[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01250008A - Aspherical shape measuring instrument - Google Patents

Aspherical shape measuring instrument

Info

Publication number
JPH01250008A
JPH01250008A JP7452188A JP7452188A JPH01250008A JP H01250008 A JPH01250008 A JP H01250008A JP 7452188 A JP7452188 A JP 7452188A JP 7452188 A JP7452188 A JP 7452188A JP H01250008 A JPH01250008 A JP H01250008A
Authority
JP
Japan
Prior art keywords
measured
stage
output
center
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7452188A
Other languages
Japanese (ja)
Other versions
JPH073331B2 (en
Inventor
Mitsuo Tanaka
三男 田中
Takashi Suzuki
隆 鈴木
Tsutomu Watanabe
渡辺 孜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP63074521A priority Critical patent/JPH073331B2/en
Publication of JPH01250008A publication Critical patent/JPH01250008A/en
Publication of JPH073331B2 publication Critical patent/JPH073331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the shape of an objective surface by holding the body to be measured and rotating a theta stage and inputting the current angle of rotation, the output of an optical displacement sensor, and the output of an X- directional movement quantity detecting means. CONSTITUTION:The body 21 held by a holding mechanism 20 on the theta stage 10 is set so that the center of curvature of the surface 21a to be measured meets the center of rotation of the theta stage 10; while the theta stage 10 is rotated in this state, the current angle of rotation the current position thetar of the theta stage 10 from the rotation angle detecting means 33 composed of a rotary encoder 18 and an angle detecting circuit 43, the output l1 of the optical displacement sensor 31, and the output l1s of an (x)-directional movement quantity detection body 33b are inputted to a signal processing means 46 at the same time. A series of processes are carried on until the theta stage 10 is rotated by a specific angle. When the signal processing means 46 performs arithmetic (l1+l2) at intervals of an angle thetar of rotation to obtain shape data on the surface 21a to be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、凹レンズ、凸レンズ、型等の表面形状検査工
程等で利用する非球面形状測定装置に係わり、特に光変
位センサを用いて被測定物表面の球面および非球面形状
を非接触で測定する非球面形状測定装置の改良に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an aspherical surface shape measuring device used in the surface shape inspection process of concave lenses, convex lenses, molds, etc. This invention relates to an improvement of an aspherical surface shape measuring device that non-contactly measures the spherical and aspherical shapes of the surface of an object.

(従来の技術および発明が解決しようとする課従来、レ
ンズ等被測定物の球面または非球面形状を測定する手段
として、■干渉計測法、■ジャリング干渉法とフリンジ
スキャニング干渉法とを組合せた測定法、■被測定物か
らの反射光と参照面からの反射光との干渉を利用する測
定法、■光の直進性と反射の法則を利用する測定法等が
ある。
(Problems to be Solved by the Prior Art and the Invention) Conventionally, as means for measuring the spherical or aspherical shape of objects to be measured such as lenses, there have been two methods: ■ interferometry; There are two methods: (1) a measurement method that utilizes interference between the reflected light from the object to be measured and a reference surface; and (2) a measurement method that utilizes the straightness of light and the law of reflection.

前記■の干渉計n1法は、光源からの光を原器および被
測定物へ照射し、そのときの原器の参照面からの反射光
波と被測定物の被測定面からの反射光波を干渉させて得
られる干渉縞を解析することにより、被測定面の形状を
測定する方法である。
In the interferometer n1 method described in (2) above, light from a light source is irradiated onto the prototype and the measured object, and the reflected light waves from the reference surface of the prototype at that time and the reflected light waves from the measured surface of the measured object are interfered. This method measures the shape of the surface to be measured by analyzing the interference fringes obtained.

次に、前記■のジャリング干渉法とフリンジスキャニン
グ干渉法とを組合せたもので、そのうちジャリング干渉
法は被測定波面を2分割し、一方の波面を光軸に対して
横ずらしさせ、他方の波面と干渉させる方法である。一
方、フリンジスキャニング干渉法は参照ミラーにピエゾ
素子を取付け、被測定面の光波を用いて参照ミラーの参
照光波の位相を変化させる方法である。前記■の測定法
は上記2つの測定法から被測定面の形状を測定するもの
である。
Next, it is a combination of the Jarring interferometry and the fringe scanning interferometry mentioned above. Among these, the Jarring interferometry divides the wavefront to be measured into two, shifts one wavefront laterally with respect to the optical axis, and the other wavefront This is a method of interfering with On the other hand, the fringe scanning interferometry is a method in which a piezo element is attached to a reference mirror, and the phase of the reference light wave of the reference mirror is changed using the light wave of the surface to be measured. The measuring method (2) above measures the shape of the surface to be measured using the above two measuring methods.

また、前記■の測定法は、レーザビームを2分割し、一
方を被測定面に照射し、他方を参照面に照射して、それ
ぞれの反射光を干渉させることにより、被測定面の形状
を測定する方法である。
In addition, in the measurement method (2) above, the shape of the surface to be measured is determined by dividing the laser beam into two, irradiating one side on the surface to be measured, and irradiating the other on the reference surface, and making the reflected lights from each interfere. It is a method of measurement.

さらに、■の光の直進性と反射の法則を利用する方法は
、光ビームの鏡面反射の性質を利用したもので、光ビー
ムを被測定面に入射し、入射方向と入射点における被測
定面の法線方向が一致した場合、反射光ビームは入射光
ビームと同一の光路を戻る性質に基づいた測定法である
。すなわち、入射光ビームと反射光ビームとが同一光路
になるように被測定面を移動させその移動量を検出する
ことにより、被測定面の形状を測定するものである。
Furthermore, the method using the straightness of light and the law of reflection (2) takes advantage of the properties of specular reflection of a light beam, in which the light beam is incident on the surface to be measured, and the direction of incidence and the surface to be measured at the point of incidence are This measurement method is based on the property that when the normal directions of the reflected light beam and the incident light beam match, the reflected light beam returns along the same optical path as the incident light beam. That is, the shape of the surface to be measured is measured by moving the surface to be measured so that the incident light beam and the reflected light beam are on the same optical path and detecting the amount of movement.

(発明が解決しようとする課題) しかしながら、上記各測定法のうち、■の干渉計測法は
参照面となる原器が必要であるばかりでなく、現実には
非球面形状の参照面を高精度で製作することは非常に難
しく、コスト的にも高いものとなる。また、参照面から
生じる波面と被測定面から生じる波面との偏差が大きく
なると多数の干渉縞が生じ形状解析が困難となる。その
他、鏡面しか測定できず、光学的な粗面の測定は不可能
である。
(Problems to be Solved by the Invention) However, among the above measurement methods, the interferometric measurement method (2) not only requires a prototype as a reference surface, but also requires a high-precision reference surface with an aspherical shape. It is very difficult to manufacture it and it is also expensive. Furthermore, when the deviation between the wavefront generated from the reference surface and the wavefront generated from the measured surface becomes large, a large number of interference fringes occur, making shape analysis difficult. In addition, only mirror surfaces can be measured, and it is impossible to measure optically rough surfaces.

その点、上記■■■の測定法は参照面となる原器を必要
としないが、原理的に高い精度が望めないにも拘らず高
精度な移動機構やアライメント機構が必要となり、かつ
、装置全体の光学系が複雑。
In this regard, the measurement method described in ■■■ does not require a prototype as a reference surface, but it does require a highly accurate movement mechanism and alignment mechanism, although high accuracy cannot be expected in principle. The entire optical system is complex.

高価なものとなる。It becomes expensive.

