also observed, which greatly improved the fluoride ion removal effect. Furthermore, the use of precipitates has the advantage that undissolved calcium in the precipitates can be effectively used as a fixing agent for sulfate ions and fluoride ions. It should be noted that if by-product gypsum or the like is used instead of the precipitate, it will not be effective against ions other than sulfate ions, which is not preferable. The treated water, from which sulfate ions and fluoride ions have been removed as much as possible, is then sent to the second reaction tank 4. In the second reaction tank 4, the pH is further adjusted to 9.5 or higher in the presence of magnesium ions and carbonate ions (including bicarbonate ions) to generate a precipitate.
Further reduces residual fluoride ions in water.
Note that this step also removes residual calcium ions in the water and also serves as a dehardening treatment step. In the second reaction tank 4, a chemical injection pipe 13 is used as necessary.
Magnesium salt is added from the tank, carbonate is added from the chemical injection pipe 14, and PH adjuster is added from the chemical injection pipe 15. Magnesium chloride or the like can be used as the magnesium salt, but it may not be added if it already exists in the reaction solution. Carbonates include sodium carbonate,
Sodium bicarbonate or the like can be used, but carbon dioxide gas may also be blown in. Further, the pH adjuster is added when the predetermined pH is still not reached even after adding the magnesium salt and carbonate, and the same one as in the first step can be used. The amount of magnesium ions present in the reaction solution is 20% by weight relative to fluoride ions.
If the amount is more than doubled, the amount of residual fluoride ions will be 1mg/
It can be less than l. Further, the amount of carbonate ions is about 1/2 equivalent or more relative to calcium ions. By adjusting the pH to the above value, precipitates of Mg(OH) 2 and calcium carbonate are formed, and fluoride in the liquid is also trapped and precipitated. In this case, since calcium carbonate and magnesium hydroxide are precipitated in a mixed state, the resulting floc is dense and heavy, resulting in a higher fluoride removal rate than in the case of magnesium hydroxide alone. Separability is also improved, and the product can be returned in a highly concentrated state. The reaction liquid in the second reaction tank 4 is subjected to solid-liquid separation in the final settling tank 5, and the supernatant water is discharged as treated water to the outside of the system from the treated water pipe 16, and is subjected to treatments such as neutralization as necessary. Further, the precipitate is returned to the dissolution tank 1 through the return pipe 7. In particular, in flue gas desulfurization wastewater, the precipitate discharged from the final settling tank 5 also contains metal hydroxides such as manganese and iron, so when returning the precipitate, it is necessary to ensure that these are removed in the calcium compound addition step. It is preferable to aerate to remove. The returned precipitate is dissolved in the dissolution tank 1, and the released fluoride ions are subjected to the above-mentioned treatment together with the fluoride ions in the raw water. In this case, the eluted calcium ions react with fluoride ions, so the amount of calcium compound added in the calcium compound addition step is such that the calcium ions and aluminum ions in the raw water and the calcium ions eluted from the precipitate replenish the insufficient water. Just that is enough. Further, the eluted magnesium ions flow directly to the second reaction tank and are recycled and used.
Therefore, the amount of magnesium ions added in the second reaction tank only needs to be the amount corresponding to the magnesium precipitate discharged from the precipitation tank 3;
When adjusting the pH to 7 or lower, magnesium ions hardly precipitate, so it is only necessary to add magnesium ions at the beginning. In addition, if the raw water contains magnesium ions, by adjusting the amount of PH adjuster added in the second reaction tank to an appropriate amount, the magnesium necessary for removing fluoride ions will be circulated within the system, resulting in excess will be discharged into the treated water. Moreover, if it is desired to reduce the amount of magnesium ions in the treated water, it is sufficient to add a pH adjuster corresponding to the amount in the second reaction tank and remove the excess magnesium precipitate in the final precipitation tank. As described above, according to a preferred embodiment of the present invention, flue gas desulfurization or denitrification wastewater containing fluoride ions and sulfate ions is reacted with calcium ions and precipitated and separated without causing scale damage, and then magnesium hydroxide is Since precipitates of calcium carbonate and calcium carbonate are generated and returned, fluoride ions can be efficiently and highly removed, and the fluoride ion concentration in the resulting treated water is low. Furthermore, since unreacted calcium ions are returned as precipitates, the concentration of calcium ions in the treated water can be reduced, and calcium ions can be used effectively, making it possible to reduce the amount of calcium salt added in the first reaction tank. . When the treated water is further treated with a synthetic adsorbent such as a weakly basic one, since it has been previously subjected to dehardening treatment, precipitation of calcium, etc. in the resin layer is prevented, and the resin can be used effectively. In addition, since the calcium ions added in the second reaction tank are recycled and used, only the amount lost needs to be replenished, and the alkaline agent used to precipitate the magnesium ions is also returned to the first reaction tank in the form of hydroxide. It is returned and used effectively as a neutralizing agent for acidic raw water. Furthermore, the only precipitate that is subject to sludge treatment is the precipitate from sedimentation layer 3, which reduces the amount of sludge that must be treated, and also simplifies treatment because the amount of magnesium hydroxide, which is difficult to dewater, is small. . In addition, since the pH in the dissolution tank is adjusted to 4 or less, no scale is generated and the processing effect is improved. Next, Examples and Comparative Examples will be described. Example F508mg/l, SO 4 4400mg/l, Ca653mg/l,
As shown in the table, Ca(OH) 2 and precipitate were added to flue gas desulfurization wastewater with a pH of 1.6, stirred for 45 minutes to react, and then 1 ppm of anionic polymer flocculant was added and precipitated. . The quality of the supernatant water obtained by filtering the supernatant water was analyzed, and the degree of scale precipitation was observed after the supernatant water was allowed to stand for 3 days. The results are shown in the table. The precipitate added was the precipitate obtained after the suspension in case No. 2 was allowed to stand for 30 minutes.

