[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01257482A - Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof - Google Patents

Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof

Info

Publication number
JPH01257482A
JPH01257482A JP8507388A JP8507388A JPH01257482A JP H01257482 A JPH01257482 A JP H01257482A JP 8507388 A JP8507388 A JP 8507388A JP 8507388 A JP8507388 A JP 8507388A JP H01257482 A JPH01257482 A JP H01257482A
Authority
JP
Japan
Prior art keywords
hegf
dna
gene
promoter
human epidermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8507388A
Other languages
Japanese (ja)
Inventor
Yoshinori Harada
義則 原田
Akiko Matsui
暁子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8507388A priority Critical patent/JPH01257482A/en
Publication of JPH01257482A publication Critical patent/JPH01257482A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF], i.e. urogastrone

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)

Abstract

PURPOSE:To mass-produce a hEGF (human epidermal growth factor) monomer, by integrating a gene of a polymer hEGF factor consisting of plural human epidermal cell growth factors linked through one or more lysines in an expression vector, transforming Escherichia coli therewith, producing a polymer and separating the resultant polymer. CONSTITUTION:Any of tac promoter, trp promoter and lacUV promoter or several thereof are arranged through preferably a nucleotide expressed by formula III on the upstream side of a DNA having hEGF expressed by formula II (Pi, m is A or G; m and n are natural numbers; i is a number of >=1-<=m) when the DNA sequence expressed by formula I is assumed as SEQ to enable highly efficient production of a polypeptide in bacterial cells of Escherichia coli.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遺伝子工学的手法によるヒト表皮増殖作用を有
する蛋白質の合成法に係り、特にその高効率生産を可能
とする合成遺伝子を有するDNAおよびそのプラスミド
組換え体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for synthesizing a protein having a human epidermal proliferation effect using genetic engineering techniques, and particularly relates to a method for synthesizing a protein having a proliferative effect on human epidermis using a genetic engineering method, and particularly a method for synthesizing a protein having a synthetic gene that enables highly efficient production. Regarding the plasmid recombinant.

〔従来の技術〕[Conventional technology]

一般に遺伝子工学的手法により、微生物体に、それが本
来生産していない蛋白質を生産させる場合、その合成効
率を向上させるためには、主に下記の3つの要因を満た
す必要がある。これらは(1)転写効率、翻訳効率の高
いクローニングベクターの甲用、(2)ベクターの特性
を有効に発揮させる宿主(微生物)系の選択、(3)微
生物体培養竺からの生産蛋白質の高効率回収法の確立、
である。これらのうち、効果の最も大きいものは(1)
の要因である。
In general, when genetic engineering techniques are used to cause a microorganism to produce a protein that it does not originally produce, the following three factors must be mainly satisfied in order to improve its synthesis efficiency. These are (1) the use of cloning vectors with high transcription and translation efficiency, (2) the selection of host (microorganism) systems that effectively exhibit the characteristics of the vector, and (3) the high yield of protein produced from microbial culture. Establishment of efficient collection method,
It is. Among these, the one with the greatest effect is (1)
This is a factor.

生産物の高効率合成を目指す上で、使用するクローニン
グベクターを選択あるいは作製する際に考慮すべき要因
は次の5点に要約される。
In order to achieve high-efficiency synthesis of products, the following five factors can be summarized as factors that should be considered when selecting or constructing a cloning vector to be used.

(a)転写プロモータ、オペレータ、及び転写終結ヌク
レオチド配列の構造。
(a) Structure of transcription promoter, operator, and transcription termination nucleotide sequence.

(b)SD配列を含む翻訳制御ヌクレオチド配列の構造
(b) Structure of a translation control nucleotide sequence containing an SD sequence.

(c)アミノ酸を規定する遺伝子コドンの宿主との適合
性。
(c) Compatibility of gene codons defining amino acids with the host.

(d)生産蛋白質の分解からの保護。(d) Protection of produced proteins from degradation.

(e)遺伝子の量(コピー数)。(e) Gene amount (copy number).

本発明で高効率生産を可能としたヒト表皮増殖因子(以
下hEGFと略記)は通常、主としてヒト十二指腸ある
いは顎下腺から分泌される53個のアミノ酸から成るポ
リペプチド・ホルモンであり、(エイチ・グレゴリ−(
H、Gregory) *ネイチャー(Nature)
、257,325 (1975))。
Human epidermal growth factor (hEGF), which can be produced with high efficiency in the present invention, is a polypeptide hormone consisting of 53 amino acids that is normally secreted mainly from the human duodenum or submandibular gland. Gregory (
H, Gregory) *Nature
, 257, 325 (1975)).

