JPH01247507A - Method for converting molten metal into drops - Google Patents
Method for converting molten metal into dropsInfo
- Publication number
- JPH01247507A JPH01247507A JP7457388A JP7457388A JPH01247507A JP H01247507 A JPH01247507 A JP H01247507A JP 7457388 A JP7457388 A JP 7457388A JP 7457388 A JP7457388 A JP 7457388A JP H01247507 A JPH01247507 A JP H01247507A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- flow
- coil
- nozzle
- droplets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 67
- 239000002184 metal Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RSPISYXLHRIGJD-UHFFFAOYSA-N OOOO Chemical compound OOOO RSPISYXLHRIGJD-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum and copper Chemical class 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、溶融金属収容容器から溶融金属を粒滴として
流出させる方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for flowing molten metal as droplets from a molten metal container.
従来の技術
溶融金属から金属粒を得る方法としては、ガスアトライ
ジング1回転円盤等の各種方法が知られている。また、
最近ではタンデイツシュ等の容器から溶融金属を粒滴状
で流出させ、所定の板状に堆積させることにより、製品
を作る方法が検討されている。BACKGROUND OF THE INVENTION Various methods are known for obtaining metal grains from molten metal, such as gas attrition and one-rotation disk method. Also,
Recently, a method of manufacturing products by flowing molten metal in the form of droplets from a container such as a tundish and depositing it in a predetermined plate shape has been studied.
たとえば、特開昭81−202752号公報では、溶融
金属に低温で高速のガスジェット流を吹き付けることに
より、液相率の低い半溶融状態の金属粒子流として、ツ
インドラム式連続鋳造機の冷却ドラムの間に送り込み、
金属薄板を製造している。また特開昭e!−11175
8号公報においては、タンデイツシュの底壁に設けた注
湯ノズルにコイルを回し、所定の時間間隔でオン参オフ
される高周波電流をコイルに通電することによって、注
湯ノズルから流出する溶融金属流に電磁気的な力を周期
的に加え粒滴化する装置が開示されている。For example, in Japanese Patent Application Laid-open No. 81-202752, by blowing a low-temperature, high-speed gas jet stream onto molten metal, a semi-molten metal particle stream with a low liquid phase ratio is produced on the cooling drum of a twin-drum continuous casting machine. Send it between
Manufactures thin metal sheets. Tokukai Sho-e again! -11175
In Publication No. 8, a coil is wound around a pouring nozzle provided on the bottom wall of a tundish, and a high-frequency current that is turned on and off at predetermined time intervals is applied to the coil, thereby controlling the flow of molten metal flowing out from the pouring nozzle. An apparatus is disclosed that periodically applies electromagnetic force to particles to form them into droplets.
発明が解決しようとする課題
特開昭81−202752号公報では、溶融金属に低温
で高速のガスジェット流を吹き付けている。そのため、
このガスジェット流によって溶融金属及び注湯ノズルが
冷却し、凝固又は半凝固した溶融金属により、注湯ノズ
ルが閉塞され易い、その結果、安定した条件で溶融金属
を粒滴として流出させることは困難である。Problems to be Solved by the Invention In Japanese Patent Application Laid-Open No. 81-202752, a high-speed gas jet stream is sprayed onto molten metal at a low temperature. Therefore,
The molten metal and the pouring nozzle are cooled by this gas jet stream, and the pouring nozzle is likely to be clogged by the solidified or semi-solidified molten metal.As a result, it is difficult to flow out the molten metal as droplets under stable conditions. It is.
他方、特開昭81−111758号公報では、コイルに
通電するとき、ピンチ効果に基づく注湯ノズルの軸心方
向の収縮力(以下、この収縮力を「ピンチ力」という)
が発生し、溶融金属を保持することができる。しかしな
がら、ノズルから噴出する溶融金属の流れを電源のオン
オフだけで制御しているため、ピンチ力の推力レベルを
変えることができず溶融金属の流量制御を任意に行なう
ことができない。On the other hand, in JP-A-81-111758, when the coil is energized, a contraction force in the axial direction of the pouring nozzle based on the pinch effect (hereinafter, this contraction force is referred to as "pinch force") is applied.
can occur and hold molten metal. However, since the flow of molten metal ejected from the nozzle is controlled only by turning on and off the power supply, the thrust level of the pinch force cannot be changed and the flow rate of molten metal cannot be controlled arbitrarily.
