[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0125823B2 - - Google Patents

Info

Publication number
JPH0125823B2
JPH0125823B2 JP56066757A JP6675781A JPH0125823B2 JP H0125823 B2 JPH0125823 B2 JP H0125823B2 JP 56066757 A JP56066757 A JP 56066757A JP 6675781 A JP6675781 A JP 6675781A JP H0125823 B2 JPH0125823 B2 JP H0125823B2
Authority
JP
Japan
Prior art keywords
carbonitriding
ammonia
atmosphere
nitrogen
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56066757A
Other languages
Japanese (ja)
Other versions
JPS5729574A (en
Inventor
Guin Bauzu Robaato
Benetsuto Keisu
Furanshisu Sutoratsuton Hooru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BII OO SHII GURUUPU PLC ZA
Original Assignee
BII OO SHII GURUUPU PLC ZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BII OO SHII GURUUPU PLC ZA filed Critical BII OO SHII GURUUPU PLC ZA
Publication of JPS5729574A publication Critical patent/JPS5729574A/en
Publication of JPH0125823B2 publication Critical patent/JPH0125823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は金属の熱処理方法に関する。[Detailed description of the invention] The present invention relates to a method for heat treating metals.

日常商業的に使用されている一つの熱処理方法
として低炭素鋼の浸炭窒化法がある。もし浸炭窒
化される部材が比較的に薄い横断面を有するもの
である時は、かかる部材は物理的なゆがみが出が
ちである。そこでこのゆがみの問題を避けるため
の浸炭窒化をする代替的な熱処理方法を見出すた
めの試みがなされて来た。かかる方法の一つはフ
エライト浸炭窒化法である。軟鋼部材をフエライ
ト浸炭窒化処理すればゆがみの問題を克服出来、
さらに耐スカツフイング性の表面仕上げが得られ
ることが分つた。フエライト浸炭窒化法の一つの
欠点は、かかる方法によつて処理された後の部材
は耐押込性に乏しくなりがちである。上記したゆ
がみの問題を克服するもう一つの方法はオーステ
イナイト浸炭窒化法である。さらに軟鋼部材はオ
ーステイナイト浸炭窒化処理を加えることによつ
て良好なスカツフイング性および耐押込性を得る
ことができる。
One of the heat treatment methods commonly used commercially is carbonitriding of low carbon steel. If the part to be carbonitrided has a relatively thin cross-section, the part is prone to physical distortion. Attempts have therefore been made to find alternative heat treatment methods for carbonitriding to avoid this distortion problem. One such method is ferrite carbonitriding. If mild steel parts are treated with ferrite carbonitriding, the problem of distortion can be overcome.
It has also been found that a scuffing resistant surface finish can be obtained. One drawback of the ferrite carbonitriding process is that parts treated by this process tend to have poor indentation resistance. Another method to overcome the above-mentioned distortion problem is the austenitic carbonitriding process. Furthermore, by applying austenite carbonitriding treatment to the mild steel member, good scuffing properties and indentation resistance can be obtained.

軟鋼またはその他の低炭素鋼で作られた部材を
オーステイナイト浸炭窒化処理するためには、い
ままでは吸熱ガス発生器によつて生成される雰囲
気にアンモニアを加えて必要な雰囲気を作り出
し、そして出来上つた混合ガス(または別々の二
個のガスの流れ)を処理が行われる炉(通常は密
閉された焼入れ炉)内に供給することによつて行
うのが通常のやり方であつた。しかしながら吸熱
ガス発生器にはある欠点がある。実際に吸熱ガス
発生器は保全が高価であり得るし、さらにかかる
目的のためにしばしば熟練した操作が必要とされ
る。吸熱ガス発生器は一定の耐用年数を有する資
本的設備としては比較的に高価な品目であり、そ
して非常にかさばりかつ熱処理工場としての他の
目的にさもなくば使用出来るであろうようなフロ
アースペースをふさいでしまう。本発明の目的
は、吸熱ガス発生器を使用することなく、鋼また
はその他の鉄金属のオーステイナイト浸炭窒化を
するに適した雰囲気を提供する方法を得ることで
ある。
To austenitic carbonitriding components made of mild steel or other low carbon steels, ammonia has traditionally been added to the atmosphere generated by an endothermic gas generator to create the required atmosphere, and The usual practice was to feed the resulting gas mixture (or two separate gas streams) into the furnace (usually a closed quenching furnace) in which the treatment took place. However, endothermic gas generators have certain drawbacks. Indeed, endothermic gas generators can be expensive to maintain, and furthermore, skilled operation is often required for such purposes. Endothermic gas generators are relatively expensive items of capital equipment with a fixed lifespan, and are very bulky and require floor space that could otherwise be used for other purposes as a heat treatment plant. It blocks the It is an object of the present invention to provide a method for providing an atmosphere suitable for austenitic carbonitriding of steel or other ferrous metals without the use of endothermic gas generators.

