JPH01246348A - Manufacture of alloying hot dip galvanized steel sheet - Google Patents
Manufacture of alloying hot dip galvanized steel sheetInfo
- Publication number
- JPH01246348A JPH01246348A JP7416688A JP7416688A JPH01246348A JP H01246348 A JPH01246348 A JP H01246348A JP 7416688 A JP7416688 A JP 7416688A JP 7416688 A JP7416688 A JP 7416688A JP H01246348 A JPH01246348 A JP H01246348A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- plating
- galvanized steel
- steel sheet
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 31
- 239000008397 galvanized steel Substances 0.000 title claims description 31
- 238000005275 alloying Methods 0.000 title claims description 29
- 238000007747 plating Methods 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 22
- 239000010959 steel Substances 0.000 claims abstract description 22
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 239000011701 zinc Substances 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000000227 grinding Methods 0.000 abstract description 23
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 229910052745 lead Inorganic materials 0.000 abstract description 3
- 238000007598 dipping method Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 16
- 239000010949 copper Substances 0.000 description 16
- 238000005246 galvanizing Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 229910001297 Zn alloy Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、加工時にめっき層が剥離しにくい合金化溶
融亜鉛めっき鋼板の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet in which the plating layer is difficult to peel off during processing.
自動車用車体の耐久性の向上を目的として、昨今、北米
向けを中心に車体の数多くの部分に、亜鉛めっき鋼板、
合金めっき鋼板、複合被覆鋼板等の各種表面処理鋼板が
使用されている。これらの鋼板に対しては、表面性状、
塗装性能、溶接性等の各種特性が要求されるが、これら
特性のうちで近年、耐食性、特に母材鋼板の耐孔食性に
対する要求が厳しくなってきている。このような観点か
ら、合金化溶融亜鉛めっき鋼板に対する要望が強まって
きた。In order to improve the durability of automobile bodies, galvanized steel sheets,
Various surface-treated steel sheets such as alloy-plated steel sheets and composite coated steel sheets are used. For these steel plates, surface texture,
Various properties such as painting performance and weldability are required, but in recent years, among these properties, requirements for corrosion resistance, particularly pitting corrosion resistance of the base steel plate, have become stricter. From this point of view, there has been an increasing demand for alloyed hot-dip galvanized steel sheets.
合金化溶融亜鉛めっき鋼板は、通常以下のようにして製
造される。即ち、熱延、冷延鋼帯に連続的に前処理を施
し、次いで、前処理を施した鋼板を溶融亜鉛めっき浴に
浸漬してめっきし、次いで、めっき浴の出側に設置され
た合金化炉内を連続的に通過させて、鋼板を500から
700′Cの温度に急速に昇温させ、この温度に短時間
保持してめっき層をFe −Zn合金にする。以下、こ
の合金化溶融亜鉛めっき鋼板の製造方法を従来技術1と
云う。Alloyed hot-dip galvanized steel sheets are usually manufactured as follows. That is, hot-rolled and cold-rolled steel strips are continuously pretreated, then the pretreated steel sheet is immersed in a hot-dip galvanizing bath for plating, and then the alloy is placed on the outlet side of the plating bath. The steel sheet is passed continuously through a curing furnace to rapidly raise the temperature to a temperature of 500 to 700'C, and is held at this temperature for a short time to form a plating layer of Fe--Zn alloy. Hereinafter, this method of manufacturing an alloyed hot-dip galvanized steel sheet will be referred to as Prior Art 1.
別の製造方法として、特公昭59−14541号公報に
は、亜鉛めっき鋼板を急速に1次加熱し、これによって
、めっき表面を再溶融させてめっき表面を平滑化し且つ
めつき表面の一部をFe −Zn金化溶融亜鉛めっき鋼
板の製造方法を従来技術2と云う。As another manufacturing method, Japanese Patent Publication No. 59-14541 discloses that a galvanized steel sheet is rapidly primary heated, thereby remelting the plating surface, smoothing the plating surface, and partially removing the plating surface. The method for producing Fe-Zn galvanized steel sheet is referred to as Prior Art 2.