また、被測定面が光学的に粗な場合、上記■■の測定法
では干渉縞が得られないために測定できない問題があり
、前記■の測定法では入射点で光ビームが散乱するため
に高精度の測定が不可能である。
In addition, if the surface to be measured is optically rough, there is a problem in that measurement method (■) above cannot be used because interference fringes cannot be obtained. High precision measurements are not possible.

本発明は以上のような問題点を解決するためになされた
もので、簡素な測定法で球面および非球面形状の高精度
、高速測定を可能とし、かつ、被測定面が粗面状態でも
容易に形状を測定しうる非球面形状測定装置を提供する
ことにある。
The present invention was made to solve the above-mentioned problems, and enables high-accuracy, high-speed measurement of spherical and aspherical shapes with a simple measurement method, and can be easily measured even when the surface to be measured is rough. An object of the present invention is to provide an aspherical shape measuring device that can measure the shape of an aspherical surface.

また、本発明の他の目的は、被測定物を保持して回転す
るθステージの回転軸心が回転角度に依存して周期的に
変動する場合でもその軸心の周期的変動の影響を除去し
て被測定物の形状を正確に測定しうる非球面形状測定装
置を提供することにある。
Another object of the present invention is to eliminate the influence of periodic fluctuations in the rotational axis of the θ stage that holds and rotates the object to be measured, even if the rotational axis changes periodically depending on the rotation angle. An object of the present invention is to provide an aspherical surface shape measuring device that can accurately measure the shape of an object to be measured.

さらに、本発明の他の目的は、被測定面が設計値に対し
て大幅にずれて凹凸に変化する場合や被測定面の曲率中
心とθステージの回転中心がずれてセットされている場
合でも、測定しようとする被測定面の光変位センサ走査
ルートを、光変位センサの検出点が逸脱することなく測
定していき、被測定面の形状を確実に測定する非球面形
状測定装置を提供することにある。
Furthermore, another object of the present invention is that even when the surface to be measured deviates significantly from the design value and becomes uneven, or when the center of curvature of the surface to be measured and the center of rotation of the θ stage are set to be misaligned, To provide an aspherical surface shape measuring device that measures the optical displacement sensor scanning route of the surface to be measured without deviating from the detection point of the optical displacement sensor, and reliably measures the shape of the surface to be measured. There is a particular thing.

(課題を解決するための手段) 本発明による非球面形状測定装置は、上記目的を達成す
るために被測定物を保持して被測定面中央部の曲率中心
を回転中心として回転するθステージと、このθステー
ジの回転角度を検出する角度検出手段と、前記被測定物
の被測定面と対向して配置されこの被測定面の変位を検
出する光変位センサと、この光変位センサを前記被測定
面と対向する方向に移動させるXステージと、このXス
テージの移動量を検出する移動量検出手段と、前記角度
検出手段の出力、前記光変位センサの出力および前記移
動量検出手段の出力を同時に受領して前記被測定面の形
状を求める得る信号処理手段とを備えたものである。
(Means for Solving the Problems) In order to achieve the above object, an aspherical surface shape measuring device according to the present invention includes a θ stage that holds an object to be measured and rotates around the center of curvature at the center of the surface to be measured. , an angle detection means for detecting the rotation angle of the θ stage, an optical displacement sensor disposed opposite to the surface to be measured of the object to be measured and detecting the displacement of the surface to be measured, and the optical displacement sensor for detecting the displacement of the surface to be measured. An X stage to be moved in a direction facing the measurement surface, a movement amount detection means for detecting the movement amount of the X stage, an output of the angle detection means, an output of the optical displacement sensor, and an output of the movement amount detection means. and signal processing means that simultaneously receives the signals and determines the shape of the surface to be measured.

また、本発明装置は、上記手段のほか、前記θステージ
に原器を設定してθステージの回転軸心の周期的変動量
を検出する回転軸心変動量検出手段と、この回転軸心変
動量検出手段で得られた回転軸心の変動量を用いて被測
定物の測定量を補正する回転軸心変動量補正手段を付加
したものである。
In addition to the above-mentioned means, the apparatus of the present invention also includes rotational axis fluctuation amount detection means for detecting periodic fluctuations in the rotational axis of the θ stage by setting a prototype on the θ stage, and A rotation axis center fluctuation amount correction means is added for correcting the measured amount of the object to be measured using the amount of rotation axis fluctuation amount obtained by the amount detection means.

また、θステージに被測定物を光変位センサと対向する
方向へ移動させるX′Xステージ設け、このX′Xステ
ージ移動させて被測定物の曲率中心とθステージの回転
中心とを一致させる構成を備えたものである。
In addition, the θ stage is provided with an X'X stage that moves the object to be measured in a direction facing the optical displacement sensor, and the X'X stage is moved to align the center of curvature of the object to be measured with the center of rotation of the θ stage. It is equipped with the following.

また、θステージに、被測定物の曲率中心と被測定面の
中心とを結ぶ線を回転軸心として被測定物を回転させる
αステージを設けている。
Further, the θ stage is provided with an α stage that rotates the object to be measured about a line connecting the center of curvature of the object to be measured and the center of the surface to be measured as the rotation axis.

さらに、光変位センサの出力にオートフォーカス回路を
設け、この光変位センサの出力状態に応じてXステージ
を介して光変位センサを移動させることにより、常に被
測定面から所定距離に光変位センサを設定する構成を設
けたものである。
Furthermore, by providing an autofocus circuit for the output of the optical displacement sensor and moving the optical displacement sensor via the X stage according to the output state of the optical displacement sensor, the optical displacement sensor is always kept at a predetermined distance from the surface to be measured. It has a configuration to set it.

(作用) 従って、本発明装置は、以上のような手段とすることに
より、θステージ上に被測定物を保持した後、基準角度
位置から回転ステージを介して被測定面を回転させなが
ら角度検出手段により回転角度を順次検出する。一方、
光変位センサから被測定面の凹凸信号を取出すと共に前
記移動量検出手段からセンサの位置信号を取り出す。そ
して、前記角度検出手段によって得られた回転角度に基
づいて前記光変位センサの出力および移動量検出手段の
出力を取込んで被測定面の形状を求めるものである。
(Function) Therefore, by using the above-described means, the device of the present invention, after holding the object to be measured on the θ stage, detects the angle while rotating the surface to be measured from the reference angle position via the rotation stage. The rotation angle is sequentially detected by the means. on the other hand,
An unevenness signal of the surface to be measured is taken out from the optical displacement sensor, and a sensor position signal is taken out from the movement amount detection means. Then, based on the rotation angle obtained by the angle detection means, the output of the optical displacement sensor and the output of the movement amount detection means are taken in to determine the shape of the surface to be measured.

また、本装置は、θステージの回転軸心に回転角度に依
存した周期的な変動がある場合、θステージで原器を保
持して各回転角度に対する光変位センサの出力と移動量
検出手段の出力とを取込んでメモリテーブルに記憶して
補正値とし、引き続き、被測定物の測定データを補正す
ることにより、θステージの回転軸心の変動量の影響を
除去する。
In addition, when there is a periodic fluctuation in the rotation axis of the θ stage depending on the rotation angle, this device holds the prototype on the θ stage and detects the output of the optical displacement sensor and the movement amount detection means for each rotation angle. By taking in the output and storing it in a memory table as a correction value, and subsequently correcting the measurement data of the object to be measured, the influence of the amount of variation in the rotation axis of the θ stage is removed.