胃酸分泌抑制ならびに表皮細胞の増殖促進作用を有する
。これらの生理活性は、hEGFが胃潰瘍。
It has the effect of suppressing gastric acid secretion and promoting proliferation of epidermal cells. These physiological activities indicate that hEGF is effective against gastric ulcers.

十二指潰瘍の治療薬となる可能性を示している。It has shown potential as a treatment for duodenal ulcer.

またhEGは細胞膜表面に分布するhEGF受容体に作
用し゛て、種々の生体反応の発現を促すことが知られて
いる。(デイ・ゴスポダロビッッ。
It is also known that hEG acts on hEGF receptors distributed on the surface of cell membranes and promotes the expression of various biological reactions. (Dei Gospodarovit.

マニアル レビュー オブ フイジオロジー)(D、G
ospodarovicz、 Ann、 Rev、 P
hysiol、 L±ユ、251 (1981))、近
年さらに、発癌機構との関係についても注目を浴びてい
る。すなわち発ガン遺伝子の一種であるerbB−1お
よびB−2の生産物はそのアミノ酸配列よりhEGF受
容体と高い構造相関性を有することが知られており、h
EGFと発ガンとの関係の解明が待たれている。
Manual Review of Physiology) (D,G
ospodarovicz, Ann, Rev, P
In recent years, the relationship with carcinogenic mechanisms has also attracted attention. In other words, it is known that the products of erbB-1 and B-2, which are types of oncogenes, have a high structural relationship with the hEGF receptor based on their amino acid sequences.
Elucidation of the relationship between EGF and cancer development is awaited.

しかし、天然に存在するhEGFは極めて微量であるた
め、遺伝子工学による大量生産が注目を浴びるに到った
However, since naturally occurring hEGF is extremely small, mass production through genetic engineering has attracted attention.

hEGFの遺伝子工学的手法による生産に関しては、こ
れまで15件の報告がある(例えば、特開昭−1161
−8881号公報)。
There have been 15 reports so far regarding the production of hEGF by genetic engineering methods (for example, Japanese Patent Application Laid-open No. 1161
-8881 publication).

これらの報告ではいずれも、大腸菌、酵母等で普遍的に
見出される遺伝子発現プロモーターのうち比較的転写効
率の高いことの知られているものを含むプラスミドベク
ターに、hEGFの構造遺伝子を連結したプラスミド組
換え体を利用して蛋白質の生産を試みている(上記要因
(a)の対策)。
In all of these reports, a plasmid set was created in which the hEGF structural gene was linked to a plasmid vector containing a gene expression promoter commonly found in Escherichia coli, yeast, etc. that is known to have relatively high transcription efficiency. Attempts are being made to produce proteins using modified organisms (measures against factor (a) above).

また、このhEGFの構造遺伝子は、天然型hEGFの
アミノ酸配列情報をもとに設計し、有機化学的に合成し
ている。その際、微生物体内での翻訳効率が低くならな
いように、宿主に応じて遺伝子コドンの選択している。
The structural gene of hEGF is designed based on the amino acid sequence information of natural hEGF and synthesized organically. At this time, gene codons are selected depending on the host so that the translation efficiency within the microorganism is not reduced.

すなわち、1アミノ酸に対し、遺伝子コドンが縮重して
いる場合には、大腸菌あるいは酵素で出現頻度の高いコ
ドンを選択している(上記要因(C))の対策)。
That is, if the genetic codons are degenerate for one amino acid, codons that appear frequently in E. coli or enzymes are selected (measures against factor (C)).

要因(b)に対する対応としては、大腸菌が本来保持し
ている何種類かのSD配列領域のうち一道すを用いた例
が多い。
As a response to factor (b), there are many examples of using one of the several types of SD sequence regions originally held by E. coli.

また、hEGFの様に比較的分子量の小さい外来蛋白質
は菌体内では蛋白質分解酵素の標的にされ易く不安定で
ある。そこで、要因(d)の対策として、hEGF遺伝
子の上流側に菌体外分泌シグナルペプチドの遺伝子を連
結して生産蛋白質をすみやかに菌体外に分泌させ、蛋白
質分解酵素から保護したり、蛋白質分解酵素生産能の低
い宿主(官本、蛋白質 核酸 酵素、王よ、Nα11゜
1039 (1986))の使用等が行なわれている。
Furthermore, foreign proteins with relatively small molecular weights, such as hEGF, are unstable within the bacterial cells because they are easily targeted by proteolytic enzymes. Therefore, as a countermeasure for factor (d), the gene for the exocrine secretion signal peptide is linked to the upstream side of the hEGF gene to promptly secrete the produced protein to the outside of the bacterial cell and protect it from proteolytic enzymes. The use of hosts with low production capacity (Kanmoto, Protein Nucleic Acid Enzyme, Wangyo, Nα11°1039 (1986)) is being carried out.