上記従来技術1によれば、連続式溶融亜鉛めっき設備の
みで連続的に短時間で亜鉛めっきおよび合金化処理を完
了することができるので、生産性の点できわめて有利で
ある。しかし、急速昇温−高温短時間合金化処理である
ために、Fe −Zn合金化反応が不均一に起りやすい
。従って、めっき層中のFe含有率が、板幅方向および
ライン方向においてバラツクので、均質な製品を安定し
て得られない。また、Fe −Zn合金相の中で最も硬
度が高く、脆弱なF相(Fe3 Zn、。)がめつき層
と鋼素地界面に厚く生成し、このF相が成長する。この
ために、プレス成形等の加工時にめっき層が剥離する、
いわゆるパウダリングが発生する。According to the above-mentioned prior art 1, galvanizing and alloying can be completed continuously in a short time using only continuous hot-dip galvanizing equipment, which is extremely advantageous in terms of productivity. However, since the alloying process is a rapid heating-high temperature short time alloying process, the Fe--Zn alloying reaction tends to occur non-uniformly. Therefore, since the Fe content in the plating layer varies in the board width direction and the line direction, a homogeneous product cannot be stably obtained. Furthermore, the F phase (Fe3Zn, .), which has the highest hardness and is the most brittle among the Fe--Zn alloy phases, forms thickly at the interface between the plating layer and the steel substrate, and this F phase grows. For this reason, the plating layer may peel off during processing such as press molding.
So-called powdering occurs.
そして、上記従来技術2は、次のような問題を有してい
る。即ち、連続式溶融亜鉛めっき設備内での急速な1次
加熱によって、めっき層の一部のみを合金化した場合、
Fe −Zn合金相は部分的に生成される。このために
、合金層は均一に成長せず、特に、めっき付着量が片面
当り909/rrj以下の場合、鋼板表面まで合金層が
成長した部分とη相(Zn)が残存した部分とが混在し
、いわゆる焼はムラが発生する。この後、1次加熱によ
る合金化度の違いに対応してバッチ焼鈍炉で2次加熱合
金化処理を行うために、工程が複雑となって、板幅全域
に亘ってめっき層の加工性に優れた製品を得るだめの制
御が容易に行えない。The above-mentioned prior art 2 has the following problems. That is, when only a part of the plating layer is alloyed by rapid primary heating in continuous hot-dip galvanizing equipment,
A Fe-Zn alloy phase is partially generated. For this reason, the alloy layer does not grow uniformly, and especially when the coating weight is less than 909/rrj per side, there is a mixture of areas where the alloy layer has grown to the steel plate surface and areas where the η phase (Zn) remains. However, uneven baking occurs. After this, secondary heating and alloying treatment is performed in a batch annealing furnace in response to the difference in the degree of alloying caused by the primary heating, which makes the process complicated and affects the workability of the plating layer over the entire width of the plate. It is not easy to control the process of obtaining a superior product.
従って、この発明の目的は、プレス成形等の加工時にパ
ウダリングが発生しにくい合金化溶融亜鉛めっき鋼板を
容易に製造することができる方法を提供することにある
。Therefore, an object of the present invention is to provide a method for easily manufacturing an alloyed hot-dip galvanized steel sheet that is less likely to cause powdering during processing such as press forming.
この発明は、前処理を施した銅帯を、AM : 0.0
5から0.3重量%、Pb : 0.2重量%以下を含
有する溶融亜鉛浴に浸漬して、片面当り30から902
Aイのめっきを施し、次いで、このようにしてめっきを
施した前記鋼帯をパッチ式焼鈍炉内に装入し、炉内雰囲
気を非酸化性雰囲気′または還元性雰囲気に維持し、前
記鋼帯をオープンコイルの状態で、320℃からZnの
融点の範囲内の温度に1から50時間加熱し、かくして
、めっき層を合金化することに特徴含有するものである
。In this invention, the pretreated copper strip has an AM value of 0.0.