本発明の、熱処理炉内で鉄金属をオーステイナ
イト浸炭窒化する方法は、窒素とアンモニアと液
体または気体状のメタノールとを窒素2モルに対
しメタノール2モル及びアンモニア1モルの割合
で熱処理炉に導入することにより、オーステイナ
イト浸炭窒化に適した7〜11容量%の一酸化炭素
と、30〜40容量%の水素と、6〜10容量%の遊離
アンモニアと、1〜2容量%の二酸化炭素と、2
〜3容量%のメタンと、残部の窒素と水蒸気とを
含み且つ−5℃〜+5℃の範囲内の露点を有する
雰囲気を生成させ、この雰囲気を690゜〜750℃ま
での範囲の温度に維持することを特徴とする。前
記メタノールは前記炉内に滴下させてもよいし、
または前記炉に入る前即ち上流で気化させてそし
て前記炉内に蒸気として導入されてもよい。
The method of austenitic carbonitriding of ferrous metal in a heat treatment furnace of the present invention involves adding nitrogen, ammonia, and liquid or gaseous methanol to the heat treatment furnace in a ratio of 2 moles of nitrogen to 2 moles of methanol and 1 mole of ammonia. By introducing 7-11 vol% carbon monoxide, 30-40 vol% hydrogen, 6-10 vol% free ammonia, and 1-2 vol% carbon dioxide suitable for austenite carbonitriding. carbon and 2
Creating an atmosphere containing ~3% by volume methane, the balance nitrogen and water vapor, and having a dew point in the range -5°C to +5°C, and maintaining this atmosphere at a temperature in the range 690° to 750°C It is characterized by The methanol may be dropped into the furnace,
Alternatively, it may be vaporized before entering the furnace, i.e. upstream, and introduced into the furnace as a vapor.

一般に前記工程で使用される窒素は液体の状態
で熱絶縁された容器内に貯蔵されそして炉の上流
で気化させられる。
Generally, the nitrogen used in the process is stored in a thermally insulated container in liquid form and vaporized upstream of the furnace.

前記炉内で前記メタノールは分解しそして窒
素、水素、一酸化炭素、二酸化炭素、水蒸気およ
びメタンからなる混合ガスが形成される。その上
に前記アンモニアの全部ではないが大部分が分解
して窒素と水素とを形成する。そこで前記炉の雰
囲気は前記容量%で示した割合の窒素、水素、一
酸化炭素、二酸化炭素、水蒸気、メタンおよびア
ンモニアを含む。かかる雰囲気は例えば密閉され
た700℃にされた焼入れ炉内に、1時間当り120立
方フイート(3.4リツトル)の窒素、1時間当り
60立方フイート(1.7リツトル)のアンモニアお
よび1時間2リツトルのメタノール(液体として
計量)を導入することによつて形成することがで
きる。一実施例として発明者は、36容量%の水素
と、9容量%の一酸化炭素と、8.5容量%のアン
モニアと、2.6容量%のメタンと、1.3容量%の二
酸化炭素と、残余の窒素と、からなり、−2℃か
ら+2℃の範囲の露点を有する炉雰囲気が生成さ
れたことを確認した。所望ならば炉内の遊離アン
モニアの割合は解離用ビユレツトを使用して制御
できる。
In the furnace the methanol decomposes and a gas mixture consisting of nitrogen, hydrogen, carbon monoxide, carbon dioxide, water vapor and methane is formed. Additionally, most, if not all, of the ammonia decomposes to form nitrogen and hydrogen. The atmosphere of the furnace then contains nitrogen, hydrogen, carbon monoxide, carbon dioxide, water vapor, methane and ammonia in the proportions indicated in volume %. Such an atmosphere may be, for example, 120 cubic feet (3.4 liters) of nitrogen per hour in a closed quenching furnace at 700°C.
It can be formed by introducing 60 cubic feet (1.7 liters) of ammonia and 2 liters of methanol (measured as a liquid) for one hour. As an example, the inventors may combine 36% by volume hydrogen, 9% by volume carbon monoxide, 8.5% by volume ammonia, 2.6% by volume methane, 1.3% by volume carbon dioxide, and the balance nitrogen. , and it was confirmed that a furnace atmosphere having a dew point in the range of -2°C to +2°C was generated. If desired, the proportion of free ammonia in the furnace can be controlled using a dissociating pellet.