要因(a)への対応としては、Co1EI系のプラスミ
ド複製オリジン(o r i)を有し、細胞内コピー数
の多いリラックス型プラスミドを使用している例が多い
As a response to factor (a), there are many examples of using a relaxed plasmid that has a Co1EI-based plasmid replication origin (or i) and has a large intracellular copy number.

また、人員ら(バイオ インダストリー(Bi。In addition, personnel (Bio Industry (Bi.

+Industry)、 3. Nal 2.875 
(1986))のように、プラスミドベクター1分子の
内に複数個の遺伝子発現制御配列とhEGFの構造遺伝
子とのセットを有す組換え体ベクターを使用した例もあ
る。
+Industry), 3. Nal 2.875
(1986)), there is also an example of using a recombinant vector having a set of multiple gene expression control sequences and hEGF structural gene in one plasmid vector molecule.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来技術による組換え体プラスミドの設計
においては、生産蛋白質の培地中からの回収分離、精製
について、充分配慮されてはいなかった。hEGFの様
な低分子量蛋白質は上述の通り菌体内で不安定であるの
みならず1種々の分離手段(例えば、電気泳動、高速液
体クロマトグラフィー等)、検出手段(クマーシー・ブ
ルー染色。
However, in designing a recombinant plasmid using the above-mentioned conventional techniques, sufficient consideration was not given to the recovery, separation, and purification of the produced protein from the medium. As mentioned above, low molecular weight proteins such as hEGF are not only unstable within bacterial cells, but also require various separation means (e.g. electrophoresis, high performance liquid chromatography, etc.) and detection means (Coomassie blue staining, etc.).

銀染色、81IS−メチオニン取り込み検出等)におい
て不利である。そのため、高効率転写シグナル(プロモ
ータ)、翻訳シグナルを有し潜在的にhEGFの大量生
産能を有する宿主・ベクター系を用いた場合でも、安定
的に高効率生産性を維持することは困難であった。
This is disadvantageous in terms of silver staining, 81IS-methionine incorporation detection, etc.). Therefore, even when using a host-vector system that has highly efficient transcription signals (promoters) and translation signals and potentially has the ability to mass-produce hEGF, it is difficult to stably maintain high efficiency productivity. Ta.

本発明の目的は1つ以上のリジンを介して連結した複数
のhEGFよりなる多量体hEGFを遺伝子を発現ベク
ターに組み込み、これで大腸菌を形質転換し、菌に細胞
内の蛋白質分解作用に対して安定な大分子量hEGF前
駆体を一旦生産させた後、培養液中より、これを効率的
に回収9分離。
The purpose of the present invention is to incorporate a multimeric hEGF gene consisting of multiple hEGFs linked via one or more lysines into an expression vector, transform Escherichia coli with the gene, and make the bacterium susceptible to intracellular proteolytic action. Once a stable large molecular weight hEGF precursor is produced, it can be efficiently recovered from the culture solution by 9 separations.

精製し、次いでin vitro系にて、蛋白質加水分
解酵素を作用させ、1分子の多量体hEGFより多数の
単量体hEGFを得ることで、hEGFを効率的に生産
するための手段を提供することにある。
To provide a means for efficiently producing hEGF by purifying it and then treating it with a protein hydrolase in an in vitro system to obtain a larger number of monomeric hEGF than one molecule of multimeric hEGF. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、大腸菌が本来保持していないポリペプチド
鎖の加水分解酵素ニトリプシンにより容易に切断される
アミノ酸配列アルギニン−(リジン)、を介してhEG
Fが、複数分子連結した多量体hEGFの構造遺伝子を
、高効率転写、翻訳シグナルの下流に接続した発現ベク
ターを作製し、これを大腸菌に導入することにより、達
成される。
The above purpose is to promote hEG through the amino acid sequence arginine (lysine), which is easily cleaved by the polypeptide chain hydrolase nitrypsin, which E. coli does not originally have.
F is achieved by creating an expression vector in which a plurality of linked structural genes of multimeric hEGF are connected downstream of highly efficient transcription and translation signals, and introducing this into E. coli.