5 to 0.3% by weight, Pb: 30 to 902% per side by immersion in a molten zinc bath containing 0.2% by weight or less
The plated steel strip A is then charged into a patch type annealing furnace, and the atmosphere in the furnace is maintained at a non-oxidizing atmosphere or a reducing atmosphere. The strip is heated in an open coil state to a temperature within the range of 320° C. to the melting point of Zn for 1 to 50 hours, thereby alloying the plating layer.
次に、この発明をさらに詳細に説明する。Next, this invention will be explained in more detail.
通常の前処理を施した銅帯に溶融亜鉛めっきを施す。め
っきに供する素材は、熱延鋼帯、冷延鋼帯の何れでも良
い。まだ、連続溶融亜鉛めっき装置によって銅帯にめっ
きを施す前に、銅帯に焼鈍処理を施しても良い。Hot-dip galvanizing is applied to copper strips that have undergone conventional pretreatment. The material to be plated may be either a hot-rolled steel strip or a cold-rolled steel strip. However, the copper strip may be subjected to an annealing treatment before being plated by the continuous hot-dip galvanizing apparatus.
めっき付着量は、鋼帯片面当り30から90扇の範囲内
に限定する。めっき付着量は、両面で異なっていても良
い。銅帯を浸漬する溶融亜鉛めっき浴は、u:0.os
から0.3重量%、Pb)0.2重量%以下を含有する
。めっき付着量を30から90?/m”の範囲内に限定
したのは、30りβ未満では十分な耐食性が得られず、
一方、90 y/rr?を超えると後述するように、合
金化条件の大幅な変更が必要となるからである。溶融亜
鉛めっき浴中のA8含有率を0.05から0.3重量%
の範囲に限定したのは、0.05重量%未満では、めっ
き浴浸漬直後にFe−Zn合金相が部分的且つ不均一・
に生成し、それが後の合金化処理工程においても均一と
ならないためであり、一方、0.3重量%を超えると、
Fe −Zn合金相の生成が著しく抑制され、後の合金
化条件の大幅な変更が必要となるからである。The amount of plating deposited is limited to a range of 30 to 90 mm per side of the steel strip. The amount of plating deposited may be different on both sides. The hot-dip galvanizing bath in which the copper strip is immersed is u:0. os
0.3% by weight, and 0.2% by weight or less of Pb). Plating amount from 30 to 90? /m” because sufficient corrosion resistance cannot be obtained below 30 riβ.
On the other hand, 90 y/rr? This is because, as will be described later, if the value exceeds 1, it will be necessary to significantly change the alloying conditions. A8 content in hot dip galvanizing bath from 0.05 to 0.3% by weight
The reason for this is that if it is less than 0.05% by weight, the Fe-Zn alloy phase will be partially and non-uniformly formed immediately after immersion in the plating bath.
On the other hand, if it exceeds 0.3% by weight,
This is because the formation of the Fe-Zn alloy phase is significantly suppressed, and subsequent alloying conditions need to be significantly changed.
Pbは、Fe−Zn合金化反応に対して大きく寄−梁し
ないが、0.2重量%を超えると、加工時のめつき層の
耐パウダリング性が低下する。Although Pb does not significantly influence the Fe--Zn alloying reaction, if it exceeds 0.2% by weight, the powdering resistance of the plated layer during processing decreases.