一般に浸炭窒化される部材は690℃から750℃の
間の温度にある前記雰囲気内で2時間の間保持さ
れてもよい。この時間の間に比較的に薄い白色の
外表層が、処理される部材(またはその他のワー
ク)に形成される。この外表層は当業者がエプシ
ロン化合物と呼ぶ種類のものであり、酸素、窒素
および炭素を含む。前記外表層は耐スカツフイン
グ性を有する。前記外表層に加えて、内部にフエ
ライト心部(コア)を取囲む浸炭窒化されたケー
スが存在する。前記部材を油で急冷した後に、前
記ケースは二個のゾーン即ち一つはオーステイナ
イトそして他方はマルテンサイドのゾーンを有す
る。そこで、前記ケースの機械的性質を最適にす
るように、前記オーステイナイトは低ベイナイト
またはマルテインサイトに変態されることが望ま
しい。低ベイナイトへの変態は一般に250℃また
はそれ以上の温度で少くとも一時間の間だけ(好
ましくは300℃またはそれ以上の温度で少くとも
二時間)焼戻し処理をすることによつて等温的に
行われる。マルテンサイトへの変態は前記部材の
温度を−70℃またはそれ以下に下げ、そしてその
後で前記部材の温度を周囲温度にまで戻すように
することによつて行われる。前記オーステイナイ
トが安定化することを防止するためには、前記部
材の温度を−70℃またはそれ以下に下げる作業を
前記(油による)急冷完了の後2時間以内に開始
することが望ましい。
Generally, the part to be carbonitrided may be held in the atmosphere at a temperature between 690°C and 750°C for a period of 2 hours. During this time a relatively thin white outer surface layer forms on the component (or other workpiece) being processed. This outer layer is of the type known by those skilled in the art as epsilon compounds and contains oxygen, nitrogen and carbon. The outer surface layer has scuffing resistance. In addition to the outer surface layer, there is an internal carbonitrided case surrounding the ferrite core. After quenching the part with oil, the case has two zones, one austenite and the other martenside. Therefore, in order to optimize the mechanical properties of the case, it is desirable that the austenite be transformed into low bainite or marteinsite. The transformation to low bainite is generally carried out isothermally by tempering at a temperature of 250°C or higher for at least one hour (preferably at a temperature of 300°C or higher for at least two hours). be exposed. The transformation to martensite is accomplished by lowering the temperature of the component to -70 DEG C. or below, and then allowing the temperature of the component to return to ambient temperature. In order to prevent the austenite from stabilizing, it is desirable to start lowering the temperature of the member to −70° C. or lower within 2 hours after the quenching (by oil) is completed.

一般にもし部材が軟鋼製であるとして、そして
もし前記部材が前記炉雰囲気内で700℃の温度で
2時間の間保持されたとすると、エプシロン化合
物の前記(外表)層は0.0010から0.0012インチ
(0.0254から0.0305ミリ)の深さを有し、そして
前記(内部の)ケースは0.005から0.006インチ
(0.127から0.152ミリ)の深さを有する。
Generally, if the component is made of mild steel and if the component is held in the furnace atmosphere at a temperature of 700° C. for two hours, the (outer) layer of epsilon compound will be 0.0010 to 0.0012 inches (0.0254 to 0.0254 and the (inner) case has a depth of 0.005 to 0.006 inch (0.127 to 0.152 mm).

本発明に基づいたオーステイナイト浸炭窒化処
理がなされた軟鋼のサンプルの代表的な微小硬度
分布曲線が添付図面に示されている。この図面は
前記サンプルの深さが増加するにつれて前記サン
プルの硬度(HV×0.1)がどのように変化するか
を示すグラフである。
A representative microhardness distribution curve of a mild steel sample subjected to austenitic carbonitriding according to the present invention is shown in the accompanying drawings. This figure is a graph showing how the hardness (HV x 0.1) of the sample changes as the depth of the sample increases.

