JPH01257102A - Production of chlorine from hydrogen chloride - Google Patents
Production of chlorine from hydrogen chlorideInfo
- Publication number
- JPH01257102A JPH01257102A JP63084415A JP8441588A JPH01257102A JP H01257102 A JPH01257102 A JP H01257102A JP 63084415 A JP63084415 A JP 63084415A JP 8441588 A JP8441588 A JP 8441588A JP H01257102 A JPH01257102 A JP H01257102A
- Authority
- JP
- Japan
- Prior art keywords
- hcl
- catalyst
- reaction
- fluidized bed
- molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims description 19
- 239000000460 chlorine Substances 0.000 title claims description 19
- 229910052801 chlorine Inorganic materials 0.000 title claims description 19
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 title claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims description 17
- 229910000041 hydrogen chloride Inorganic materials 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 8
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims abstract description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000005751 Copper oxide Substances 0.000 claims abstract description 3
- 229910001508 alkali metal halide Inorganic materials 0.000 claims abstract description 3
- 150000008045 alkali metal halides Chemical class 0.000 claims abstract description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 9
- 229910001882 dioxygen Inorganic materials 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 4
- -1 rare earth halide Chemical class 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 abstract description 2
- 239000004576 sand Substances 0.000 abstract description 2
- 239000000741 silica gel Substances 0.000 abstract description 2
- 229910002027 silica gel Inorganic materials 0.000 abstract description 2
- 229910002249 LaCl3 Inorganic materials 0.000 abstract 1
- 150000004820 halides Chemical class 0.000 abstract 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101710083129 50S ribosomal protein L10, chloroplastic Proteins 0.000 description 1
- 101100013118 Agrobacterium fabrum (strain C58 / ATCC 33970) fliN gene Proteins 0.000 description 1
- YDGLLXOXPIAITK-UHFFFAOYSA-L Cl[Cu](Cl)[K] Chemical compound Cl[Cu](Cl)[K] YDGLLXOXPIAITK-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101710122479 Isocitrate lyase 1 Proteins 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- WTQUHLHXFJEOTI-UHFFFAOYSA-H trichloroneodymium;trichloropraseodymium Chemical compound Cl[Pr](Cl)Cl.Cl[Nd](Cl)Cl WTQUHLHXFJEOTI-UHFFFAOYSA-H 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【発明の詳細な説明】
≦産業上の利用分野〉
本発明は、塩化水系ガスを分子状の酸素で酸化して塩素
をmM造する方法にIllづる。特に、流動層反応器を
用いて、高空時収率(以下高STYと略称する)で塩素
を取得し、しかも長tI間に亙り流動層触媒層を安定に
稼働させる方法に係わる。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is directed to a method for producing mM chlorine by oxidizing a chlorinated water gas with molecular oxygen. In particular, the present invention relates to a method of obtaining chlorine at a high space-time yield (hereinafter referred to as high STY) using a fluidized bed reactor, and also operating the fluidized bed catalyst bed stably over a long tI period.
本発明の技術的背景は次のとおりである。塩素は食塩の
電解により工業的に’laされ、塩素の需要は年々増大
づるにも拘らず、食塩の電解の際に生成する苛性ソーダ
のm要は塩素のそれより少ないので、その不均衡をg4
整するのは困難な事情にある。一方、filN化合物の
塩素化反応または、ホスゲンを用いる際に人聞の塩化水
素が副生づるから、671生塩化水木の(klは、mM
の需25品より大幅に多いため、この不均衡をfj正す
るのに(ホ)難している。人111の塩化水系が未利用
のまま無駄に廃棄され、また廃棄5611’にも多額の
コストを費やしくいる。従って、人聞に廃棄されている
塩化水素から効率よく、塩素が回収出来れば、苛性ソー
ダの生産聞との不均衡を是正し、塩^の需要を満たすこ
とが出来る。The technical background of the present invention is as follows. Chlorine is produced industrially through the electrolysis of table salt, and although the demand for chlorine is increasing year by year, the amount of caustic soda produced during the electrolysis of table salt is less than that of chlorine, so the imbalance can be corrected by
The situation is difficult to correct. On the other hand, since human hydrogen chloride is produced as a by-product during the chlorination reaction of filN compounds or when using phosgene,
Since the demand for fj is significantly higher than the demand for 25 products, it is difficult to correct this imbalance. The chloride water system of the person 111 is unused and wasted, and a large amount of cost is also spent on the disposal 5611'. Therefore, if chlorine can be efficiently recovered from the hydrogen chloride that is being disposed of by humans, it will be possible to correct the imbalance with the production of caustic soda and meet the demand for salt.