(実施例) 以下、本発明装置の一実施例について第1図ないし第5
図を参照して説明する。第1図は機構部分を模式的に表
わした非球面形状測定装置の全体構成図、第2図は被測
定物の保持機構を示す断面図、第3図(a)は装置の機
構部分をより具体的に示した正面図、同図(b)はその
上面図、第4図は被測定面の変化と光度位置センサの受
光位置との関係図、第5図は光変位センサと移動量検出
手段との関係を説明する図である。
(Example) Hereinafter, FIGS. 1 to 5 will explain an example of the apparatus of the present invention.
This will be explained with reference to the figures. Fig. 1 is an overall configuration diagram of the aspherical surface shape measuring device schematically showing the mechanical part, Fig. 2 is a sectional view showing the holding mechanism of the object to be measured, and Fig. 3 (a) shows a closer view of the mechanical part of the device. A detailed front view, Figure (b) is a top view, Figure 4 is a diagram of the relationship between changes in the surface to be measured and the light receiving position of the luminous intensity position sensor, and Figure 5 is a diagram of the optical displacement sensor and movement amount detection. It is a figure explaining the relationship with a means.

これらの図において10はフレーム11上に回転可能に
載置されたエアベアリング内蔵式のθステージである。
In these figures, 10 is a θ stage with a built-in air bearing that is rotatably mounted on a frame 11.

このθステージ10は、フレーム11の下部に取付けら
れたパルスモータ12が回転すると、パルスモータ11
の回転軸に直結されたプーリ13からベルト等の回転伝
達部材14を通り、前記θステージ10よりフレーム1
1内を貫通してフレーム下側に伸びる回転軸15に直結
されたプーリ16に伝達されて所定角度ずつ、あるいは
連続的に回転する構成となっている。前記回転軸15に
はカップリング17を介して回転角度検出手段の一部を
構成するロータリエンコーダ18が設けられている。1
9はθステージ10の出力軸系である。
When the pulse motor 12 attached to the lower part of the frame 11 rotates, the θ stage 10 rotates.
The frame 1 passes from the pulley 13 directly connected to the rotating shaft of the
The transmission is transmitted to a pulley 16 that is directly connected to a rotating shaft 15 that penetrates through the inside of the frame and extends to the lower side of the frame, and rotates at a predetermined angle or continuously. A rotary encoder 18, which constitutes a part of rotation angle detection means, is provided on the rotation shaft 15 via a coupling 17. 1
9 is an output shaft system of the θ stage 10.

20はθステージ10の出力軸系19に被測定物21を
装着するための被測定物保持機構である。
Reference numeral 20 denotes an object holding mechanism for mounting the object 21 on the output shaft system 19 of the θ stage 10.

すなわち、この被測定物21は、θステージ10の回転
時、保持機構20により被測定面中央部の曲率中心を回
転中心として回転するように保持機構20に保持されて
いる。この保持機構20は、例えば第2図に示すように
出力軸系19の一側部に被螺子部22aを外周に設けた
保持基体22が取付けられている。この保持基体22の
前面側には被測定物21の外周縁部を挟持してなる互い
に螺合関係にある一対のマウ°ント23.24が配置さ
れ、そのうち内側に位置するマウント23と係合状態に
ある環状外体25を前記保持基体22の被螺子部22′
へ螺合させることにより、被測定物21を出力軸系19
に所定の位置関係をもって固定している。なお、保持基
体22.マウント23.24の形状、大きさ等は被測定
物21の外径および大きさ等に応じて種々変更して用い
る。
That is, the object to be measured 21 is held by the holding mechanism 20 so as to rotate about the center of curvature at the center of the surface to be measured by the holding mechanism 20 when the θ stage 10 rotates. In this holding mechanism 20, for example, as shown in FIG. 2, a holding base 22 having a threaded portion 22a provided on the outer periphery is attached to one side of the output shaft system 19. A pair of mounts 23 and 24 are disposed on the front side of the holding base 22 and are screwed together, sandwiching the outer peripheral edge of the object to be measured 21, and are engaged with the mount 23 located inside. The annular outer body 25 in the state is attached to the threaded portion 22' of the holding base 22.
By screwing the object to be measured 21 to the output shaft system 19
are fixed in a predetermined positional relationship. Note that the holding base 22. The shape, size, etc. of the mounts 23, 24 are varied depending on the outer diameter, size, etc. of the object 21 to be measured.

30は前記フレーム11上にあって前記被測定物21の
被測定面と対向する方向に移動するXステージであって
、このXステージ30上には被測定面と対向する様に光
変位センサ31が設置されている。32はXステージ3
0を移動させるモータである。
Reference numeral 30 denotes an X stage that is located on the frame 11 and moves in a direction facing the surface to be measured of the object to be measured 21, and an optical displacement sensor 31 is mounted on the X stage 30 so as to face the surface to be measured. is installed. 32 is X stage 3
This is a motor that moves 0.

前記光変位センサ31は第3図(a)に示すようにその
前面側が上下方向にV字面を形成しており、そのV字面
の一方面部31aからレーザ光を照射し、被測定物21
の被測定面からの反射光および散乱光を他方面部31b
で受光する例えばレーザ光をプローブとする非接触セン
サであって、第4図に示すように三角測量法の原理に基
づいて被測定面21aの凹凸状態に伴う距離を検出する
機能を持っている。すなわち、光変位センサ31は被測
定面21aと光変位センサ31端面との基準距離が所定
距離ノ0のとき例えば出力を零とすると、被測定面21
aが図示点線の如く距離子ノ〜−ノだけ位置を変えたと
き、それに応じてリニアに+M〜−Mを出力する機能を
持っている。
As shown in FIG. 3(a), the optical displacement sensor 31 has a front side forming a V-shaped surface in the vertical direction, and a laser beam is irradiated from one side 31a of the V-shaped surface to
The reflected light and scattered light from the surface to be measured are transferred to the other surface portion 31b.
It is a non-contact sensor that uses, for example, a laser beam as a probe, and has the function of detecting the distance due to the unevenness of the surface to be measured 21a based on the principle of triangulation, as shown in FIG. . That is, when the reference distance between the surface to be measured 21a and the end surface of the optical displacement sensor 31 is a predetermined distance of 0, the optical displacement sensor 31 outputs zero, for example, the surface to be measured 21
It has a function of linearly outputting +M to -M when the position of a is changed by the distance indicator no to -no as shown by the dotted line in the figure.

33はXステージ30のX方向移動量を検出する移動量
検出手段であって、これはXステージ30上に固定され
その一側面に例えば距離の意味を持つバーを所定間隔ご
とに表示するX方向移動信号発生体33aと、Xステー
ジ30とは別体的に設けられX方向の移動量を検出する
X方向移動量検出体33bとで構成されている。
Reference numeral 33 denotes a movement amount detection means for detecting the amount of movement of the X stage 30 in the X direction. It is composed of a movement signal generator 33a and an X-direction movement amount detector 33b that is provided separately from the X stage 30 and detects the amount of movement in the X direction.

なお、光変位センサ31と移動量検出手段33の位置関
係は次のようになっている。光変位センサ31のレーザ
光の照射光軸と受光軸とで作る平面上にθステージ10
の出力軸系19が位置する様に配置され、光変位センサ
31が基準距離ノ。
The positional relationship between the optical displacement sensor 31 and the movement amount detection means 33 is as follows. The θ stage 10 is placed on a plane formed by the irradiation optical axis and the light receiving axis of the laser beam of the optical displacement sensor 31.
The output shaft system 19 is positioned such that the optical displacement sensor 31 is located at the reference distance.

にあって出力変位が零となる点aOの軌跡は出力軸系1
9(z)に対して直角方向に移動する。また、2軸19
と点aOとの間に距離isがあるので、この距離相当分
を移動距離として予め移動量検出手段33側にセットし
ておけば、光変位センサ31の出力と移動量検出手段3
3の出力とを加算すれば、被測定物21の形状を表現す
ることができる。
The locus of point aO where the output displacement becomes zero is output shaft system 1.
9(z). In addition, two-axis 19
Since there is a distance is between the point aO and the point aO, if the distance equivalent to this distance is set in advance on the movement amount detection means 33 side as the movement distance, the output of the optical displacement sensor 31 and the movement amount detection means 3 can be set in advance.
By adding the outputs of 3 and 3, the shape of the object to be measured 21 can be expressed.