溶融金属の微粒を得るためにはノズル径を小さくしなけ
ればならず、ノズル閉塞が起き易く、かつノズルの製作
上困難である。また電磁力の変化が直接ノズルに伝わる
ため溶融金属の流れの振動はノズルに吸収され非効率で
ありまたノズルの損耗が激しい。In order to obtain fine particles of molten metal, the nozzle diameter must be made small, which tends to cause nozzle clogging and is difficult to manufacture. Furthermore, since changes in electromagnetic force are directly transmitted to the nozzle, vibrations in the flow of molten metal are absorbed by the nozzle, resulting in inefficiency and severe wear and tear on the nozzle.
そこで本発明では流量制御を行なうコイルと粒滴化を行
なうコイルを別系統とすることにより流量制御を容易に
し、またピンチ力を利用してノズル径より小さい径の溶
融金属流を形成させピンチ力のオンオフによって溶融金
属流に振動を加える事によってくびれ分離部のある流れ
として流出させ粒滴化を促進させることを目的とする。Therefore, in the present invention, the coil for controlling the flow rate and the coil for forming droplets are made into separate systems to facilitate flow control, and the pinch force is used to form a molten metal flow with a diameter smaller than the nozzle diameter. The purpose of this is to add vibration to the molten metal flow by turning on and off the molten metal so that it flows out as a flow with a constriction separation part and promotes the formation of droplets.
課題を解決するための手段
本発明の粒滴化方法は、その課題を解決するために、溶
融金属を収容した容器の注湯ノズルに配設した2つのコ
イルに電流を通電しノズル中を流下する溶融金属に電磁
力を作用させる際に、第一のコイルに交流電流を流すこ
とによって溶融金属の流れを収縮させるとともに流量制
御を行い、第二のコイルにパルス状の電流を流すことに
より溶融金属流を断続し粒滴(液滴、半凝固状態を含む
、)を得ることを特徴とする。Means for Solving the Problems In order to solve the problems, the method for forming droplets of the present invention involves applying current to two coils disposed in a pouring nozzle of a container containing molten metal so that the molten metal flows through the nozzle. When applying an electromagnetic force to the molten metal, an alternating current is passed through the first coil to contract the flow of the molten metal and the flow rate is controlled, and a pulsed current is passed through the second coil to cause the molten metal to melt. It is characterized by intermittent metal flow to obtain droplets (including liquid droplets and semi-solidified state).
以下に本発明を本発明を実施する装置例と共に説明する
。The present invention will be explained below along with an example of an apparatus for carrying out the present invention.
第1図は、この装置の要部を示す。FIG. 1 shows the main parts of this device.
溶融金属lを収容しているタンデイツシュ2等の容器の
底部に注湯ノズル3が垂直下方に向は設けられている。A pouring nozzle 3 is provided vertically downward at the bottom of a container such as a tundish 2 containing molten metal l.
そして高周波電源4に結線された第一のコイル5を注湯
ノズル3に設けている。また第二のコイル6が注湯ノズ
ル3の先端部に設けられており、この第2コイルは高周
波電源7に結線されている。A first coil 5 connected to a high frequency power source 4 is provided in the pouring nozzle 3. Further, a second coil 6 is provided at the tip of the pouring nozzle 3, and this second coil is connected to a high frequency power source 7.
ここで注湯ノズル3内の溶融金属lに対する電磁力の作
用について説明する。Here, the action of electromagnetic force on the molten metal l in the pouring nozzle 3 will be explained.