次に、上述したようにして亜鉛めっきが施された鋼帯を
オープンコイルに巻き替えた後、非酸化性または還元性
雰囲気のバッチ式焼鈍炉によって、めっき層の合金化の
ための熱処理を行う。ここで、オープンコイルにする理
由は、銅帯を均一に加熱し、合金化にムラが生ずるのを
防止し且つ鋼帯同士が付着するのを防止するためである
。即ち、タイトな銅帯をバッチ式の炉で加熱すると、温
度分布が部分的に不均一となって、Fe −Zn合金相
の生成が部分的に相違する。このために、Fe −Zn
合金相が成長して形成される合金層は不均一になる。ま
た、マクロ的には、めっき層中のFe含有率が、銅帯長
手方向で特に不均一になるために、均質な性能を有する
合金化亜鉛めっき鋼板が得られない。これに対して、オ
ープンコイル状態で同様に加熱すると、熱がコイル内部
まで伝わりやすいので、均質な性能を有する合金化亜鉛
めっき鋼板が得られる。また、このように、バッチ式焼
鈍炉によって比較的低温で加熱処理すると、急激な拡散
反応が起らないので、めっき層中のFe含有率がめつき
層の深さ方向において均一になる。この結果、加工時の
めつき層の耐パウダリング性に優れた合金化亜鉛めっき
鋼板を得ることができる。Next, after winding the galvanized steel strip as described above into an open coil, heat treatment is performed to alloy the plating layer in a batch-type annealing furnace in a non-oxidizing or reducing atmosphere. . Here, the reason for using an open coil is to uniformly heat the copper strip, prevent uneven alloying, and prevent the steel strips from adhering to each other. That is, when a tight copper strip is heated in a batch type furnace, the temperature distribution becomes partially non-uniform, and the formation of the Fe--Zn alloy phase differs locally. For this purpose, Fe-Zn
The alloy layer formed by the growth of the alloy phase becomes non-uniform. Furthermore, from a macroscopic perspective, the Fe content in the plating layer is particularly non-uniform in the longitudinal direction of the copper strip, making it impossible to obtain an alloyed galvanized steel sheet with uniform performance. On the other hand, if the open coil is heated in the same way, the heat is easily transmitted to the inside of the coil, so an alloyed galvanized steel sheet with uniform performance can be obtained. Furthermore, when heat treatment is performed at a relatively low temperature using a batch annealing furnace, no rapid diffusion reaction occurs, so that the Fe content in the plating layer becomes uniform in the depth direction of the plating layer. As a result, it is possible to obtain an alloyed galvanized steel sheet with excellent powdering resistance of the plating layer during processing.
バッチ式焼鈍炉における合金化処理は、第1図に示すよ
うに、銅帯を320℃からZnの融点、即ち、419.
5℃の範囲内の温度に1から50時間加熱することによ
って行う。このようにして鋼帯に合金化処理を施すと、
めっき層中のFe含有率は、めっき層と鋼素地との界面
に存在する、ごく薄いF相を除いてめっき層の深さ方向
に亘って均一となり、その値は、7から20重量%とな
る。これによって、プレス成形等の加工時にめっき層が
剥離しにくい合金化亜鉛めっき鋼板が得られる。As shown in FIG. 1, the alloying treatment in the batch annealing furnace is performed by heating the copper strip from 320°C to the melting point of Zn, that is, 419°C.
This is done by heating to a temperature in the range of 5° C. for 1 to 50 hours. When the steel strip is alloyed in this way,
The Fe content in the plating layer is uniform throughout the depth of the plating layer, with the exception of a very thin F phase that exists at the interface between the plating layer and the steel base, and its value ranges from 7 to 20% by weight. Become. As a result, an alloyed galvanized steel sheet is obtained in which the plating layer is difficult to peel off during processing such as press forming.
ここで、銅帯の加熱温度を320から419.5℃の範
囲内に限定したのは、320℃未満では、たとえめっき
浴中のM含有率が0.05重量%と低くても、Mによる
Fe −Zn合金化反応の抑制効果が長時間持続して、
合金化のだめの加熱保持時間が著しく長くなり、工業的
に意味がなくなるからであシ、一方、419.5℃を超
えると、原子の拡散速度が速すぎるために、めっき層中
のFeの濃度勾配が急になり、この結果、加工性が劣り
、しかも、銅帯をオープンコイルにした際に、銅帯間に
挿入したスペーサがめつき表面に付着して、めっき表面
にスペーサマークが生じる虞れがあるからである。Here, the reason why the heating temperature of the copper strip was limited to the range of 320 to 419.5°C is because below 320°C, even if the M content in the plating bath is as low as 0.05% by weight, M The effect of suppressing the Fe-Zn alloying reaction lasts for a long time,
This is because the heating and holding time of the alloying stage becomes extremely long, making it industrially meaningless. On the other hand, if the temperature exceeds 419.5°C, the diffusion rate of atoms is too fast, and the concentration of Fe in the plating layer decreases. The slope becomes steep, resulting in poor workability, and when the copper strips are made into open coils, there is a risk that the spacer inserted between the copper strips will adhere to the plated surface, resulting in spacer marks on the plated surface. This is because there is.