なお、第1図において41はコントローラ、42はコン
トローラ41から駆動指令を受けてパルスモータ12を
駆動するドライバ、43はロークリエンコーダ18の出
力を所要とする角度信号に変換する角度検出回路、44
は手動操作または外部からの信号を受けてドライバ45
を介してX方向移動用モータ32を駆動するコントロー
ラである。46は信号処理手段であって、角度検出回路
43の出力、光変位センサ31の出カッ1およびX方向
移動量検出体33bの出力12とを同時に取込み、回転
角度ごとに()1+J!2)の演算処理を行い、かつ、
この演算処理結果と曲率半径Rとから形状偏差を求める
演算処理等を行い、この演算処理された形状偏差は出力
装置に出力される。
In FIG. 1, 41 is a controller, 42 is a driver that receives a drive command from the controller 41 and drives the pulse motor 12, 43 is an angle detection circuit that converts the output of the row encoder 18 into a required angle signal, and 44
The driver 45 operates manually or receives an external signal.
This is a controller that drives the X-direction movement motor 32 via the X-direction moving motor 32. 46 is a signal processing means that simultaneously takes in the output of the angle detection circuit 43, the output 1 of the optical displacement sensor 31, and the output 12 of the X-direction movement amount detector 33b, and for each rotation angle ()1+J! 2) performs the calculation process, and
A calculation process is performed to obtain a shape deviation from this calculation result and the radius of curvature R, and the calculated shape deviation is output to an output device.

次に、以上のように構成された装置の動作について説明
する。先ず、θステージ10の出力軸系19に保持基体
22を固定させた後、この保持基体22にマウント23
.24および外体25等で保持された被測定物21を保
持する。このとき。
Next, the operation of the apparatus configured as above will be explained. First, after fixing the holding base 22 to the output shaft system 19 of the θ stage 10, the mount 23 is attached to this holding base 22.
.. The object to be measured 21 is held by an outer body 24, an outer body 25, and the like. At this time.

被測定面21aの曲率中心がθステージ10の回転中心
に一致するように被測定物21が取付けられる。
The object to be measured 21 is mounted so that the center of curvature of the surface to be measured 21a coincides with the center of rotation of the θ stage 10.

引続き、コントローラ44から駆動指令を出力してX方
向移動用モータ32を駆動することにより、Xステージ
30をX方向に移動する。このXステージ30のX方向
移動によって光変位センサ31の出力が零となる点ao
+つまり光変位センサ31を基準位置に設定する。
Subsequently, the X stage 30 is moved in the X direction by outputting a drive command from the controller 44 and driving the X direction movement motor 32. A point ao where the output of the optical displacement sensor 31 becomes zero due to the movement of the X stage 30 in the X direction.
+That is, the optical displacement sensor 31 is set to the reference position.

しかる後、コントローラ41から駆動指令を出力してパ
ルスモータ12を駆動することにより、基準角度位置か
らθステージ10を介して被測定物21の被測定面21
gを回転する。このとき、光変位センサ31の7字面部
の一方つまり照射面部31a側からレーザ光が被測定面
21aに照射され、このときの被測定面21aからの反
射光または散乱光を他方の受光面部31b側で受光する
Thereafter, by outputting a drive command from the controller 41 and driving the pulse motor 12, the surface to be measured 21 of the object to be measured 21 is moved from the reference angular position via the θ stage 10.
Rotate g. At this time, the laser beam is irradiated onto the surface to be measured 21a from one of the 7-shaped surfaces of the optical displacement sensor 31, that is, from the irradiation surface portion 31a side, and the reflected light or scattered light from the surface to be measured 21a at this time is transferred to the other light receiving surface portion 31b. Receive light from the side.

このθステージ10の回転時、信号処理手段46は、ロ
ークリエンコーダ18および角度検出回路43から成る
回転角度検出手段からθステージ10の現在位置θr1
光変位センサ31の出カッ1およびX方向移動量検出体
33bの出カッ、Sを同時に受領してメモリ(図示せず
)に記憶し、この一連の処理をθステージ10が所定角
度回転する迄続けられる。そして、この信号処理手段4
6においてθステージ10の各回転角度θrごとに()
1+12)の演算を行って被測定面21aの形状データ
を得る。しかる後、各位置θrごとの()、+ノ2)と
曲率半径(基準値)Rとに基づいて形状偏差を求めて出
力装置へ出力する。
During this rotation of the θ stage 10, the signal processing means 46 detects the current position θr1 of the θ stage 10 from the rotation angle detection means composed of the row encoder 18 and the angle detection circuit 43.
The output 1 of the optical displacement sensor 31 and the outputs S and S of the X-direction movement amount detector 33b are simultaneously received and stored in a memory (not shown), and this series of processing is performed until the θ stage 10 rotates by a predetermined angle. I can continue. This signal processing means 4
6, for each rotation angle θr of the θ stage 10 ()
1+12) is performed to obtain shape data of the surface to be measured 21a. Thereafter, the shape deviation is determined based on (), +2) for each position θr and the radius of curvature (reference value) R, and is output to the output device.

従って、以上のような実施例の構成によれば、θステー
ジ10上の保持機構20に保持する被測定物21を、被
測定面21aの曲率中心がθステージ10の回転中心に
一致するように設定し、かつ、光変位センサ31を基準
位置に設定し、この状態でθステージ10を回転させな
がら、その回転角度および光変位センサ31の出力およ
びX方向移動量検出手段の出力を同時に取込むようにし
たので、これらの信号から被測定面21aの形状を容易
に測定でき、しかも原器なしで測定できる。
Therefore, according to the configuration of the embodiment described above, the object to be measured 21 held by the holding mechanism 20 on the θ stage 10 is held such that the center of curvature of the surface to be measured 21a coincides with the center of rotation of the θ stage 10. and set the optical displacement sensor 31 to the reference position, and while rotating the θ stage 10 in this state, simultaneously capture the rotation angle, the output of the optical displacement sensor 31, and the output of the X-direction movement amount detection means. As a result, the shape of the surface to be measured 21a can be easily measured from these signals, and can be measured without using a prototype.

また、光変位センサ31等の出力をそのまま用いて被測
定面21aの形状を得ることができ、信号処理が非常に
簡単になる。また、動体的な機構はθステージ10およ
びXステージ30のみであり、かつ、光学的要素が少な
いので、従来の原器無しの装置に比べて機構および光学
系が非常に簡単化できる。また、被測定面21aを回転
させつつ光変位センサ31を用いて三角測量の原理を用
いて測定するので、凸レンズだけでなく、凹レンズであ
っても全周の形状を測定でき、かつ、被測定物21が凹
凸形状体であってもその散乱光を受光して容易に形状を
測定できる。
Furthermore, the shape of the surface to be measured 21a can be obtained using the output of the optical displacement sensor 31 or the like as is, which greatly simplifies signal processing. Furthermore, since the only moving mechanisms are the θ stage 10 and the X stage 30, and there are fewer optical elements, the mechanism and optical system can be significantly simplified compared to conventional devices without prototypes. In addition, since measurement is performed using the principle of triangulation using the optical displacement sensor 31 while rotating the surface 21a to be measured, it is possible to measure the shape of the entire circumference of not only a convex lens but also a concave lens. Even if the object 21 has an uneven shape, its shape can be easily measured by receiving the scattered light.