く従来の技術〉
塩化水素を酸化して塩素を製造する反応は古くから1)
e s c o n反応として知られている。Conventional technology> The reaction of producing chlorine by oxidizing hydrogen chloride has been around for a long time 1)
This is known as the e scon reaction.
1868年、Qeaconの発明による銅系の触媒が、
従来量も優れた活性を示す触媒とされ、塩化鋼と塩化カ
リに第三成分として種々な化合物を添加した触媒が多数
提案されている。第三成分に稀土類の化合物を添加した
触媒は反応温度が350〜370°Cで操業できる利点
がある(特公昭3 B−20358号)。 しかしなが
ら、上記した触媒の最大の問題Jiaは、触媒活性成分
Cu−K CL−稀土類j忌化物が、反応条何下で溶融
塩となっている点にある。従って、触媒を使用する際に
は、適当な担体上に、上記した活性成分を担持させて用
いることが必要である。塩化水素の酸化反応は14Kc
a l/mo Iの発熱反応であるために、■案内操業
には固定床反応器では、困難であり、流動層反応器を用
いることが必須となる。In 1868, a copper-based catalyst invented by Qeacon
Conventional amounts are considered to be catalysts that exhibit excellent activity, and many catalysts have been proposed in which various compounds are added as third components to chlorinated steel and potassium chloride. A catalyst in which a rare earth compound is added as the third component has the advantage of being able to operate at a reaction temperature of 350 to 370°C (Japanese Patent Publication No. 3 B-20358). However, the biggest problem with the above-mentioned catalyst is that the catalytic active component Cu-KCL-rare earth compound becomes a molten salt under various reaction conditions. Therefore, when using a catalyst, it is necessary to support the above-mentioned active ingredient on a suitable carrier. The oxidation reaction of hydrogen chloride is 14Kc
Since it is an exothermic reaction of a l/mo I, it is difficult to use a fixed bed reactor for guided operation, and it is essential to use a fluidized bed reactor.
溶融塩を担体に10持させた触媒を流動層反応器に使用
すると、触媒体は高い線速度で流動するため、触媒体の
破砕が生じる。触媒体が破損すると担体細孔内に吸蔵さ
れていた溶融塩が外部に溢出し、触媒体の固結を生じる
。これが長期間の操業の際に、流動層の流動性の低下、
更に触媒層の固結を生じ操業が不安定となる。When a catalyst having 100% of molten salt supported on a carrier is used in a fluidized bed reactor, the catalyst body flows at a high linear velocity, resulting in fragmentation of the catalyst body. When the catalyst body is damaged, the molten salt stored in the pores of the carrier overflows to the outside, causing solidification of the catalyst body. During long-term operation, this causes a decrease in the fluidity of the fluidized bed.
Furthermore, the catalyst layer will solidify, making the operation unstable.
更に、塩化銅系触媒の他の問題点はSTYが極めて低い
jjヱにある。特公昭38−20358号に記載され(
いる塩化水素の処理!11は、41々160L HC
L / K (]触媒、1−1rに過ぎない。また、C
hCm、&1nd、(london)1962イ「 7
6〜83頁にも、同じ稈rαの(めが記載されている。Furthermore, another problem with the copper chloride catalyst is that the STY is extremely low. Described in Special Publication No. 38-20358 (
Treatment of hydrogen chloride! 11 is 41 each 160L HC
L/K (] catalyst, only 1-1r. Also, C
hCm, &1nd, (london) 1962 7
Pages 6 to 83 also describe the same culm rα.