三個のサンプルについての結果が前記グラフに
示されている。すべてのサンプルは本明細書で上
記したところに述べた種類の700℃の雰囲気の中
で二時間の間保持された。第1のサンプルのオー
ステイナイトは300℃で2時間の間焼戻し処理を
することによつて低ベイナイトに等温的に変態さ
せられており、次に第2のサンプルのオーステイ
ナイトは第2のサンプルの温度を−70℃まで下げ
ることにより即ち−70℃でサブゼロ処理をするこ
とによりマルテンサイトに変態させられており、
そして一方第3のサンプルはそのオーステイナイ
トを変態させるいかなる処理もなされていないも
のである。第1のサンプルはより延性のある表面
を有するが第2のサンプルと比較すると硬度が劣
る。
Results for three samples are shown in the graph above. All samples were held for two hours in a 700°C atmosphere of the type described hereinabove. The austenite of the first sample was isothermally transformed to low bainite by tempering at 300°C for 2 hours, and then the austenite of the second sample was transformed into a second sample. By lowering the temperature of the sample to -70℃, that is, by performing sub-zero treatment at -70℃, it is transformed into martensite.
On the other hand, the third sample was not subjected to any treatment to transform its austenite. The first sample has a more ductile surface but less hardness compared to the second sample.

本発明はまたその発明の範囲内に、本明細書で
上記において説明した本発明に基づくオーステイ
ナイト浸炭窒化法によつて処理された鉄金属をも
含む。
The present invention also includes within its scope ferrous metals treated by the inventive austenitic carbonitriding process described hereinabove.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明によるオーステイナイト浸炭窒化
がなされた軟鋼のサンプルの代表的な微小硬度分
布曲線を示すグラフである。
The drawing is a graph showing a typical microhardness distribution curve of a mild steel sample subjected to austenite carbonitriding according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素とアンモニアと液体または気体状のメタ
ノールとを窒素2モルに対しメタノール2モル及
びアンモニア1モルの割合で熱処理炉に導入する
ことにより、オーステイナイト浸炭窒化に適した
7〜11容量%の一酸化炭素と、30〜40容量%の水
素と、6〜10容量%の遊離アンモニアと、1〜2
容量%の二酸化炭素と、2〜3容量%のメタン
と、残部の窒素と水蒸気とを含み且つ−5℃〜+
5℃の範囲内の露点を有する雰囲気を生成させ、
この雰囲気を690゜〜750℃までの範囲の温度に維
持する、熱処理炉内で鉄金属をオーステイナイト
浸炭窒化する方法。
1. By introducing nitrogen, ammonia, and liquid or gaseous methanol into a heat treatment furnace at a ratio of 2 moles of methanol and 1 mole of ammonia to 2 moles of nitrogen, 7 to 11% by volume suitable for austenite carbonitriding is produced. carbon monoxide, 30-40% hydrogen by volume, 6-10% free ammonia, 1-2% by volume
Contains vol% carbon dioxide, 2 to 3 vol% methane, and the balance nitrogen and water vapor, and has a temperature of -5°C to +
creating an atmosphere having a dew point in the range of 5°C;
A method of austenitic carbonitriding of ferrous metals in a heat treatment furnace in which this atmosphere is maintained at a temperature ranging from 690° to 750°C.
JP6675781A 1980-05-02 1981-05-01 Austenite cementation nitration for iron metals Granted JPS5729574A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8014576 1980-05-02

Publications (2)

Publication Number Publication Date
JPS5729574A JPS5729574A (en) 1982-02-17
JPH0125823B2 true JPH0125823B2 (en) 1989-05-19

Family

ID=10513161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6675781A Granted JPS5729574A (en) 1980-05-02 1981-05-01 Austenite cementation nitration for iron metals

Country Status (4)