なお、上記実施例においては、θステージ10上の出力
軸系19に被測定物21を保持する保持機構20を設け
たが、例えば被測定物21の形状。
In the above embodiment, the output shaft system 19 on the θ stage 10 is provided with the holding mechanism 20 that holds the object to be measured 21;

大きさ等によっては被測定物21の曲率中心とθステー
ジ10の回転中心とが一致しない場合がある。かかる場
合には第6図に示すようにθステージ10上に光変位セ
ンサ31と対向する方向X′に移動するX′Xステージ
40設け、このX′スデージ40上に出力軸系19′を
載置する構成とすれば上記曲率中心と回転中心を一致さ
せることができる。具体的には、θステージ10上に中
間部材41を介して長尺の凹状部材42が載置され、こ
の凹状部材42の両片に掛は渡されたねじ体43にブロ
ック44を噛合させる。さらに、このブロック44上に
出力軸系19が設置されている。
Depending on the size, etc., the center of curvature of the object to be measured 21 and the center of rotation of the θ stage 10 may not coincide with each other. In such a case, as shown in FIG. 6, an X'X stage 40 that moves in the direction X' facing the optical displacement sensor 31 is provided on the θ stage 10, and an output shaft system 19' is mounted on this X' stage 40. If the configuration is such that the center of curvature and the center of rotation can be made to coincide with each other. Specifically, an elongated concave member 42 is placed on the θ stage 10 via an intermediate member 41, and a block 44 is engaged with a screw body 43 hooked between both sides of the concave member 42. Furthermore, an output shaft system 19 is installed on this block 44.

従って、このような構成にすれば、人為的または外部か
らモータ等によりねじ体43を時計方向または反時計方
向に回転すれば、ブロック44を介して出力軸系19が
X′方向に移動するので、被測定物21の形状、大きさ
等が変化してもその被測定物21の曲率中心とθステー
ジ10の回転中心とを一致させることが可能である。
Therefore, with this configuration, if the screw body 43 is rotated clockwise or counterclockwise by a motor or the like from the outside, the output shaft system 19 will move in the X' direction via the block 44. Even if the shape, size, etc. of the object to be measured 21 changes, it is possible to make the center of curvature of the object to be measured 21 coincide with the center of rotation of the θ stage 10.

また、θステージ10上にX′Xステージ40設けて被
測定物21をX′方向に移動させるようにしたが、例え
ば第6図に示すように出力軸系19と保持機構20との
間にαステージ50を設け、被測定物21の曲率中心と
被測定物21の中心とを結ぶ線を回転中心として被測定
物21を回転させれば、第7図(a)の図示矢印方向の
駆動に対して同図(b)のような走査線で被測定面21
aを走査することが可能であり、それだけ測定範囲を拡
大できる。
Further, an X'X stage 40 is provided on the θ stage 10 to move the object to be measured 21 in the X' direction, but for example, as shown in FIG. If the α stage 50 is provided and the object to be measured 21 is rotated with the line connecting the center of curvature of the object to be measured 21 and the center of the object to be measured 21 as the rotation center, the object to be measured 21 can be driven in the direction of the arrow shown in FIG. 7(a). On the other hand, the surface to be measured 21 is scanned with scanning lines as shown in FIG.
a can be scanned, and the measurement range can be expanded accordingly.

更に、他の実施例として、ロータリエンコーダ18、角
度検出回路43から成る角度検出手段を用いてθステー
ジ10が所定の回転角度に達したときに、第7図の実施
例に基づいてαステージ50を回転させるようにすれば
、第8図のような走査線で被測定物21を走査すること
ができ、第7図の実施例と同様に被測定物21の走査範
囲を拡大できる。なお、このとき、αステージ50の回
転角度を回転検出器51で検出し、この角度検出信号を
前記信号処理手段46に送出する必要がある。
Furthermore, as another embodiment, when the θ stage 10 reaches a predetermined rotation angle using an angle detection means consisting of the rotary encoder 18 and the angle detection circuit 43, the α stage 50 is adjusted based on the embodiment of FIG. By rotating the object 21, the object 21 can be scanned with scanning lines as shown in FIG. 8, and the scanning range of the object 21 can be expanded as in the embodiment shown in FIG. Note that at this time, it is necessary to detect the rotation angle of the α stage 50 with the rotation detector 51 and send this angle detection signal to the signal processing means 46.

次に、同じく他の実施例としてオートフォーカスの機能
を設けた例について述べる。一般に、被測定物21の表
面形状が第9図に示すように比較的真円に近く、かつ、
被測定物21の曲率半径とθステージ10の回転中心と
が一致している場合、θステージ10を回転させても被
測定物21の変動が少ないので、オートフォーカスは不
要である。
Next, as another embodiment, an example in which an autofocus function is provided will be described. Generally, the surface shape of the object to be measured 21 is relatively close to a perfect circle as shown in FIG. 9, and
When the radius of curvature of the object to be measured 21 and the center of rotation of the θ stage 10 match, there is little variation in the object to be measured 21 even when the θ stage 10 is rotated, so autofocus is not necessary.

しかし、被測定物21の表面形状が設計値に対して大幅
にずれて凹凸に変化する場合や被測定面の曲率中心とθ
ステージの回転中心とがずれてセットされている場合、
第10図の如く測定ポイントの位置が円周方向にずれ、
また高感度の変位センサの4−1定範囲を飛び出す。
However, if the surface shape of the object to be measured 21 deviates significantly from the design value and becomes uneven, or if the center of curvature of the surface to be measured and θ
If the center of rotation of the stage is set out of alignment,
As shown in Figure 10, the position of the measurement point shifts in the circumferential direction,
Also, it jumps out of the 4-1 fixed range of the highly sensitive displacement sensor.

そこで、かかる被測定物21の形状測定に際してはオー
トフォーカスの機能が必要であり、以下。
Therefore, when measuring the shape of the object to be measured 21, an autofocus function is required, as described below.

第11図および第12図を参照して説明する。なお、第
12図において第1図と同一部分には同一符号を付して
その詳しい説明は省略する。すなわち、このオートフォ
ーカス手段は、光変位センサ31の出力側とコントロー
ラ44との間にオートフォーカス回路60を設け、被測
定物21の表面形状が第11図の実線から点線に変化し
たとき、光変位センサ31の出力と予め定めた設定値S
vとを比較し、この偏差信号をコントローラ44へ送出
し、Xステージ30を後退させて第11図の点線位置に
レーザ光を照射させてセンサ出力を設定値Svに合せる
ことにより、測定ポイントの位置ずれを無くする構成で
ある。
This will be explained with reference to FIGS. 11 and 12. In FIG. 12, the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. That is, this autofocus means includes an autofocus circuit 60 between the output side of the optical displacement sensor 31 and the controller 44, and when the surface shape of the object to be measured 21 changes from the solid line to the dotted line in FIG. Output of displacement sensor 31 and predetermined setting value S
The deviation signal is sent to the controller 44, the X stage 30 is moved backward, and the laser beam is irradiated to the dotted line position in FIG. 11 to adjust the sensor output to the set value Sv. This configuration eliminates positional deviation.

従って、かかる実施例の構成によれば、オートフォーカ
ス回路60を設け、光変位センサ3°1の出力を常に所
定の値になるようにXステージ3゜を移動制御すること
により、光変位センサ31を被測定面21aから常に所
定の位置にセットして被測定面21aの状態を測定でき
、特に表面形状の凹凸の変化が大きい場合や被測定物の
曲率中心とθステージの回転中心がずれている場合でも
正確に被測定物21の形状を測定できる。
Therefore, according to the configuration of this embodiment, an autofocus circuit 60 is provided, and by controlling the movement of the X stage 3° so that the output of the optical displacement sensor 3°1 always becomes a predetermined value, the optical displacement sensor 31 The condition of the surface to be measured 21a can be measured by always setting it at a predetermined position from the surface to be measured 21a, especially when there are large changes in the unevenness of the surface shape or when the center of curvature of the object to be measured and the center of rotation of the θ stage are misaligned. The shape of the object to be measured 21 can be accurately measured even when the object 21 is present.