m = 2の場合を第1図により説明する。大腸菌によ
り生産されたhEGF前駆体(多量体hEcF)は、菌
体内では容易には分解されない。しかし、これに対し、
・動物由来のペプチド鎖加水分解酵素であり、特に連結
した塩基性アミノ酸(アルギニン、リジン、ビスチジン
の3種)のC末端側のペプチドを強力に切断するトリプ
シンを作用させると多量体hEGFは、hEGFのC末
端アミノ酸であるアルギニンと次のリジン、リジン間、
あるいは最後のリジンと次のhEGFのN末端アミノ酸
であるアスパラギンとの間で切断され、多数の単量体h
EGF分子が生成する。多量体hEGF分子中で塩基性
アミノ酸が連続する箇所は上記箇所しか存在しないので
以上のペプチド鎖切断操作が可能である。
The case where m = 2 will be explained with reference to FIG. The hEGF precursor (multimeric hEcF) produced by E. coli is not easily decomposed within the cells. However, on the other hand,
・When trypsin, which is an animal-derived peptide chain hydrolase that strongly cleaves peptides on the C-terminal side of linked basic amino acids (arginine, lysine, and bistidine), acts on it, the multimeric hEGF becomes hEGF. between the C-terminal amino acid arginine and the next lysine,
Alternatively, it is cleaved between the last lysine and the next N-terminal amino acid of hEGF, asparagine, resulting in a large number of monomeric h
EGF molecules are produced. The above-described peptide chain cleavage operation is possible because the above-mentioned locations are the only locations where basic amino acids are continuous in the multimeric hEGF molecule.

m=1.および3以上の場合も同様である。m=1. The same applies to the case of 3 or more.

53個のアミノ酸よりなるhEGFの配列情報を担う構
造遺伝子DNAを得るためには2通りの方法がある。(
1)実際にhEGFを生産している細胞より雑種DNA
対合法でhEGF用の伝令RNAを分離、精製し、これ
よりDNAを生化学的に合成する方法と、(2)EGF
のアミノ酸配列から予測される何通りかの遺伝子の塩基
配列のうち、その中で使われている遺伝子コドンが使用
する宿主中で、出現頻度の高いものであるかどうか、ま
たこれを有機合成する際に、ミスの起こりにくい構造で
あるかどうかを考慮の上、最も適切と思われる塩基配列
1つを選び、それを有機化学合成する方法とがある。5
3アミノ酸に対応する159塩基対を有機化学合成する
方が、これを3X10g塩基対(ヒト細胞内にあると見
積られる塩基対)の中から探し出すよりもはるかに容易
なので、本発明では、(2)の方法を選択した。
There are two methods for obtaining the structural gene DNA that carries the sequence information of hEGF, which consists of 53 amino acids. (
1) Hybrid DNA from cells that actually produce hEGF
(2) A method of isolating and purifying messenger RNA for hEGF using a pairing method, and biochemically synthesizing DNA from this;
Among the various gene base sequences predicted from the amino acid sequence of In some cases, one method is to select one base sequence that seems to be the most appropriate, taking into consideration whether the structure is difficult to make mistakes, and then synthesize it organically. 5
Since it is much easier to organically synthesize 159 base pairs corresponding to 3 amino acids than to search for them among 3×10 g base pairs (base pairs estimated to exist in human cells), in the present invention, (2 ) method was selected.

さらに、本発明では、連続した単量体hEGFの構造遺
伝子間にオリゴリジンの遺伝子を介在させると共に、構
造遺伝子の上流側には、大腸菌由来のガラクトキナーゼ
遺伝子の翻訳制御シグナルであるSD配列−ATG領域
のヌクレオチド配列と同一のDNA断片を連結した。
Furthermore, in the present invention, an oligolysine gene is interposed between consecutive structural genes of monomeric hEGF, and an SD sequence -ATG, which is a translational control signal of the galactokinase gene derived from Escherichia coli, is provided upstream of the structural gene. DNA fragments identical to the nucleotide sequence of the region were ligated.

こうして作製した翻訳制御ヌクレオチド配列付きhEQ
F遺伝子を大腸菌体内にて発現させるために、遺伝子の
転写を促す転写プロモータを有するベクターに連結する
必要があるが、それに必要な連結用ヌクレオチド配列も
合わせて合成し、ベクターに組み込み可能なりNAとし
た。
hEQ with translation control nucleotide sequence prepared in this way
In order to express the F gene in E. coli, it is necessary to link it to a vector that has a transcription promoter that promotes gene transcription, but the necessary linking nucleotide sequence is also synthesized and can be incorporated into the vector. did.

〔作用〕[Effect]

t&Cp tribおよびもcUVプロモータを有す3
種のプラスミドベクターに、翻訳制御シグナル、構造遺
伝子を含む全遺伝子を組み込み3種の組換え体プラスミ
ドを得た。
t&Cp trib and also 3 with cUV promoter
Three types of recombinant plasmids were obtained by integrating all genes including translational control signals and structural genes into different plasmid vectors.

次に当該プラスミドを宿主大腸菌(HBIOI。Next, the plasmid was transferred to host E. coli (HBIOI).

JM103.C600)に導入し、組換え体大腸菌を得
、これを培養し、これより多量体hEGFを検出すると
ともに、回収、精製した。
JM103. C600) to obtain recombinant E. coli, which was cultured. Multimeric hEGF was detected, recovered, and purified.