めっき浴中のM含有率は、その値が高く、なる程、Fe
−Zn拡散反応が抑制されるが、M含有率が0.3重
量%を超えると、銅帯の加熱温度を419.5℃を超え
る温度に設定する必要があり、その場合、部分的な拡散
が起りやすくなシ、却って加工性の低下を招く。しかも
、めっき表面にスペーサマークを付けることにもつなが
る。The M content in the plating bath is high;
-Zn diffusion reaction is suppressed, but if the M content exceeds 0.3% by weight, it is necessary to set the heating temperature of the copper strip to a temperature exceeding 419.5°C, in which case partial diffusion This tends to occur, and on the contrary, it leads to a decrease in workability. Moreover, it also leads to the formation of spacer marks on the plating surface.
また、従来から云われているように、パウダリングは、
めっき付着量とともに合金化処理後のめつき層中のFe
含有率に大きく依存する。即ち、平均的なFe含有率は
できるかぎり低く抑えることが望ましい。このようなこ
とから、めっき浴中のM含有量は0.15から0.30
重量%の範囲内で、焼鈍炉における加熱時間と保持時間
は、それぞれ340から380℃で2から]0時間が特
に好ましい。この場合、めっき層中のFe含有率は7か
ら13重量%となシ、また、合金層中のFe含有率も板
面方向、深さ方向ともに均一となって、パウダリングは
ほとんど起らない。In addition, as has been traditionally said, powdering
Fe in the plating layer after alloying treatment as well as the plating amount
It depends largely on the content. That is, it is desirable to keep the average Fe content as low as possible. For this reason, the M content in the plating bath is 0.15 to 0.30.
Within the range of weight percentages, the heating time and holding time in the annealing furnace are particularly preferably from 2 to 0 hours at 340 to 380° C., respectively. In this case, the Fe content in the plating layer is 7 to 13% by weight, and the Fe content in the alloy layer is also uniform both in the plate surface direction and in the depth direction, so powdering hardly occurs. .
次に、この発明の詳細な説明する。 Next, the present invention will be explained in detail.
亜鉛めっき用素材としては、実施例、比較例ともに第1
表に示す化学成分組成を有する、板厚0.8wの2種類
の冷延鋼板A、Bを使用した。As the material for galvanizing, both the example and the comparative example
Two types of cold-rolled steel sheets A and B with a thickness of 0.8W and having the chemical composition shown in the table were used.
亜鉛めっきは、無酸化加熱炉、還元加熱炉を備えた連続
式溶融亜鉛めっき設備によって行い、溶融亜鉛めっき浴
浸漬直後に設けられた気体絞り装置によってめっき付着
量の調整を行った。実施例は、このようにして製造した
亜鉛めっき鋼帯をオて連続式溶融亜鉛めっき設備内の合
金化炉で連続的に合金化処理を行ったものである。めっ
き層の耐パウダリング性は、2rrm半径に90°曲げ
た後、曲げの内側にセロファンテープを貼り付け、これ
を剥がしてセロファンテープに付着した状況を目視観察
し、第2表に示す評価基準に従って判定した。Zinc plating was performed using a continuous hot-dip galvanizing facility equipped with a non-oxidizing heating furnace and a reduction heating furnace, and the amount of plating deposited was adjusted using a gas throttling device installed immediately after immersion in the hot-dip galvanizing bath. In the example, the galvanized steel strip produced in this manner was continuously alloyed in an alloying furnace in a continuous hot-dip galvanizing facility. The powdering resistance of the plating layer was determined by bending it 90 degrees to a radius of 2 rrm, pasting cellophane tape on the inside of the bend, peeling it off, and visually observing the state of the adhesion to the cellophane tape, and using the evaluation criteria shown in Table 2. Judgment was made according to the following.