次に、同じく本発明の他の実施例について第12図ない
し第15図を参照して説明する。通常。
Next, another embodiment of the present invention will be described with reference to FIGS. 12 to 15. usually.

θステージ10の回転軸心の回転角度に依存した周期的
な変動は、一般に被測定物21の取付は高さHが低い場
合は無視できる値となるが、Hが高くなるにしたがって
その変動量dが大きくなり、いわゆるゴマスリ現象が発
生し、現実のユーザーの要望としてサブミクロン単位の
精度を必要としている場合にはそのゴマスリ現象が無視
できない。
Periodic fluctuations depending on the rotation angle of the rotation axis of the θ stage 10 are generally negligible when the mounting height H of the object to be measured 21 is low, but as H becomes higher, the amount of fluctuation decreases. When d becomes large, a so-called scratching phenomenon occurs, which cannot be ignored when submicron precision is required by actual users.

そこで、本実施例では、θステージlOの出力軸系19
に真円度のでている原器70を取付は可能とし、また信
号処理手段46には原器70を取付けたときの収集デー
タを格納するためのメモリテーブル71が接続され、か
つ、信号処理手段46には機能的にはθステージ10に
原器70を装着したときの前記角度検出手段の出力、前
記光変位センサ31の出力および前記X方向移動量検出
体33bの出力を取込んでメモリテーブル71に格納す
る回転軸心変動量検出手段72と、θステージ10に被
測定物21を装着し同様に所要とする信号を取得する測
定面変位量取得手段73と、メモリテーブル71の格納
データを用いて変動量を補正する回転軸心変動量補正手
段75とを持ったものである。
Therefore, in this embodiment, the output shaft system 19 of the θ stage lO is
It is possible to attach a prototype 70 that shows roundness to the signal processing means 46, and a memory table 71 for storing data collected when the prototype 70 is attached is connected to the signal processing means 46. Functionally, the output of the angle detection means when the prototype 70 is mounted on the θ stage 10, the output of the optical displacement sensor 31, and the output of the X-direction movement amount detector 33b are stored in the memory table 46. 71 , a measuring surface displacement amount obtaining means 73 which attaches the object 21 to the θ stage 10 and similarly obtains the required signal, and stores the data stored in the memory table 71 . The rotary shaft center fluctuation amount correcting means 75 is used to correct the fluctuation amount.

従って、以上のような構成にすれば、先ず、θステージ
10の出力軸系19に原器70を取付けた後、前述同様
にθステージ10を回転させ、そのときの回転角度をロ
ータリエンコーダ18を介して角度検出回路43で所要
の角度信号に変換した後信号処理手段46へ送出する。
Therefore, with the above configuration, first, after attaching the prototype 70 to the output shaft system 19 of the θ stage 10, the θ stage 10 is rotated in the same manner as described above, and the rotation angle at that time is determined by the rotary encoder 18. The angle detection circuit 43 converts the signal into a desired angle signal, and then sends it to the signal processing means 46.

一方、光変位センサ31から原器70の参照面にレーザ
光を照射し、その参照面からの反射光をセンサ受光面で
受光する。そして、信号処理手段46の回転軸心変動量
検出手段72において角度検出手段から出力される回転
角度信号、光変位センサ31の出力およびX方向移動量
検出体33bの出力を同時に取込んで順次メモリテーブ
ル71に格納していく。。
On the other hand, the reference surface of the prototype 70 is irradiated with laser light from the optical displacement sensor 31, and the light reflected from the reference surface is received by the sensor light receiving surface. Then, the rotational angle signal outputted from the angle detection means, the output of the optical displacement sensor 31, and the output of the X-direction movement amount detection body 33b are simultaneously captured in the rotational axis fluctuation amount detection means 72 of the signal processing means 46 and sequentially stored. It is stored in table 71. .

その結果、メモリテーブル71にはθステージ10の回
転角度θに対して第15図のような変動量d−f (θ
)が得られる。
As a result, the memory table 71 stores the amount of variation d−f (θ
) is obtained.

しかる後、θステージ10から原器70を取外し、θス
テージ10の出力軸系19に保持機構20を介して被測
定物21を取付ける。しかる後、測定面変位量取得手段
73において前述同様にθステージ10の回転角度、光
変位センサ31の出力およびX方向移動量検出体33b
の出力を同時に取込み、この処理を各回転角度ごとに順
次繰返しながら所要とする信号を収集していく。そして
、各回転角度ごとに(、il’x十12)なる演算を行
う。
Thereafter, the prototype 70 is removed from the θ stage 10, and the object to be measured 21 is attached to the output shaft system 19 of the θ stage 10 via the holding mechanism 20. Thereafter, the measurement surface displacement amount acquisition means 73 acquires the rotation angle of the θ stage 10, the output of the optical displacement sensor 31, and the X-direction movement amount detector 33b in the same manner as described above.
This process is sequentially repeated for each rotation angle to collect the required signals. Then, the calculation (, il' x +12) is performed for each rotation angle.

その後、回転軸心変動量補正手段74においてその演算
結果のデータからメモリテーブル71に格納されている
原器70のデータを減算しθステージ10の回転軸心の
変動量を除去した後、被測定物21の曲率半径Rから形
状偏差を求め、被測定物21の被測定面21aの形状を
得るものである。
Thereafter, the data of the prototype 70 stored in the memory table 71 is subtracted from the data of the calculation result in the rotational axis fluctuation amount correction means 74 to remove the fluctuation amount of the rotational axis of the θ stage 10. The shape deviation is obtained from the radius of curvature R of the object 21, and the shape of the surface 21a to be measured of the object 21 to be measured is obtained.

従って、この実施例の構成によれば、θステージ10の
回転軸心に変動が生じていても、その軸心の変動の影響
を除去して被測定物21の被測定面21aの形状を正確
に測定できる。
Therefore, according to the configuration of this embodiment, even if the rotational axis of the θ stage 10 fluctuates, the influence of the fluctuation of the axis can be removed and the shape of the surface to be measured 21a of the object to be measured 21 can be accurately determined. can be measured.

なお、本実施例においては必要に応じて上述した種々の
他の実施例例えばθステージ10上にX′ステージ40
を設け、被測定物21の形状。
In addition, in this embodiment, various other embodiments described above may be used as needed, such as the X' stage 40 on the θ stage 10.
and the shape of the object to be measured 21.

大きさに応じて被測定物21の曲率中心とθステージ1
0の回転中心とを一致させるようにX′ステージ40を
移動させる構成としてもよい。その他、本発明はその要
旨を逸脱しない範囲で種々変形して実施できる。
The center of curvature of the object to be measured 21 and the θ stage 1 depending on the size.
The configuration may be such that the X' stage 40 is moved so that the center of rotation of 0 coincides with the center of rotation. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

(発明の効果) 以上詳記したように本発明によれば、次に述べるような
種々の効果を奏する。
(Effects of the Invention) As detailed above, the present invention provides various effects as described below.

請求項1においては、被測定物を保持して被測定面中央
部の曲率中心を回転中心としてθステージを回転させな
がら、そのときの回転角度信号。
In claim 1, the rotation angle signal is obtained while holding the object to be measured and rotating the θ stage about the center of curvature at the center of the surface to be measured.