す゛なわら、塩化水素の処理量が低い一低S[Yのため
、反応器のサイズが過大となり、HC1−10、C1,
等にl:f4温下で耐えるへ級材料の使用filが多大
で、反応器の」ストが高くなる難白をもつ。However, since the throughput of hydrogen chloride is low, the size of the reactor becomes too large, and HC1-10, C1,
For example, a large amount of F-grade material that can withstand l:f4 temperatures is used, which has the disadvantage of increasing reactor stress.
〈発明が解決しようとする問題点〉
本発明の[1的は、塩化銅系の触媒を流動層反応器に使
用する際に生じる欠点を改善し、STYを向上させるこ
とが出来る塩化水素から塩素を製造する方法を提供する
にある。<Problems to be Solved by the Invention> The first object of the present invention is to improve the shortcomings that occur when using a copper chloride-based catalyst in a fluidized bed reactor, and to improve the STY from hydrogen chloride to chlorine. The purpose is to provide a method for manufacturing.
〈本発明が問題点を解決するための手段〉本発明は、塩
化鋼あるいは酸化と酸化銅とアルカリ金属のハロゲン化
物および稀土類のハロゲン化物もしくはその化合物を担
体に担持した触媒を流!JJN反応器に使用し、塩化水
素を分子状酸素で酸化し塩素を製造するに際し、塩化水
素に対する分子状酸素のモル比HCL10゜を110.
5〜1/2の範囲で反応させることを特徴とする塩化水
素から塩素をyJ造する方法である。<Means for Solving the Problems of the Present Invention> The present invention provides a catalyst in which chlorinated steel or oxidized copper oxide, an alkali metal halide, a rare earth halide, or a compound thereof is supported on a carrier. When using the JJN reactor to oxidize hydrogen chloride with molecular oxygen to produce chlorine, the molar ratio of molecular oxygen to hydrogen chloride, HCL, is 10°.
This is a method for producing chlorine from hydrogen chloride in which the reaction is carried out in a range of 5 to 1/2.
本発明者等は上記発明の目的を達成するため、鋭意研究
した結果、塩′化水素と分子状酸素のモル比)ICL1
0□を110.5より小さい条件で反応させると、撞く
べきことに、触媒粒子の固結は実質的に生ぜず、長期間
にわたり流動層反応器を安定に操業出来ることを見出だ
した。また、逆にHCL / O,を4より大なる条件
で流動層反応器を運転すると、触媒粒子の固結が生じ、
流動床の操業が極めて困難となることを見出だした。In order to achieve the above object of the invention, the present inventors have made extensive research and found that the molar ratio of hydrogen chloride to molecular oxygen) ICL1
It has been found that when the reaction is carried out under conditions where 0□ is smaller than 110.5, caking of the catalyst particles does not substantially occur and the fluidized bed reactor can be stably operated for a long period of time. On the other hand, if a fluidized bed reactor is operated under conditions where HCL/O is greater than 4, catalyst particles will solidify.
It has been found that operating a fluidized bed is extremely difficult.
塩化水素/M素のモル比を上記したように、110.5
より小さい値に保つことで、塩化水素の処理量が大幅に
向上し、STYを改善することも同時に達成出来る。As mentioned above, the molar ratio of hydrogen chloride/M element is 110.5.
By keeping the value to a smaller value, the throughput of hydrogen chloride can be greatly improved and STY can be improved at the same time.
HCL / O,を1/2より小さくした場合は、流動
層触媒の固結防止には、好ましい方向ではあるが、未反
応酸素のリサイクル量が増大し、それに要プる動力コス
]・が過大となり好ましくない。If HCL/O, is smaller than 1/2, this is preferable for preventing caking of the fluidized bed catalyst, but the amount of unreacted oxygen recycled increases, and the power cost required for this increases too much. This is undesirable.