Country Link
US (1) US4406714A (en)
JP (1) JPS5729574A (en)
AU (1) AU528538B2 (en)
ZA (1) ZA812776B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470854A (en) * 1981-10-01 1984-09-11 Kabushiki Kaisha Komatsu Seisakusho Surface hardening thermal treatment
GB8310102D0 (en) * 1983-04-14 1983-05-18 Lucas Ind Plc Corrosion resistant steel components
US4756774A (en) * 1984-09-04 1988-07-12 Fox Steel Treating Co. Shallow case hardening and corrosion inhibition process
US5037491A (en) * 1986-02-28 1991-08-06 Fox Patrick L Shallow case hardening and corrosion inhibition process
US4776901A (en) * 1987-03-30 1988-10-11 Teledyne Industries, Inc. Nitrocarburizing and nitriding process for hardening ferrous surfaces
JP2000328225A (en) * 1999-05-17 2000-11-28 Dowa Mining Co Ltd Surface treatment and treating vessel used for the method
US6623567B2 (en) * 2000-05-12 2003-09-23 Nakamura Industrial Co., Ltd. Method for high concentration carburizing and quenching of steel and high concentration carburized and quenched steel part
EP1707646B1 (en) * 2004-01-20 2009-08-12 Parker Netsushori Kogyo K.K. Method for activating surface of metal member
EP2541177A3 (en) * 2005-11-23 2014-09-24 Surface Combustion, Inc. Fluid delivery system for an atmospheric furnace used for treating one or more articles
US7622197B2 (en) * 2006-11-20 2009-11-24 Ferroxy-Aled, Llc Seasoned ferrous cookware
JP5305876B2 (en) * 2008-12-05 2013-10-02 株式会社エフ・シー・シー Manufacturing method of driven side rotating body, driven side rotating body, clutch device including the driven side rotating body, and manufacturing method of the clutch device
US9353812B2 (en) 2011-08-29 2016-05-31 GM Global Technology Operations LLC Mass reduction of brake rotors
CN103898438B (en) * 2014-04-24 2016-03-09 鑫光热处理工业(昆山)有限公司 Gas nitrocarburizing and water vapour composite treatment process
CN106637060B (en) * 2016-10-20 2019-02-05 洛阳Lyc轴承有限公司 A kind of carbo-nitriding heat-treatment technology method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105938A (en) * 1975-02-28 1976-09-20 Fujikoshi Kk Ko chutetsuno teionshintanchitsukashorihoho
JPS55119119A (en) * 1979-02-09 1980-09-12 Nachi Fujikoshi Corp Hardening method for steel at low temperature

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216869A (en) * 1960-06-21 1965-11-09 Gen Motors Corp Method of heat treating steel
JPS5277836A (en) * 1975-12-23 1977-06-30 Fujikoshi Kk Surface treatment of martensitic stainless steel
US4145232A (en) * 1977-06-03 1979-03-20 Union Carbide Corporation Process for carburizing steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105938A (en) * 1975-02-28 1976-09-20 Fujikoshi Kk Ko chutetsuno teionshintanchitsukashorihoho
JPS55119119A (en) * 1979-02-09 1980-09-12 Nachi Fujikoshi Corp Hardening method for steel at low temperature

Also Published As

Publication number Publication date
AU7001181A (en) 1981-11-05
US4406714A (en) 1983-09-27
ZA812776B (en) 1982-07-28
JPS5729574A (en) 1982-02-17
AU528538B2 (en) 1983-05-05

Similar Documents

Publication Publication Date Title
US4154629A (en) Process of case hardening martensitic stainless steels
US4386972A (en) Method of heat treating ferrous metal articles under controlled furnace atmospheres
US4049472A (en) Atmosphere compositions and methods of using same for surface treating ferrous metals
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
JPH0125823B2 (en)
US4531984A (en) Surface hardening process for metal parts
US4175986A (en) Inert carrier gas heat treating control process
US5498299A (en) Process for avoiding surface oxidation in the carburization of steels
US5344502A (en) Surface hardened 300 series stainless steel
US4776901A (en) Nitrocarburizing and nitriding process for hardening ferrous surfaces
US4028100A (en) Heat treating atmospheres
US3891473A (en) Heat treating atmospheres
CA1147634A (en) Protective atmosphere process for annealing and or spheroidizing ferrous metals
US4211584A (en) Methods of heat-treating steel
KR800000216B1 (en) Method of nitriding
GB2076434A (en) Heat treatment of metals
KR930003595B1 (en) Protective atmosphere process for a annealing and/or hardening ferrous metals
US2287651A (en) Method of carburizing without deterioration of furnace alloys
Jégou et al. Influence of oxidizing and Nitriding parameters on nitrogen concentration of electrical steels
JPS572826A (en) Quenching method for steel
JPS6214008B2 (en)
SU789633A1 (en) Method of nitrocarburizing corrosion-resistant steel parts
SU604503A3 (en) Method of heat treatment of articles
JPS626614B2 (en)
GB419057A (en) Improvements in surface hardening of austenitic steels and alloy steels