【表】 この表から明らかなように、沈殿物を返送する
ことにより、硫酸カルシウムの過飽和度が破れ、
処理水を3日間放置してもほとんどスケールが析
出しない。 また、石膏自体を添加するよりも、沈殿物を返
送する方が効果よいことも明らかである。
[Table] As is clear from this table, by returning the precipitate, the supersaturation degree of calcium sulfate is broken,
Almost no scale precipitates even if the treated water is left for 3 days. It is also clear that returning the precipitate is more effective than adding the gypsum itself.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の好ましい実施態様を示す系統
図であり、1は溶解槽、2は第1反応槽、3は沈
殿槽、4は第2反応槽、5は最終沈殿槽、7,8
は沈殿物返送管である。
The drawing is a system diagram showing a preferred embodiment of the present invention, in which 1 is a dissolution tank, 2 is a first reaction tank, 3 is a precipitation tank, 4 is a second reaction tank, 5 is a final precipitation tank, 7, 8
is the sediment return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ化物イオンおよび硫酸イオン含有排煙脱
硫または脱硝廃水にカルシウム化合物を添加して
懸濁液を得る工程と、前記工程の懸濁液を処理水
と、硫酸カルシウム及びフツ化カルシウムを主体
とする沈殿物とに分離する工程とを含む水の処理
方法において、さらに、前記沈殿物を前記カルシ
ウム化合物を添加する工程に返送する工程を含む
ことを特徴とする水の処理方法。
1. A step of adding a calcium compound to flue gas desulfurization or denitrification wastewater containing fluoride ions and sulfate ions to obtain a suspension, and using the suspension of the above step as treated water, which mainly contains calcium sulfate and calcium fluoride. A method for treating water comprising a step of separating the precipitate into a precipitate, further comprising a step of returning the precipitate to the step of adding the calcium compound.
JP4505883A 1983-03-17 1983-03-17 Water disposal Granted JPS59169595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4505883A JPS59169595A (en) 1983-03-17 1983-03-17 Water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4505883A JPS59169595A (en) 1983-03-17 1983-03-17 Water disposal

Publications (2)

Publication Number Publication Date
JPS59169595A JPS59169595A (en) 1984-09-25
JPH0126755B2 true JPH0126755B2 (en) 1989-05-25

Family

ID=12708752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4505883A Granted JPS59169595A (en) 1983-03-17 1983-03-17 Water disposal

Country Status (1)

Country Link
JP (1) JPS59169595A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651186B2 (en) * 1985-11-29 1994-07-06 三菱重工業株式会社 Method for treating fluorine in flue gas desulfurization wastewater
JP4132851B2 (en) * 2002-02-06 2008-08-13 オルガノ株式会社 Method for treating wastewater containing fluorine and hydrogen peroxide
JP5300896B2 (en) * 2011-03-15 2013-09-25 株式会社東芝 Water treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186069A (en) * 1975-01-27 1976-07-28 Hitachi Ltd FUTSUSOGANJUHAIEKINOSHORIHOHO
JPS52141059A (en) * 1976-05-20 1977-11-25 Stanley Electric Co Ltd Method of treating waste water and liquor containing fluoring and silicofluoro compounds
JPS5367958A (en) * 1976-11-30 1978-06-16 Stanley Electric Co Ltd Method of treating fluorine-contained waste water in multiple stages
JPS5889984A (en) * 1981-11-24 1983-05-28 Hitachi Ltd Device for waste water treatment
JPS59147694A (en) * 1983-02-15 1984-08-24 Mitsubishi Heavy Ind Ltd Treatment of waste water from stack gas desulfurization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186069A (en) * 1975-01-27 1976-07-28 Hitachi Ltd FUTSUSOGANJUHAIEKINOSHORIHOHO
JPS52141059A (en) * 1976-05-20 1977-11-25 Stanley Electric Co Ltd Method of treating waste water and liquor containing fluoring and silicofluoro compounds
JPS5367958A (en) * 1976-11-30 1978-06-16 Stanley Electric Co Ltd Method of treating fluorine-contained waste water in multiple stages
JPS5889984A (en) * 1981-11-24 1983-05-28 Hitachi Ltd Device for waste water treatment
JPS59147694A (en) * 1983-02-15 1984-08-24 Mitsubishi Heavy Ind Ltd Treatment of waste water from stack gas desulfurization

Also Published As

Publication number Publication date
JPS59169595A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
KR100200021B1 (en) Method of treating waste water to remove harmful ion by coagulating sedimentation
US4028237A (en) Method and apparatus for treatment of fluorine-containing waste waters
US6210589B1 (en) Process for removing fluoride from wastewater
JPS60117B2 (en) How to treat fluoride-containing water
JP2007130518A (en) Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
JP4293520B2 (en) Fluorine ion removal method and remover
JPH0126755B2 (en)
JPH0315512B2 (en)
JPS6097091A (en) Treatment of fluoride ion-containing water
JP3203745B2 (en) Fluorine-containing water treatment method
JP3672262B2 (en) Method for treating boron-containing water
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JPS6339308B2 (en)
JPH10230282A (en) Treatment of fluorine-containing waste water
JP2598456B2 (en) Treatment method for phosphate-containing water
JPS5813230B2 (en) Treatment method for water containing fluoride ions
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JPS646831B2 (en)
JP4487492B2 (en) Treatment method for fluorine-containing wastewater
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JPH01304096A (en) Water treatment
JP4370745B2 (en) Method for treating fluorine-containing water containing phosphate ions
JPS5943237B2 (en) Treatment method for water containing fluoride ions
JP2751875B2 (en) Treatment method for wastewater containing fluorine