また、生成した塩素を圧縮、冷却して、塩素を液体とし
て回収する際、塩素回収率も低下するので、HCLlo
、を1/2より小さくすることは適当でない。In addition, when the generated chlorine is compressed and cooled to recover chlorine as a liquid, the chlorine recovery rate also decreases.
It is not appropriate to make , smaller than 1/2.
本発明に使用する触媒として、既往の塩化銅−塩化カリ
−稀土類化合物をシリカに担持した触媒が使用される。As the catalyst used in the present invention, a conventional catalyst in which a copper chloride-potassium chloride-rare earth compound is supported on silica is used.
反応の温度は350〜400°Cの範囲で、HCL &
O,のモル比は前述の範囲を保つことが必須である。The temperature of the reaction is in the range of 350-400 °C, HCL &
It is essential that the molar ratio of O is maintained within the above range.
HCL (7)処理fdjt400〜100ONL/K
O0Hrの範囲が十分可能であり、従来の100〜20
ONL/Ko、HrよりはるかにBSTYが冑られる。HCL (7) Processing fdjt400~100ONL/K
The range of O0Hr is fully possible, and the conventional 100 to 20
BSTY is much more impressive than ONL/Ko and Hr.
HCL / O,を110.5より小に保つためには、
分子状lI!素源として、純酸素ガスを使用することが
好ましい、M素ガスの純度は80%以上のものを使用す
るのがよい6分子状酸素源に空気を使用すると、上記H
CL10比を規定内に保つためには、窒素成分が過大と
なり、好ましくない。すなわら、窒素分が多いと流動床
の線速度を適当な範囲に保らガく、生成塩素を圧縮、液
化する工程の効率が低下する。また、不活性成分のバー
ジ川も増加するので好ましくない。To keep HCL/O, below 110.5,
Molecular lI! It is preferable to use pure oxygen gas as the elementary source.The purity of the M elementary gas is preferably 80% or more.If air is used as the hexagonal oxygen source, the above H
In order to maintain the CL10 ratio within the specified range, the nitrogen component becomes excessive, which is undesirable. That is, if the nitrogen content is large, it becomes difficult to maintain the linear velocity of the fluidized bed within an appropriate range, and the efficiency of the process of compressing and liquefying the produced chlorine decreases. In addition, the amount of inert ingredients increases, which is not preferable.
〈作用〉
塩化水素と分子状M素のモル比を特定し、流動層反応器
内の触媒の固結を防止する。<Function> Specify the molar ratio of hydrogen chloride and molecular M element to prevent caking of the catalyst in the fluidized bed reactor.
〈実施例〉
実施例と比較例をtげ本発明を説明し、その結果を第1
表に示す。<Example> The present invention will be explained using examples and comparative examples, and the results will be presented in the first section.
Shown in the table.
表面M250m/c+、細孔容積0.9(II/gのシ
リカゲルを10体に用いる。木担体の平均粒径は62μ
で流8層用に適しに粒1立分布をもつ。塩化銅20wt
%、塩化カリ10wt%、塩化ランタン10wt%を水
溶液から浸潤後200°Cで乾燥して、触媒を調製した
。Surface M250m/c+, pore volume 0.9 (II/g silica gel is used for 10 bodies. The average particle size of the wood carrier is 62μ
It has a grain distribution suitable for 8-layer flow. Copper chloride 20wt
%, 10 wt % of potassium chloride, and 10 wt % of lanthanum chloride were infiltrated from an aqueous solution and then dried at 200°C to prepare a catalyst.
本触媒の充填密度は1.0g/ccであった。The packing density of this catalyst was 1.0 g/cc.