さらに、多量体hEGFを蛋白質分解酵素ニトリプシン
で単量体に分解し単量体hEGFを得た。
Furthermore, the multimeric hEGF was decomposed into monomers using the proteolytic enzyme nitrypsin to obtain monomeric hEGF.

〔実施例〕〔Example〕

まずEGFの構造遺伝子および翻訳制御シグナル領域の
DNA塩基配列設計とその合成について述べる。第2図
にhEGFのアミノ酸配列と対応する遺伝子を示す。h
EGFのアミノ酸配列はGregoryらにより決定さ
れているので、その構造遺伝子は、アミノ酸・遺伝子コ
ドンの対応表から予測できる。しかし、遺伝子コドン側
に一部重復があるため、この対応は一義的でない、そこ
で、宿主別遺伝子コドン出現頻度表(池村、細胞工学。
First, we will describe the DNA sequence design and synthesis of the EGF structural gene and translational control signal region. Figure 2 shows the amino acid sequence of hEGF and the corresponding gene. h
Since the amino acid sequence of EGF was determined by Gregory et al., its structural gene can be predicted from the amino acid/gene codon correspondence table. However, because there are some duplications on the gene codon side, this correspondence is not unambiguous.Therefore, the gene codon frequency table by host (Ikemura, Cell Engineering).

vo!、2.Na13.pp、78−89(1983)
)を参考に大腸菌体内で出現頻度の高い遺伝子コドンを
各アミノ酸毎に選択し、それらのみからなる159塩基
の構造遺伝子設計図をまず設計した。
vo! , 2. Na13. pp. 78-89 (1983)
), we selected gene codons that appear frequently in E. coli for each amino acid, and first designed a 159-base structural gene blueprint consisting only of these codons.

さらにhEGF遺伝子の先頭に翻訳開始コドンATGを
設けるとともにさらにその上流領域を、大腸菌由来のガ
ラクトキナーゼ遺伝子のSD配列−ATG領域(ケイ・
マツケ二一等(K、McKennyetaQ)(ジエネ
 アンプリフイケーション アンド アナリシス(Ga
neA+mprification andAnaly
sis)、 vol、2. p、 408(1981)
 )と同一にした。
Furthermore, a translation initiation codon ATG is provided at the beginning of the hEGF gene, and the upstream region is further divided into the SD sequence-ATG region of the galactokinase gene derived from E. coli (K.
21st Class Matsuke (K, McKennyetaQ) (Gene Amplification and Analysis (Ga)
neA+mplification andAnaly
sis), vol, 2. p. 408 (1981)
).

次いでオリゴリジンリンカ一部のヌクレオチド配列とし
て(AAPI、 m)m (ただしP s g waは
AあるいはG、1<i<m、mは自然数)とした。
Next, the nucleotide sequence of a part of the oligolysine linker was set as (AAPI, m)m (where Psgwa is A or G, 1<i<m, and m is a natural number).

こうして得られたヌクレオチド配列の両端に、発現ベク
ターに連結するためのヌクレオチド配列(BamHIリ
ンカ−)を接続し、最終的に、翻訳可能な多量体hEG
Fの遺伝子を設計した。
A nucleotide sequence (BamHI linker) for linking to an expression vector is connected to both ends of the nucleotide sequence obtained in this way, and finally a translatable multimeric hEG
We designed the gene for F.

第2図にm=2.Pl、z=A、Pa、z=Gの場合の
多量体hEGFのアミノ酸配列とDNA配列:  (1
85+165n)塩基対を示す、nはこの段階では特に
規定されず、大腸菌クローニングする事により規定され
る(後述)。
Figure 2 shows m=2. Amino acid sequence and DNA sequence of multimeric hEGF when Pl, z=A, Pa, z=G: (1
85+165n) base pair, n is not particularly defined at this stage, but is defined by E. coli cloning (described later).

ところで、この様に100塩基を越す長鎖DMA鎖にな
ると公知のDNA合成法であるフオスフオアミグイド法
による一連のDNA鎖伸長反応操作では、これを−気に
合成することはできない、すなわち、1塩基分の伸長反
応の収率を95%としても30回くり返すと全体での収
率は21%程度となり精製が困難になる。そこで実際に
は、第2図の長鎖2本鎖DNAを第3図に示したように
22種の1本鎖オリゴクレクチドのブロック:F1〜F
22に分割し、それぞれをフオスフオアミグイド法によ
るDNA鎖伸長反応で合成した。
By the way, long DMA chains exceeding 100 bases cannot be synthesized by a series of DNA chain elongation reactions using the phosphoramid method, which is a known DNA synthesis method. Even if the yield of the elongation reaction for one base is 95%, if it is repeated 30 times, the total yield will be about 21%, making purification difficult. Therefore, in reality, the long double-stranded DNA in Figure 2 is converted into blocks of 22 types of single-stranded oligonucleotides as shown in Figure 3: F1 to F1.
It was divided into 22 parts, and each was synthesized by a DNA chain elongation reaction using the phosphoramid method.