溶融金属1が流下するノズル3を捲回するソレノイドコ
イル5に単相高周波電流を流す場合、例えば電流が第2
図中のIによって示す向きに流れている時には、図中B
に示す向きに磁界が発生する。この磁界Bは印加した高
周波電流の周波数をもって時間的に変化するので交流磁
界を発生しノズル3中を流下する溶融金属l中にその中
心軸のまわりをまわる誘導電流iが流れる。溶融金属l
中の誘導電流iは磁界Bと作用して電磁力を発生し、流
下する溶融金属1の流れを収縮させる力、ピンチ力とな
る。When a single-phase high-frequency current is passed through the solenoid coil 5 that winds the nozzle 3 through which the molten metal 1 flows, for example, the current is
When the flow is in the direction indicated by I in the diagram, B in the diagram
A magnetic field is generated in the direction shown in . Since this magnetic field B changes over time with the frequency of the applied high-frequency current, an alternating current magnetic field is generated, and an induced current i flowing around the central axis flows in the molten metal l flowing down through the nozzle 3. molten metal
The induced current i inside interacts with the magnetic field B to generate an electromagnetic force, which becomes a force that contracts the flow of the molten metal 1 flowing down, a pinch force.
コイルに流す高周波電流の電流制御によって溶融金属に
働くピンチ力を制御することができ、このピンチ力を制
御することにより溶融金属流はノズルより小さい径の流
れとなって流下する。The pinching force acting on the molten metal can be controlled by controlling the high-frequency current flowing through the coil, and by controlling this pinching force, the molten metal flow becomes a stream with a diameter smaller than the nozzle and flows down.
第二のコイルにパルス状の電流を与えることによって、
溶融金属に働くピンチ力を周期的に与え、これにより溶
融金属流に振動を与えることになり、くびれ分離部のあ
る流れとして流出させる。流出した溶融金属は、それ自
体の表面張力などの作用により粒滴化する。 ゛
実施例
溶鋼が入った内容積0.2コのタンデイツシュの底壁に
10m層の口径をもつ注湯ノズルを取付けた第一のコイ
ルに周波数2500Hzの単相高周波電流20.0OO
A流し、ノズル先端部に取り付けた第二のコイルにパル
ス状の電流を1■sec間隔で流した。By applying a pulsed current to the second coil,
A pinch force acting on the molten metal is periodically applied, which gives vibration to the molten metal flow, causing it to flow out as a flow with a constriction separation part. The molten metal that flows out becomes droplets due to its own surface tension.゛Example: A single-phase high-frequency current of 20.0 OOOO with a frequency of 2500 Hz is applied to the first coil in which a pouring nozzle with a diameter of 10 m layer is attached to the bottom wall of a tundish with an internal volume of 0.2 pieces containing molten steel.
A pulse current was applied to the second coil attached to the tip of the nozzle at intervals of 1 sec.
これにより注湯ノズルから流出する金属流を流量l k
g/sに制御し粒径2■簡の粒滴とすることができた。As a result, the metal flow flowing out from the pouring nozzle is reduced to a flow rate l k
It was possible to control the droplets to a particle size of 2 cm by controlling the droplets at 1 g/s.
得られた粒滴は、冷却ドラム方式、ベルト方式等の連続
鋳造機に供給され、凝固成形され薄板になる。このよう
にして得られた薄板、即ち金属板は、粒径の小さな粒滴
を凝固して得られたものであるため、偏析がなく均質で
緻密な組織をもつ鋳片となる。また粒滴を水等の冷媒に
直接噴射させると、金属粒が製造される。The obtained droplets are supplied to a continuous casting machine such as a cooling drum type or a belt type, and are solidified and formed into a thin plate. The thin plate, that is, the metal plate thus obtained, is obtained by solidifying particle droplets with a small particle size, so it becomes a slab with no segregation and a homogeneous and dense structure. Furthermore, when particle droplets are directly injected into a refrigerant such as water, metal particles are produced.