本触媒を内径4インチのステンレススチール製流動層反
応器に2KQ充填し、外部より砂流動浴で300’ C
に加熱した。HCLlo、−110,75の条件で、H
CLの処理ff180ONL/KO。2KQ of this catalyst was packed into a stainless steel fluidized bed reactor with an inner diameter of 4 inches, and heated to 300'C in a sand fluidized bath from the outside.
heated to. Under the conditions of HCLlo, -110,75, H
CL processing ff180ONL/KO.
+−+rで反応さUだ。触媒層の4麿は反応熱のために
360〜370°Cに上界した。出口のガスをサンプリ
ングし1成した塩素をに1溶液に吸収させ、生じた1を
チオMMソーダで滴定し、塩化水素の塩素への転化率を
測定した。触媒の耐久試験を兼ねて、反応を長期間連続
し、流動層の差圧変動から流動床の安定度、触媒粒子の
固結を定期的に触媒を少φサンプリングして検【9した
。The response is +-+r. The temperature of the catalyst layer rose to 360-370°C due to the heat of reaction. The gas at the outlet was sampled, the chlorine formed as 1 was absorbed into a solution of 1, and the 1 formed was titrated with thioMM soda to measure the conversion rate of hydrogen chloride to chlorine. In order to test the durability of the catalyst, the reaction was continued for a long period of time, and the stability of the fluidized bed and the solidification of catalyst particles were checked by periodically sampling a small diameter of the catalyst from the fluctuations in the pressure difference in the fluidized bed.
比較のためにHCL / 0.比を変えて連続試験を実
施した結果を表−1に併記した。For comparison, HCL/0. The results of continuous tests conducted with different ratios are also listed in Table 1.
表−1
比較例 実施例1 実施例2
1−I OL / 0
(モル比) 110.24+ 110.5
1/1700時周模
差圧変vJtfi小 微小 微小触媒固結
tfiffl 無し 烈しHCL漠度%
67 78 8314GG時間接
差圧変動 中f1度 微小 微小触媒固結
小量 無し 烈し80111度%
62 75 80210011問後
差圧変動 大 微小 微小触媒固結
中程度 微小 黙しく流動性不良)
HCL濃麿% 57 74 80実施例3
表面積280m/g、細孔容M0.85cc/Qのシリ
カ微小球(平均粒径62μ)に塩化銅12wt%、塩化
カリ8wt%、塩化ジジム(ネオジウム75%、プラセ
オジウム23%、その他の稀土w42%から成る稀土類
塩化物の混合物)12wt%を担持した流動層触媒を用
いて実施例1と同様の反応装置で反応させた。Table-1 Comparative Example Example 1 Example 2 1-I OL/0 (mole ratio) 110.24+ 110.5
1/1700 hourly differential pressure change vJtfi small minute minute catalyst solidification
tfiffl None Intense HCL vagueness%
67 78 8314GG Hourly contact differential pressure fluctuation Medium f1 degree Micro Small amount of catalyst consolidation Small amount None Intense 80111 degrees%
62 75 Differential pressure fluctuation after 80210011 question Large Micro Small catalyst solidification
(moderately small, silently poor flowability) HCL concentration% 57 74 80 Example 3 Silica microspheres (average particle size 62 μ) with surface area 280 m/g and pore volume M0.85 cc/Q were coated with 12 wt% copper chloride and potassium chloride. The reaction was carried out in the same reactor as in Example 1 using a fluidized bed catalyst supporting 8 wt% and 12 wt% of didymium chloride (a mixture of rare earth chlorides consisting of 75% neodymium, 23% praseodymium, and 42% other rare earth w). Ta.
HCLlot−110,75、触媒床温度365” C
5HCLの供給量80ONL/KO,Hrで反応させた
。HCLlot-110,75, catalyst bed temperature 365”C
The reaction was carried out at a supply amount of 5HCL of 80 ONL/KO, Hr.
反応を長期間連続して実施した結果は、反応開始72O
Hrs後のHCL転化率85%、2100Hrs後82
%、280OHrs後81%の転化率を維持した。 流
動床の差圧変動は微小であり、反応開始直後と2800
Hrs後とで変化は認められず、流動床の操業状態は極
めて安定していた。As a result of continuously carrying out the reaction for a long period of time, the reaction started at 72O.