第2表
実施例1
素材Aを、AR:0.21重量%、Pb : 0.1
0重量%を含有する亜鉛めっき浴に浸漬し、めっき付着
量を片面当り60y/−に調整した亜鉛めっき鋼帯を、
オープンコイルに巻き替え、加熱温度360℃で4時間
、合金化処理を実施した。これによって得られた合金化
亜鉛めっき鋼板は、めっき層中のFe含有率が8.6重
量%であり、耐パウダリング性はきわめて良好であった
。Table 2 Example 1 Material A, AR: 0.21% by weight, Pb: 0.1
A galvanized steel strip was immersed in a galvanizing bath containing 0% by weight and the coating weight was adjusted to 60y/- per side.
The coil was changed into an open coil and alloyed at a heating temperature of 360° C. for 4 hours. The alloyed galvanized steel sheet thus obtained had an Fe content of 8.6% by weight in the plating layer, and had extremely good powdering resistance.
実施例2
素材Bに実施例1と同様の条件に従って合金化処理を施
した。得られた合金化亜鉛めっき鋼板は、めっき層中の
Fe含有率が9.2重量%であり、耐パウダリング性は
きわめて良好であった。Example 2 Material B was subjected to alloying treatment under the same conditions as in Example 1. The obtained alloyed galvanized steel sheet had an Fe content of 9.2% by weight in the plating layer, and had extremely good powdering resistance.
実施例3
素材Aを、At:0.os重量%、Pb : 0.10
重量%を含有する亜鉛めっき浴に浸漬し、めっき付着量
を片面当り609/lr?に調整した亜鉛めっき鋼帯を
、オープンコイルに巻き替え、加熱温度320℃で30
時間、合金化処理を実施した。得られた合金化亜鉛めっ
き鋼板は、めっき層中のFe含有率が7.4重量%であ
シ、耐パウダリング性はきわめて良好であった。Example 3 Material A was treated with At: 0. os weight%, Pb: 0.10
% by weight, and the coating amount was 609/lr per side. The galvanized steel strip adjusted to
The alloying process was carried out for a period of time. The obtained alloyed galvanized steel sheet had an Fe content of 7.4% by weight in the plating layer, and had extremely good powdering resistance.
実施例4
素材Bを、/u:0.30重量%、 Pb:0.1o重
量%を含有する亜鉛めっき浴に浸漬し、めっき付着量を
片面当り8og/m2 に調整した亜鉛めっき鋼帯を、
オープンコイルに巻き替え、加熱温度415℃で1時間
、合金化処理を実施した。得られた合金化亜鉛めっき鋼
板は、めっき層中のFe含有率が12.8重量%であり
、耐パウダリング性は良好であった。Example 4 A galvanized steel strip was prepared by immersing material B in a galvanizing bath containing /u: 0.30% by weight and Pb: 0.1o% by weight, and adjusting the coating amount to 8 og/m2 per side. ,
It was changed into an open coil and alloyed at a heating temperature of 415° C. for 1 hour. The obtained alloyed galvanized steel sheet had an Fe content of 12.8% by weight in the plating layer, and had good powdering resistance.
実施例5
素材Aを、At:0.15重量%、Pb : 0.10
重量%を含有する亜鉛めっき浴に浸漬し、めっき付着量
を表面30y/靜、裏面80り/11?に調整した亜鉛
めっき鋼帯を、オープンコイルに巻き替え、加熱温度3
80℃で5時間、合金化処理を実施した。Example 5 Material A: At: 0.15% by weight, Pb: 0.10
% by weight, and the amount of plating coating was determined to be 30y/y/y on the surface and 80y/11y on the back. The galvanized steel strip adjusted to
Alloying treatment was carried out at 80° C. for 5 hours.