光変位センサの出力およびX方向移動量検出手段の出力
を取込んで被測定面の形状を測定するので、複雑な機構
および光学系を必要とせず、かつ、原器を用いることな
く被測定物の被測定面の形状を測定でき、かつ、被測定
面が粗面であっても正確に形状を測定できる。
Since the shape of the surface to be measured is measured by taking in the output of the optical displacement sensor and the output of the X-direction movement amount detection means, the shape of the surface to be measured is measured without the need for a complicated mechanism or optical system, and without using a prototype. The shape of the surface to be measured can be measured, and the shape can be accurately measured even if the surface to be measured is a rough surface.

また、請求項2では、θステージに原器を取付けて所要
とするデータを取得した後、θステージに被測定物を取
付けて同様に所要とするデータを取得する。その後、被
測定物設置のデータから原器設置のデータを減算して被
測定面の形状を得るようにしたので、θステージの回転
軸心に変動が生じていれもその影響を受けることなく被
測定面の形状を測定できる。
Further, in a second aspect of the present invention, after the prototype is attached to the θ stage to acquire the required data, the object to be measured is attached to the θ stage and the required data is similarly acquired. After that, the shape of the surface to be measured was obtained by subtracting the data for the prototype installation from the data for the installation of the object to be measured, so even if there were fluctuations in the rotation axis of the θ stage, the data could not be affected. Can measure the shape of the measurement surface.

また、請求項3では、θステージ上に被測定物対向側に
移動するX′ステージを介して被測定物を載置したので
、被測定物の形状、大きさ等に応じて被測定物の曲率中
心が変化しても、この曲率中心とθステージの回転中心
を一致させることが可能であり、適宜な形状および大き
さの被測定物の被測定面の形状を測定できる。
In addition, in claim 3, since the object to be measured is placed on the θ stage via the X' stage that moves toward the side opposite to the object to be measured, the Even if the center of curvature changes, it is possible to match the center of curvature with the center of rotation of the θ stage, and the shape of the surface to be measured of an object to be measured having an appropriate shape and size can be measured.

さらに、請求項4においては、θステージとは別にこの
θステージの回転方向と直交する方向に被測定物を回転
することにより、種々の走査角度で被測定物の被測定面
を走査して測定できる。
Furthermore, in claim 4, by rotating the object to be measured in a direction perpendicular to the rotational direction of the θ stage separately from the θ stage, the surface to be measured of the object to be measured is scanned at various scanning angles. can.

また、請求項5においては、光変位センサの出力が所定
値となる様に光変位センサを所定方向に移動させるオー
トフォーカス手段を設けたので、被測定面が大きく凹凸
に変化している場合や被測定物の曲率中心とθステージ
の回転中心がずれている場合でも常に測定ポイントの位
置ずれを生じることなく被測定面の形状を正確に測定で
きる。
Further, in claim 5, an autofocus means is provided for moving the optical displacement sensor in a predetermined direction so that the output of the optical displacement sensor becomes a predetermined value, so that when the surface to be measured is greatly uneven, Even if the center of curvature of the object to be measured and the center of rotation of the θ stage are misaligned, the shape of the surface to be measured can always be accurately measured without causing positional deviation of the measurement point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明に係わる非球面形状?#1
定装置の一実施例を説明するために示したもので、第1
図は機構部分を模式的に表わした本発明装置の全体構成
図、第2図は被測定物を保持する保持機構の断面図、第
3図(a)、(b)は装置の機構部分をより具体的に示
す正面図および上面図、第4図は被測定面の変化と光変
位センサの受光位置関係を説明する図、第5図は光変位
センサと移動量検出手段との関係を説明する図、第6図
は本発明装置の他の実施例としての被測定物の駆動機構
図、第7図および第8図は同じく本発明装置の他の実施
例を説明する被測定面の走査例を説明する図、第9図な
いし第11図は同じく本発明装置の他の実施例としての
オートフォーカス手段を説明する図、第12図は本発明
装置のさらに別の装置全体を示す構成図、第13図ない
し第15図は本発明装置の他の実施例としてのθステー
ジの回転軸心の変動量を除去するための説明図である。 10・・・θステージ、12・・・θステージ回転用モ
ータ、18・・・ロークリエンコーダ、19・・・出力
軸系、20・・・保持機構、21・・・被測定物、21
a・・・被測定面、30・・・Xステージ、31・・・
光変位センサ、32・・・X方向移動用モータ、33・
・・X方向移動量検出手段、33a・・・X方向移動信
号発生体、33b・・・X方向移動量検出体、40・・
・X′ステージ、43・・・ねじ体、44・・・コント
ローラ、46・・・信号処理手段、60・・・オートフ
ォーカス回路、70・・・原器、71・・・メモリテー
ブル、72・・・回転軸心変動量検出手段、73・・・
測定面変位量取得手段、74・・・回転軸心変動量補正
手段。 出願人代理人 弁理士 鈴江武彦 第2図 第7図    第8図 第9図 \ 第11図 第12図 第13図 第14図
1 to 5 are aspherical shapes related to the present invention? #1
This is shown to explain one embodiment of the
The figure is an overall configuration diagram of the apparatus of the present invention, schematically showing the mechanical parts. Figure 2 is a sectional view of the holding mechanism that holds the object to be measured. Figures 3 (a) and (b) are the mechanical parts of the apparatus. A more detailed front view and a top view, FIG. 4 is a diagram explaining the relationship between changes in the surface to be measured and the light receiving position of the optical displacement sensor, and FIG. 5 is a diagram explaining the relationship between the optical displacement sensor and the movement amount detection means. FIG. 6 is a diagram of the drive mechanism of the object to be measured as another embodiment of the device of the present invention, and FIGS. Figures 9 to 11 are diagrams illustrating an example, and Figures 9 to 11 are diagrams illustrating autofocus means as another embodiment of the device of the present invention, and Figure 12 is a configuration diagram showing still another overall device of the device of the present invention. , and FIGS. 13 to 15 are explanatory diagrams for removing the variation amount of the rotation axis of the θ stage as another embodiment of the apparatus of the present invention. DESCRIPTION OF SYMBOLS 10... θ stage, 12... θ stage rotation motor, 18... Row encoder, 19... Output shaft system, 20... Holding mechanism, 21... Measured object, 21
a... Surface to be measured, 30... X stage, 31...
Optical displacement sensor, 32...X direction movement motor, 33.
...X direction movement amount detection means, 33a...X direction movement signal generator, 33b...X direction movement amount detector, 40...
- X' stage, 43... Screw body, 44... Controller, 46... Signal processing means, 60... Auto focus circuit, 70... Prototype, 71... Memory table, 72... ...Rotation axis center variation detection means, 73...
Measurement surface displacement amount acquisition means, 74...Rotation axis center fluctuation amount correction means. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 7 Figure 8 Figure 9\ Figure 11 Figure 12 Figure 13 Figure 14

Claims (5)