HCL conversion rate 85% after Hrs, 82% after 2100Hrs
%, a conversion of 81% was maintained after 280 OHrs. The differential pressure fluctuation in the fluidized bed is minute, and immediately after the start of the reaction and at 2800 m
No change was observed after hours, and the operating condition of the fluidized bed was extremely stable.
〈発明の効果〉
本発明により、本発明の目的が達成されることが確認さ
れた。<Effects of the Invention> It has been confirmed that the object of the invention is achieved by the present invention.
特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.
Claims (1)
物および稀土類のハロゲン化物もしくはその化合物を担
体に担持した触媒を流動層反応に使用し、塩化水系を分
子状酸素で酸化し塩素を製造するに際し、塩化水素に対
する分子状酸素のモル比HCL/O_2を1/0.5〜
1/2の範囲で反応させることを特徴とする塩化水素か
ら塩素を製造する方法。1) When producing chlorine by oxidizing an aqueous chloride system with molecular oxygen using a catalyst in which copper chloride or copper oxide and an alkali metal halide, a rare earth halide, or a compound thereof are supported on a carrier in a fluidized bed reaction. , the molar ratio of molecular oxygen to hydrogen chloride HCL/O_2 is 1/0.5 ~
A method for producing chlorine from hydrogen chloride, characterized in that the reaction is carried out in a range of 1/2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63084415A JPH01257102A (en) | 1988-04-06 | 1988-04-06 | Production of chlorine from hydrogen chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63084415A JPH01257102A (en) | 1988-04-06 | 1988-04-06 | Production of chlorine from hydrogen chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01257102A true JPH01257102A (en) | 1989-10-13 |
JPH0569043B2 JPH0569043B2 (en) | 1993-09-30 |
Family
ID=13829955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63084415A Granted JPH01257102A (en) | 1988-04-06 | 1988-04-06 | Production of chlorine from hydrogen chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01257102A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0743277A1 (en) * | 1995-05-18 | 1996-11-20 | Sumitomo Chemical Company Limited | Process for producing chlorine |
US5639436A (en) * | 1995-09-21 | 1997-06-17 | University Of Southern California | Exothermic two-stage process for catalytic oxidation of hydrogen chloride |
US6071488A (en) * | 1998-08-31 | 2000-06-06 | Medalert, Inc. | Use of metal oxychlorides for removal of hydrogen chloride from mixed gases |
WO2009041384A1 (en) * | 2007-09-27 | 2009-04-02 | Mitsui Chemicals, Inc. | Catalyst, method for producing the same, and method for producing chlorine using the catalyst |
JP2010189206A (en) * | 2009-02-16 | 2010-09-02 | Mitsui Chemicals Inc | Method for producing chlorine |
WO2010110392A1 (en) * | 2009-03-26 | 2010-09-30 | 三井化学株式会社 | Catalyst for production of chlorine and process for production of chlorine using the catalyst |
JP2010227793A (en) * | 2009-03-26 | 2010-10-14 | Mitsui Chemicals Inc | Fluidized-bed catalyst for production of chlorine and method of producing chlorine using the same |
JP2010227794A (en) * | 2009-03-26 | 2010-10-14 | Mitsui Chemicals Inc | Catalyst for production of chlorine and method of producing chlorine using the same |
JP2010248062A (en) * | 2009-03-26 | 2010-11-04 | Mitsui Chemicals Inc | Method of manufacturing chlorine from hydrogen chloride using fluidized bed reactor |
-
1988
- 1988-04-06 JP JP63084415A patent/JPH01257102A/en active Granted
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5871707A (en) * | 1995-05-18 | 1999-02-16 | Sumitomo Chemical Company, Limited | Process for producing chlorine |
EP0743277A1 (en) * | 1995-05-18 | 1996-11-20 | Sumitomo Chemical Company Limited | Process for producing chlorine |