得られた合金化亜鉛めっき鋼板は、めっき層中のFe含
有率が表面12.5重量%、裏面10.1重量%であり
、耐パウダリング性は両面ともきわめて良好であった。In the obtained alloyed galvanized steel sheet, the Fe content in the plating layer was 12.5% by weight on the front surface and 10.1% by weight on the back surface, and the powdering resistance was extremely good on both surfaces.
実施例6
素材Bに実施例5と同様の条件に従って合金化処理を施
した。得られた合金化亜鉛めっき鋼板は、めっき層中の
Fe含有率が表面13.1重量%、裏面10.4重量%
であシ、耐パウダリング性は両面ともに良好であった。Example 6 Material B was subjected to alloying treatment under the same conditions as in Example 5. In the obtained alloyed galvanized steel sheet, the Fe content in the plating layer was 13.1% by weight on the surface and 10.4% by weight on the back side.
The powdering resistance was good on both sides.
比較例1
素材Aを、AA:O,15重量%、Pb:0.10重量
%を含有する亜鉛めっき浴に浸漬し、めっき付着量を片
面当り609/−に調整後、連続的に銅帯を合金化炉に
導入し、加熱温度560’(:で1o秒間、合金化処理
を実施した。得られた合金化亜鉛めっき鋼板は、めっき
層中のFe含有率が10.2重量%であるが、耐パウダ
リング性は不良であった。Comparative Example 1 Material A was immersed in a galvanizing bath containing AA:O, 15% by weight and Pb: 0.10% by weight, and after adjusting the coating weight to 609/- per side, a copper strip was continuously applied. was introduced into an alloying furnace and alloyed at a heating temperature of 560' for 10 seconds.The resulting alloyed galvanized steel sheet had a Fe content of 10.2% by weight in the coating layer. However, the powdering resistance was poor.
比較例2
素材Bに比較例1と同様の条件に従って合金化処理を行
った。得られた合金化亜鉛めっき鋼板は、めっき層中の
Fe含有率が11.0重量%であるが、耐パウダリング
性は不良であった。Comparative Example 2 Material B was subjected to alloying treatment under the same conditions as Comparative Example 1. The obtained alloyed galvanized steel sheet had a Fe content of 11.0% by weight in the plating layer, but its powdering resistance was poor.
比較例3
素材Aを、AI!:0.12重量%、Pb : 0.1
0重量%を含有する亜鉛めっき浴に浸漬し、めっき付着
量を片面当り601/n?に調整後、連続的に銅帯を合
金化炉に導入し、加熱温度500℃で15秒間、合金化
処理を実施した。得られた合金化亜鉛めっき鋼板は、め
っき層中のFe含有率が9.6重量%であるが、耐パウ
ダリング性はあまり良くなかった。Comparative Example 3 Material A, AI! : 0.12% by weight, Pb: 0.1
It was immersed in a zinc plating bath containing 0% by weight, and the amount of plating deposited on one side was 601/n? After the adjustment, the copper strip was continuously introduced into an alloying furnace and alloyed at a heating temperature of 500° C. for 15 seconds. Although the obtained alloyed galvanized steel sheet had an Fe content of 9.6% by weight in the plating layer, its powdering resistance was not very good.
比較例4
素材Bを、Ae:O,15重量%、Pb : 0.10
重量%を含有する亜鉛めっき浴に浸漬し、めっき付着量
を表面30f/m’、裏面8og/m2に調整後、連続
的に銅帯を合金化炉に導入し、加熱温度520℃で12
秒間、合金化処理を実施した。得られた合金化亜鉛めっ
き鋼板は、めっき層中のFe含有率が表面12.2重量
%、裏面8.8重量%であるが、耐パウダリング性は両
面ともに不良であった。Comparative Example 4 Material B: Ae:O, 15% by weight, Pb: 0.10
After adjusting the coating amount to 30 f/m' on the front side and 8 og/m2 on the back side, the copper strip was continuously introduced into an alloying furnace and heated at a heating temperature of 520°C for 12 hours.