このブロック化に際しては、これらのブロックを1つに
まとめてEGFの遺伝子を作製するときに、ブロック間
に不適切な相互作用が生じて、正しくない構造の遺伝子
が形成されることのないように、各ブロックの塩基配列
を最適化した。
When creating these blocks, care is taken to ensure that when these blocks are combined into one to create the EGF gene, inappropriate interactions between the blocks will not occur, resulting in the formation of a gene with an incorrect structure. , the base sequence of each block was optimized.

第4図には、TaDNA  リガーゼを使用した、ブロ
ック化オリゴヌクレオチドの連結手順を示した。22断
片を一挙に連結すると正しくない組合せの生ずるおそれ
があったので、2段階の連結法を採用した0反応は常法
に従った。
FIG. 4 shows the procedure for ligating blocked oligonucleotides using Ta DNA ligase. Since there was a risk that incorrect combinations would occur if 22 fragments were ligated all at once, a conventional method was followed for the 0 reaction, which employed a two-step ligation method.

この連結反応においては、BlとB4.B2とB3は等
モルとし、さらに、B2.B3はBl。
In this ligation reaction, Bl and B4. B2 and B3 are equimolar, and B2. B3 is Bl.

B4に対し、等モル以上加える事が重要で、n、≧−1
の多量体hEGF遺伝子の構築される確率が向上する。
It is important to add at least the same mole to B4, n, ≧-1
The probability of constructing a multimeric hEGF gene is improved.

次に、第5図により、合成したhEGF遺伝子のtae
プロモーターを有する発現ベクターへの分子クローニン
グの手順を示す。まず、β−ラクタマーゼ遺伝子(Am
p’)と、ガラクトキナーゼ遺伝子(G a l K)
とを選択マーカー遺伝子として、さらに、トリプトファ
ンプロモータの35領域とラクトースプロモーターのP
ribnow配列とを融合したtacプロモーターを有
す既存の発現プラスミドベクタであるp D R540
(a)を制限酵素BamHIで切断して開裂させた0次
にこれを細菌性アルカリフォスファターゼで処理して、
BamHI末端を脱リン酸化した開裂クローニングベク
ター(b)を得た。さらに、前述の合成多量体hEGF
遺伝子(c)と(b)とを連結酵素T a D N A
リガーゼにより結合し新規な組換えプラスミドPGEG
F2(d)を得た。次いでルビジウム・カルシウム法で
受容細胞とした大腸菌JM103を、プラスミド(d)
で形質転換した。この菌をアンピシリン含有寒天プレー
ト培地で培養して、生じたコロニー(アンピシリン耐性
遺伝子A m p r を含む、すなわちpGEGF2
を含む菌であることを示す)を単離したいくつかのコロ
ニーを液体培地中で培養し増殖させた後、菌体より組換
えプラスミドベクター(d)を回収した(モレキュラー
 クローニング(MolecularCloning)
 、マニアテイス等11IA(ed by Mania
tis etal)、コールド スプリングハーバ−ラ
ボラトリ−(Cold Spring Harbor 
Laboratory)、pp、(1982))。
Next, according to FIG. 5, the tae of the synthesized hEGF gene
The procedure for molecular cloning into an expression vector with a promoter is shown. First, the β-lactamase gene (Am
p') and the galactokinase gene (G a l K)
as a selectable marker gene, and furthermore, the 35 region of the tryptophan promoter and the P of the lactose promoter.
pDR540, an existing expression plasmid vector that has a tac promoter fused with ribnow sequence.
(a) was cleaved with the restriction enzyme BamHI and then treated with bacterial alkaline phosphatase,
A cleavage cloning vector (b) in which the BamHI end was dephosphorylated was obtained. Furthermore, the aforementioned synthetic multimeric hEGF
Connecting genes (c) and (b) with enzyme T a DNA
Novel recombinant plasmid PGEG ligated by ligase
F2(d) was obtained. Next, E. coli JM103, which was used as a recipient cell using the rubidium-calcium method, was transformed into plasmid (d).
Transformed with This bacterium was cultured on an agar plate medium containing ampicillin, and the resulting colonies (containing the ampicillin resistance gene A m pr , that is, pGEGF2
After culturing and propagating several isolated colonies in a liquid medium, the recombinant plasmid vector (d) was recovered from the bacterial cells (Molecular Cloning).
, Mania Teis et al. 11IA (ed by Mania
Cold Spring Harbor Laboratory
Laboratory), pp. (1982)).