US5639436A (en) * | 1995-09-21 | 1997-06-17 | University Of Southern California | Exothermic two-stage process for catalytic oxidation of hydrogen chloride |
US6071488A (en) * | 1998-08-31 | 2000-06-06 | Medalert, Inc. | Use of metal oxychlorides for removal of hydrogen chloride from mixed gases |
US8222178B2 (en) | 2007-09-27 | 2012-07-17 | Mitsui Chemicals, Inc. | Catalyst and production process thereof, and chlorine production using the catalyst |
WO2009041384A1 (en) * | 2007-09-27 | 2009-04-02 | Mitsui Chemicals, Inc. | Catalyst, method for producing the same, and method for producing chlorine using the catalyst |
JP5414527B2 (en) * | 2007-09-27 | 2014-02-12 | 三井化学株式会社 | Catalyst, process for producing the same, and process for producing chlorine using the catalyst |
JP2010189206A (en) * | 2009-02-16 | 2010-09-02 | Mitsui Chemicals Inc | Method for producing chlorine |
WO2010110392A1 (en) * | 2009-03-26 | 2010-09-30 | 三井化学株式会社 | Catalyst for production of chlorine and process for production of chlorine using the catalyst |
JP2010248062A (en) * | 2009-03-26 | 2010-11-04 | Mitsui Chemicals Inc | Method of manufacturing chlorine from hydrogen chloride using fluidized bed reactor |
JP2010227794A (en) * | 2009-03-26 | 2010-10-14 | Mitsui Chemicals Inc | Catalyst for production of chlorine and method of producing chlorine using the same |
JP2010227793A (en) * | 2009-03-26 | 2010-10-14 | Mitsui Chemicals Inc | Fluidized-bed catalyst for production of chlorine and method of producing chlorine using the same |
US9108845B2 (en) | 2009-03-26 | 2015-08-18 | Mitsui Chemicals, Inc. | Chlorine production catalyst and chlorine production process using the catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0569043B2 (en) | 1993-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5846898A (en) | Production of hydrogen peroxide | |
JP4741623B2 (en) | Catalyst composition for oxychlorination reaction | |
JP6673413B2 (en) | Method for producing fluoroolefin | |
KR100336337B1 (en) | Fluorination catalyst and fluorination process | |
JPS6191142A (en) | Synthesis of iodobenzene | |
EP0328127B1 (en) | Gas-phase fluorination process | |
JP2002029711A5 (en) | ||
JPH01257102A (en) | Production of chlorine from hydrogen chloride | |
US3260678A (en) | Catalyst composition, particularly for catalyzing oxidation of hydrogen chloride to chlorine | |
JPS62168547A (en) | Silver catalyst and its production | |
KR20090026381A (en) | Process for the chlorine by oxidation of hydrogen chloride | |
JP2012529415A (en) | Method for oxidizing hydrogen chloride over a catalyst with low surface roughness | |
JP7219625B2 (en) | Method for producing 1-chloro-2,2-difluoroethylene | |
JPH0438826B2 (en) | ||
JP2001019405A (en) | Production of chlorine | |
JP3270670B2 (en) | Catalyst for the production of chlorine from hydrogen chloride | |
JP2002226205A (en) | Oxidation method for carbon monoxide | |
US4392991A (en) | Method of making α-hematite catalyst | |
TW202035347A (en) | Method for producing cyclobutane | |
JPS62174034A (en) | Synthesis of chloropentafluoroethane from dichlorotetrafluoroethane and hydrofluoric acid | |
JP4245482B2 (en) | Method for producing isopropyl chloride | |
JPH02174742A (en) | Preparation of glycolaldehyde | |
JPH0226613B2 (en) | ||
JPH08217407A (en) | Method for oxidation of hydrogen chloride | |
JP3260779B2 (en) | Purification method of aromatic hydrocarbon vapor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080930 Year of fee payment: 15 |