なお、アルミニウム、銅などの溶融金属のように溶鋼に
比べて導電率が高い金属については第一のコイルに流す
交流電流の周波数、電流値を低くしても同様の効果を得
ることができる0例えばアルミニウムの場合、電流値に
もよるが、周波数は500Hz程度でよい。Note that for metals with higher conductivity than molten steel, such as molten metals such as aluminum and copper, the same effect can be obtained by lowering the frequency and current value of the alternating current flowing through the first coil. For example, in the case of aluminum, the frequency may be about 500 Hz, although it depends on the current value.
発明の詳細
な説明したように本発明においては、注湯ノズルを流下
する溶融金属に電磁力を作用させて流れを収縮させ流量
制御およびノズルに対して非接触化した上で、電磁力を
周期的に変動させることにより円柱状の液膜として注湯
ノズルから吐出される溶融金属の形態を制御している。As described in detail, in the present invention, electromagnetic force is applied to the molten metal flowing down the pouring nozzle to contract the flow to control the flow rate and make it non-contact with the nozzle, and then the electromagnetic force is applied periodically. By varying this, the form of the molten metal discharged from the pouring nozzle as a cylindrical liquid film is controlled.
このため必要とする粒度の粒滴を精度良く得ることがで
きる。また、電磁力が溶融金属に均一に作用するためバ
ラツキの少ない粒径をもつ粒滴が得られる。Therefore, droplets of the required particle size can be obtained with high precision. Furthermore, since the electromagnetic force acts uniformly on the molten metal, droplets with a uniform particle size can be obtained.
また溶融金属の流れを収縮させることにより、ノズルの
大きさに左右されずに微粒化できる。さらに微粒化の際
、ノズルに対して非接触であることから、ノズルの耐火
物の寿命が長くなる。また溶融金属中で渦電流が流れる
ことによりノズル内での溶融金属の凝固によるノズル閉
塞を防ぐことができる。Furthermore, by contracting the flow of molten metal, it is possible to atomize the metal without being affected by the size of the nozzle. Furthermore, since there is no contact with the nozzle during atomization, the life of the nozzle refractory is extended. Furthermore, the eddy current flowing in the molten metal can prevent the nozzle from clogging due to solidification of the molten metal within the nozzle.
第1図は本発明の粒滴化を示す概略立面図、第2図は溶
融金属に推力を与える単相交流電流による磁界の作用を
説明するための図である。
1・・・溶融金属、2・・・タンデイツシュ。
3・・・注湯ノズル、4φ・・高周波電源、5・・・第
1のコイル、6・・Φ第2のコイル、7・・・高周波電
源又は直流電源、8・参〇スイッチ。FIG. 1 is a schematic elevational view showing the formation of droplets according to the present invention, and FIG. 2 is a diagram for explaining the action of a magnetic field caused by a single-phase alternating current that applies thrust to molten metal. 1... Molten metal, 2... Tandish. 3...Pouring nozzle, 4φ...high frequency power supply, 5...first coil, 6...Φ second coil, 7...high frequency power supply or DC power supply, 8.3 switch.