こうして得た数種のプラスミドをそれぞれ制限酵素B 
a m HIで切断し、アガロースゲル電気泳動で分離
、ゲルより溶出精製後1M13ファージのB a m 
HI部位に連結しダイデオキシ法によりDNA塩基配列
を行った。
Restriction enzyme B
a m Cut with HI, separate by agarose gel electrophoresis, elute from gel and purify 1M13 phage B a m
The DNA was ligated to the HI site and sequenced by the dideoxy method.

その結果、n=1,2,3.・・・の多量体hEGF遺
伝子を含む数種類の発現ベクターの作製が確認された。
As a result, n=1, 2, 3. The construction of several types of expression vectors containing multimeric hEGF genes was confirmed.

〔発明の効果〕〔Effect of the invention〕

本発明により作製されたプラスミドベクターpGEGF
2の親ベクターであるpDR540(第5図(a))を
大腸菌C600p ga Q K −p HBIO1等
に導入し、菌を培養し、ガラクトキナーゼを生産させる
とその量は、菌体総蛋白質量の約50%に達する。これ
はガラクトキナーゼ遺伝子(gaIIK)の転写効率、
翻訳効率が、プラスミド内地遺伝子、宿主が、本来、保
持している約2,000種の遺伝子のいずれと比較して
も、極めて高いことを示している。
Plasmid vector pGEGF produced according to the present invention
pDR540 (Figure 5(a)), the parent vector of 2, is introduced into Escherichia coli C600pgaQK-pHBIO1, etc., the bacteria are cultured, and galactokinase is produced. It reaches about 50%. This is the transcription efficiency of the galactokinase gene (gaIIK),
This shows that the translation efficiency is extremely high compared to any of the plasmid internal genes and the approximately 2,000 types of genes that the host originally carries.

本発明により作製されたプラスミドベクターpGEGF
2(第5図(d))は、上記pDR540のgaQKと
同一の転写プロモータ、翻訳制御シグナルを有しhEG
Fの高効率生産が期待される。
Plasmid vector pGEGF produced according to the present invention
2 (Fig. 5(d)) has the same transcription promoter and translational control signal as the gaQK of the above pDR540, and hEG
Highly efficient production of F is expected.

実際、n=2の場合のプラスミドベクターを用いて形質
転写して得た組換え体大腸菌C6C60OQ K−。
In fact, recombinant E. coli C6C60OQ K- was obtained by transformation using a plasmid vector in which n=2.

HBIOI、JM103等を培養し1 m g / Q
(培養液)以上の多量体hEGFの生産をラジオリセプ
ターアッセイ法(RRA法)により確認した。
Culture HBIOI, JM103, etc. to 1 mg/Q
(Culture solution) Production of the above multimeric hEGF was confirmed by radioreceptor assay method (RRA method).

次いで、ODSゲルを担体とし、アセトニトリル−水系
溶離液による高速液体クロマトグラフィーにより多量体
hEGFを分離、精製した。
Next, the multimeric hEGF was separated and purified by high performance liquid chromatography using ODS gel as a carrier and an acetonitrile-water eluent.

こうして得た多量体hEGFを牛膵臓より得たトリプシ
ンで、分解し、単量体hEGFを得た。
The thus obtained multimeric hEGF was digested with trypsin obtained from bovine pancreas to obtain monomeric hEGF.

本標品をRRA法により活性測定した結果、約3mg/
Q(培養液)に相当するhEGFの生産されていること
が確認された。
The activity of this sample was measured by RRA method, and the result was approximately 3 mg/
It was confirmed that hEGF corresponding to Q (culture solution) was produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多量体hEGFより単量体hEGFを得るプ
ロセスの概略図、第2図は合成した全塩基配列を示す図
、第3図は全塩基配列を22本の合成オリゴヌクレオチ
ドブロックに分けて示す図、第4図は合成オリゴヌクレ
オチドブロックの集合および連結のフローを示す図、第
5図は本発明の応用例を示す説明図である。 A・・・アデニン、C・・・シトシン、G・・・グアニ
ン、T第1図 茅5区
Figure 1 is a schematic diagram of the process of obtaining monomeric hEGF from multimeric hEGF, Figure 2 is a diagram showing the entire synthesized base sequence, and Figure 3 is a diagram showing the complete base sequence divided into 22 synthetic oligonucleotide blocks. FIG. 4 is a diagram showing the flow of assembly and linkage of synthetic oligonucleotide blocks, and FIG. 5 is an explanatory diagram showing an application example of the present invention. A...Adenine, C...Cytosine, G...Guanine, T Figure 1 Kaya 5 section

Claims (1)