【特許請求の範囲】[Claims] (1)被測定物(21)を保持して被測定面中央部の曲
率中心を回転中心として回転するθステージ(10)と
、この回転ステージの回転角度を検出する角度検出手段
(18)と、前記被測定物の被測定面と対向して配置さ
れこの被測定物の回転に伴って現われる面の凹凸を検出
する光変位センサ(31)と、この光変位センサを前記
被測定面と対向する回転軸に垂直で回転中心からみて被
測定物の半径方向に移動させるxステージ(30)と、
このxステージの移動量を検出する移動量検出手段(3
3)と、前記角度検出手段の出力、前記光変位センサの
出力および前記移動量検出手段の出力を前記光変位セン
サ検出点の極座標値を得るために同時に受領して前記被
測定面の形状を求める信号処理手段(46)とを備えた
ことを特徴とする非球面形状測定装置。
(1) A θ stage (10) that holds the object to be measured (21) and rotates around the center of curvature at the center of the surface to be measured, and an angle detection means (18) that detects the rotation angle of this rotation stage. , an optical displacement sensor (31) that is arranged opposite to the surface to be measured of the object to be measured and detects unevenness of the surface that appears as the object to be measured rotates; an x-stage (30) that is perpendicular to the rotation axis to move the object to be measured in the radial direction when viewed from the rotation center;
Movement amount detection means (3
3) and simultaneously receiving the output of the angle detection means, the output of the optical displacement sensor, and the output of the movement amount detection means to obtain the polar coordinate value of the detection point of the optical displacement sensor to determine the shape of the surface to be measured. An aspherical surface shape measuring device characterized by comprising: a signal processing means (46) for determining the shape of an aspherical surface.
(2)原器(70)および被測定物(21)を個別に保
持し、これら原器の参照面および被測定物の被測定面中
央部の曲率中心を回転中心として回転するθステージ(
10)と、このθステージの回転角度を検出する角度検
出手段(18)と、前記原器の参照面又は被測定物の被
測定面と対向して配置され原器又は被測定物の回転に伴
って現われる凹凸を検出する光変位センサ(31)と、
この光変位センサを前記原器の参照面又は被測定面と対
向する回転軸に垂直な方向に移動させるxステージと、
このxステージの移動量を検出する移動量検出手段(3
3)と、前記θステージに原器を装着したときの前記角
度検出手段の出力、前記光変位センサの出力および前記
移動量検出手段の出力からθステージの回転軸心の周期
的変動量を取得する回転軸心変動量検出手段(72)と
、前記θステージに被測定物を装着したときの前記角度
検出手段の出力、前記光変位センサの出力および前記移
動量検出手段の出力から被測定物測定面の変位量を取得
する測定面変位量取得手段(73)と、前記回転軸心変
動量検出手段で得られた回転軸心変動量を用いて前記測
定面変位量取得手段で得られた測定面変位量を補正する
回転軸心変動量補正手段(74)とを備えたことを特徴
とする非球面形状測定装置。
(2) A θ stage that holds the prototype (70) and the object to be measured (21) separately and rotates around the reference surface of the prototype and the center of curvature at the center of the surface to be measured of the object to be measured (
10), an angle detection means (18) for detecting the rotation angle of the θ stage, and an angle detection means (18) arranged opposite to the reference surface of the prototype or the surface to be measured of the object to be measured, and adapted to the rotation of the prototype or the object to be measured. an optical displacement sensor (31) that detects unevenness that appears as a result;
an x stage that moves the optical displacement sensor in a direction perpendicular to a rotation axis facing the reference surface or the surface to be measured of the prototype;
Movement amount detection means (3
3) and obtaining the periodic fluctuation amount of the rotation axis of the θ stage from the output of the angle detection means, the output of the optical displacement sensor, and the output of the movement amount detection means when the prototype is attached to the θ stage. The measured object is detected from the output of the angle detecting means, the output of the optical displacement sensor, and the output of the movement amount detecting means when the measured object is mounted on the θ stage. Measurement surface displacement amount acquisition means (73) for acquiring the displacement amount of the measurement surface, and rotational axis fluctuation amount obtained by the rotational axis fluctuation amount detection means. An aspherical surface shape measuring device characterized by comprising: a rotation axis center fluctuation amount correcting means (74) for correcting a measurement surface displacement amount.
(3)θステージ(10)上に原器(70)又は被測定
物(21)を直線移動させるx′ステージを設け、被測
定物の曲率中心と前記θステージの回転中心を一致させ
る様に移動させるものである請求項1または請求項2記
載の非球面形状測定装置。
(3) An x' stage is provided on the θ stage (10) to linearly move the prototype (70) or the object to be measured (21), so that the center of curvature of the object to be measured and the center of rotation of the θ stage are aligned. The aspherical shape measuring device according to claim 1 or 2, wherein the aspherical shape measuring device is moved.
(4)被測定物(21)を保持する手段に、被測定物の
曲率中心と被測定面の中心とを結ぶ線を回転軸心として
被測定物を回転するαステージ(50)を設けたもので
ある請求項1記載の非球面形状測定装置。
(4) The means for holding the object to be measured (21) is provided with an α stage (50) that rotates the object to be measured about a line connecting the center of curvature of the object to be measured and the center of the surface to be measured as the rotation axis. The aspherical shape measuring device according to claim 1.
(5)前記光変位センサ(31)の出力が所定の値とな
るように前記xステージ(30)を駆動制御し前記光変
位センサを移動させるオートフォーカス回路(60)を
設けた請求項1または請求項2記載の非球面形状測定装
置。
(5) An autofocus circuit (60) for driving and controlling the x-stage (30) to move the optical displacement sensor so that the output of the optical displacement sensor (31) becomes a predetermined value is provided. The aspherical shape measuring device according to claim 2.
JP63074521A 1988-03-30 1988-03-30 Aspherical shape measuring device Expired - Lifetime JPH073331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074521A JPH073331B2 (en) 1988-03-30 1988-03-30 Aspherical shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074521A JPH073331B2 (en) 1988-03-30 1988-03-30 Aspherical shape measuring device

Publications (2)

Publication Number Publication Date
JPH01250008A true JPH01250008A (en) 1989-10-05
JPH073331B2 JPH073331B2 (en) 1995-01-18

Family

ID=13549708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074521A Expired - Lifetime JPH073331B2 (en) 1988-03-30 1988-03-30 Aspherical shape measuring device

Country Status (1)

Country Link
JP (1) JPH073331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115617A (en) * 2020-01-28 2021-08-10 パナソニックIpマネジメント株式会社 Laser processing device and focus control method of laser processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840468A (en) * 1971-01-18 1973-06-14
JPS62157507A (en) * 1985-12-28 1987-07-13 Canon Inc Apparatus for measuring three-dimensional shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840468A (en) * 1971-01-18 1973-06-14
JPS62157507A (en) * 1985-12-28 1987-07-13 Canon Inc Apparatus for measuring three-dimensional shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115617A (en) * 2020-01-28 2021-08-10 パナソニックIpマネジメント株式会社 Laser processing device and focus control method of laser processing device

Also Published As

Publication number Publication date
JPH073331B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
JP2779242B2 (en) Optoelectronic angle measurement system
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
TWI582381B (en) Apparatus and method for geometric measurement of object
CN108981593B (en) Laser triangulation lens center thickness measuring device and measuring method thereof
KR830001843B1 (en) Electro-optic centerline measuring device
CN107990838B (en) Cone mirror and cylindrical mirror surface shape measuring device and measuring method
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
CN103175486A (en) Device and method for splicing interferometry of cylindricity errors
CN110645911A (en) Device and method for obtaining complete outer surface 3D contour through rotary scanning
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
JP5517097B2 (en) Refractive index measuring device and refractive index measuring method
JP3768822B2 (en) 3D measuring device
CN108362225B (en) Measuring device and measuring method for conical mirror cylindrical surface shape
CN113203553A (en) Lens center error measuring system and measuring method
CN109520443B (en) Roll angle measuring method based on combined surface type reference part
JPH01250008A (en) Aspherical shape measuring instrument
CN113340403B (en) Rotating shaft radial vibration measuring method based on circumferential stripes and linear array camera
JPH1194700A (en) Measuring device and method for lens
JPS62147306A (en) Apparatus for measuring shape of round shaft shaped member
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
SU1562691A1 (en) Method and apparatus for determining radii of curvature of spherical surfaces
CN218973430U (en) High-precision surface type measuring system
JP3748479B2 (en) Eccentricity measuring apparatus, eccentricity measuring method, and processing apparatus