Claims (1)
コイルに電流を通電しノズル中を流下する溶融金属に電
磁力を作用させる際に、第一のコイルに交流電流を流す
ことによって溶融金属の流れを収縮させるとともに流量
制御を行い、第二のコイルにパルス状の電流を流すこと
により溶融金属流を断続し粒滴を得ることを特徴とする
溶融金属の粒滴化方法。When an electric current is applied to two coils installed in the pouring nozzle of a container containing molten metal and an electromagnetic force is applied to the molten metal flowing down the nozzle, alternating current is applied to the first coil to melt the metal. A method for forming droplets of molten metal, characterized by contracting the flow of metal and controlling the flow rate, and passing a pulsed current through a second coil to intermittent the flow of molten metal to obtain droplets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7457388A JPH01247507A (en) | 1988-03-30 | 1988-03-30 | Method for converting molten metal into drops |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7457388A JPH01247507A (en) | 1988-03-30 | 1988-03-30 | Method for converting molten metal into drops |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01247507A true JPH01247507A (en) | 1989-10-03 |
Family
ID=13551071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7457388A Pending JPH01247507A (en) | 1988-03-30 | 1988-03-30 | Method for converting molten metal into drops |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01247507A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100370861B1 (en) * | 2000-06-12 | 2003-02-05 | 에드호텍(주) | Method and apparatus for manufacturing engineering balls with high precision and high yield |
JP2006193775A (en) * | 2005-01-12 | 2006-07-27 | Digital Powder Systems Inc | Method and equipment for manufacturing metal particle |
US7187567B2 (en) | 2002-01-02 | 2007-03-06 | Bae Systems Plc | Operation of a current controller |
US7348689B2 (en) | 2002-01-02 | 2008-03-25 | Bae Systems Plc | Switching circuit and a method of operation thereof |
US7692337B2 (en) | 2002-01-02 | 2010-04-06 | Bae Systems Plc | Switching circuit and a method of operation thereof |
CN108723366A (en) * | 2018-04-11 | 2018-11-02 | 华中科技大学 | A kind of electron beam fuse transition state keeps system and keeping method |
-
1988
- 1988-03-30 JP JP7457388A patent/JPH01247507A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100370861B1 (en) * | 2000-06-12 | 2003-02-05 | 에드호텍(주) | Method and apparatus for manufacturing engineering balls with high precision and high yield |
US7187567B2 (en) | 2002-01-02 | 2007-03-06 | Bae Systems Plc | Operation of a current controller |
US7348689B2 (en) | 2002-01-02 | 2008-03-25 | Bae Systems Plc | Switching circuit and a method of operation thereof |
US7692337B2 (en) | 2002-01-02 | 2010-04-06 | Bae Systems Plc | Switching circuit and a method of operation thereof |
JP2006193775A (en) * | 2005-01-12 | 2006-07-27 | Digital Powder Systems Inc | Method and equipment for manufacturing metal particle |
CN108723366A (en) * | 2018-04-11 | 2018-11-02 | 华中科技大学 | A kind of electron beam fuse transition state keeps system and keeping method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2963758A (en) | Production of fine grained metal castings | |
US4582117A (en) | Heat transfer during casting between metallic alloys and a relatively moving substrate | |
US8944142B2 (en) | Method and device for the electromagnetic stirring of electrically conductive fluids | |
CA1097880A (en) | Horizontal continuous casting method and apparatus | |
JP2010535106A (en) | Method and device for electromagnetic stirring of a conductive fluid | |
JP2010535106A5 (en) | ||
KR100335228B1 (en) | Method and apparatus for casting moltel metal, and cast piece | |
JPS645984B2 (en) | ||
JPH01247507A (en) | Method for converting molten metal into drops | |
US4904497A (en) | Electromagnetic solder tinning method | |
DE19542211A1 (en) | Electromagnetic stirring device for a slab casting mold | |
EP1120180B1 (en) | Process and device for the continuous casting of metals | |
JP2001108376A (en) | Bottom casting type float melting apparatus | |
JPS58151949A (en) | Method for preventing clogging of immersion nozzle | |
CA1123897A (en) | Electromagnetic casting method and apparatus | |
US4953487A (en) | Electromagnetic solder tinning system | |
JPH01298103A (en) | Method and apparatus for making drip of molten metal | |
JPH01298104A (en) | Method and apparatus for making drip of molten metal | |
JPH01298105A (en) | Method and apparatus for making drip of molten metal | |
JP2000256708A (en) | Production of clean metal powder | |
JPH04138843A (en) | Device and method for continuously casting metal | |
JPS61111756A (en) | Apparatus for producing billet having fine crystal structure | |
JP2914776B2 (en) | Continuous dissolution and outflow control method for materials | |
JPS62110835A (en) | Continuous casting installation for steel | |
JP2002126856A (en) | Continuous casting method and cast piece |