【特許請求の範囲】 1、DNA配列: 【遺伝子配列があります。】 をSEQとした時、 {SEQ+(AAP_i_,_m)_m}_n+SEQ
(P_i_,_mはAあるいはG,1≦i≦m,m,n
は自然数)で示されるヒト表皮増殖因子生産のための合
成遺伝子を有するDNA。 2、特許請求の範囲第1項に記載のものにおいてDNA
ヌクレオチド配列の上流側にヌクレオチド配列【遺伝子
配列があります。】を有するDNA。 3、特許請求の範囲第2項に記載のものにおいてDNA
ヌレオチド配列のさらに上流側にtacプロモータ、t
rpプロモータ、lacUVプロモータのいずれか、あ
るいはそのいくつかを配置し、ポリペプチドの大腸菌体
内での高効率生産を可能とすることを特徴とするプラス
ミド組換え体。
[Claims] 1. DNA sequence: [There is a gene sequence. ] When SEQ is {SEQ+(AAP_i_,_m)_m}_n+SEQ
(P_i_,_m is A or G, 1≦i≦m, m, n
DNA containing a synthetic gene for the production of human epidermal growth factor (wherein is a natural number). 2. In the item described in claim 1, DNA
There is a nucleotide sequence [gene sequence] upstream of the nucleotide sequence. ] DNA. 3. In the item described in claim 2, DNA
Further upstream of the nucleotide sequence is the tac promoter, t
1. A recombinant plasmid, which is characterized in that it has an rp promoter, a lacUV promoter, or some thereof, thereby enabling high-efficiency production of a polypeptide in Escherichia coli cells.
JP8507388A 1988-04-08 1988-04-08 Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof Pending JPH01257482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8507388A JPH01257482A (en) 1988-04-08 1988-04-08 Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8507388A JPH01257482A (en) 1988-04-08 1988-04-08 Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof

Publications (1)

Publication Number Publication Date
JPH01257482A true JPH01257482A (en) 1989-10-13

Family

ID=13848444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8507388A Pending JPH01257482A (en) 1988-04-08 1988-04-08 Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof

Country Status (1)

Country Link
JP (1) JPH01257482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509140A (en) * 1993-04-26 1995-10-12 ダイウォン ファーマシューティカル カンパニー,リミテッド A novel gene encoding human epidermal growth factor and its production method
GB2380346A (en) * 2001-09-26 2003-04-02 Oladiran Lawoye A traffic viewing system for drivers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509140A (en) * 1993-04-26 1995-10-12 ダイウォン ファーマシューティカル カンパニー,リミテッド A novel gene encoding human epidermal growth factor and its production method
GB2380346A (en) * 2001-09-26 2003-04-02 Oladiran Lawoye A traffic viewing system for drivers
GB2380346B (en) * 2001-09-26 2006-04-26 Oladiran Lawoye A traffic viewing system for drivers

Similar Documents

Publication Publication Date Title
US5026651A (en) Methods and compositions for the production of human transferrin
EP0230869B1 (en) Construction of an igg binding protein to facilitate downstream processing using protein engineering
Murby et al. Upstream strategies to minimize proteolytic degradation upon recombinant production inEscherichia coli
JP2622479B2 (en) A replicable bacterial plasmid expressing the gene for human growth hormone.
US5427927A (en) Process for the enzymatic cleavage of recombinant proteins using IgA proteases
AU751823B2 (en) Fused protein
EP0196864A2 (en) Alkaline phosphatase-mediated processing and secretion of recombinant proteins, DNA sequences for use therein and cells transformed using such sequences
JPS60172295A (en) Production of substantially homogenous aged rearranged human interleukin
JPH119274A (en) Plasmid for expressing chaperone
CA1214126A (en) Method for protecting a bacterium from a naturally occurring bacteriophage
US4921699A (en) Polypeptides having interferon activity
US4816566A (en) Polypeptides having interferon activity
EP0614982A1 (en) Recombinant vector for the exocellular preparation of single chain antibodies expressed in bacillus subtilis
EP0063494B1 (en) Method for producing protein from a microorganism, microorganisms for use in such method and creation thereof, vectors for use in said creation, and protein produced thereby, and transformant culture derived from said microorganisms
US5888766A (en) Method for producing recombinant human myoglobin
JPH01257482A (en) Dna having synthetic gene for producing human epidermal growth factor and plasmid recombinant thereof
WO1990013560A1 (en) Purification of proteins employing ctap-iii fusions
US4935351A (en) Process for preparing oligopeptide
CN102978211B (en) Interest protein preparation method and purpose thereof
FI97549B (en) Process for the preparation of foreign proteins in Streptomyces cells
US4816396A (en) Method and vector organism for controlled accumulation of heterologous gene products in bacillus subtilis
US5304471A (en) Process for producing foreign protein in Escherichia coli
JP2938352B2 (en) Method for producing recombinant human matrilysin
JPS633791A (en) Recombinant plasmid
EP0342658A1 (en) Biosynthetic process for the preparation of chemical compounds