Alloying treatment was carried out for seconds. The obtained alloyed galvanized steel sheet had an Fe content of 12.2% by weight on the surface and 8.8% by weight on the back, but the powdering resistance was poor on both surfaces.
以上、実施例1から6、比較例1から4の結果を合わせ
て第3表に示す。The results of Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 3.
第3表から明らかなように、実施例1から6は何れも耐
パウダリング性に優れている反面、比較例1から4は何
れも耐パウダリングれに劣る。これは、比較例1から4
は、銅帯をオープンコイル状態で加熱処理しないこと、
および、本発明の合金化条件以外の条件に従って合金化
処理を実施していることによって、めっき層中のFe含
有率がめつき層の深さ方向に亘って均一にならないこと
による。As is clear from Table 3, Examples 1 to 6 are all excellent in powdering resistance, while Comparative Examples 1 to 4 are all poor in powdering resistance. This is Comparative Examples 1 to 4.
Do not heat-treat the copper strip in an open coil state,
Another reason is that the Fe content in the plating layer is not uniform in the depth direction of the plating layer because the alloying treatment is performed according to conditions other than the alloying conditions of the present invention.
以上説明したように、この発明によれば、耐パ As explained above, according to the present invention,
第1図は、加熱温度と加熱時間との関係を示すグラフで
ある。
第1図
加熱時間(j町
手続補正書(自発)
昭和63年8711喝記
特許庁長官 吉 1)文 毅 殿1、事件の表示
特願昭63− 74166 号2・ 発明の名
称
合金化溶融亜鉛めっき鋼板の製造方法
3、補正をする者
事件との関係 特許出願人
住所 東京都千代田区丸の内−丁目1番2号AA(Ai
h+ 日本鋼管株式会社代表者 山域彬成
4、代理人
住所 神奈川県用thIIII+用崎区砂子二丁
目l1番四号平松川崎ビル6隋〒210 電話+
0441222−730(代表)自 発
明細書の発明の詳細な説明の欄、
第6頁、19行目、
「層の耐パウダリング性が低下する。」の次に下記を加
入する。
「また、必要に応じてミニマイズド処理を行ってもよい
。」
以上FIG. 1 is a graph showing the relationship between heating temperature and heating time. Fig. 1 Heating time (J Town procedural amendment (voluntary) 8711 1988 Director General of the Patent Office Yoshi 1) Tsuyoshi Moon 1, Indication of the case Patent application No. 1983-74166 2 Name of the invention Alloyed molten zinc Manufacturing method for galvanized steel sheets 3, relationship with the amended case Patent applicant address: 1-2 Marunouchi-chome, Chiyoda-ku, Tokyo AA (Ai
h+ Nippon Kokan Co., Ltd. Representative Akinari Yamaguchi 4, Agent address thIII for Kanagawa Prefecture + 6 Hiramatsu Kawasaki Building Sui, 2-1-4 Sunako, Yozaki-ku 〒210 Telephone +
0441222-730 (Representative) Self Add the following to the Detailed Description of the Invention column of the specification of the invention, page 6, line 19, next to "The powdering resistance of the layer decreases.""In addition, you may perform minimized processing if necessary."
Claims (1)
重量%、Pb:0.2重量%以下を含有する溶融亜鉛浴
に浸漬して、片面当り30から90g/m^2のめつき
を施し、次いで、このようにしてめつきを施した前記鋼
帯をバッチ式焼鈍炉内に装入し、炉内雰囲気を非酸化性
雰囲気または還元性雰囲気に維持し、前記鋼帯をオープ
ンコイルの状態で、320℃からZnの融点の範囲内の
温度に1から50時間加熱し、かくして、めつき層を合
金化することを特徴とする、合金化溶融亜鉛めつき鋼板
の製造方法。1 The pretreated steel strip is Al: 0.05 to 0.3
% by weight, Pb: 0.2% by weight or less is immersed in a molten zinc bath to provide plating of 30 to 90 g/m^2 per side, and then the above-mentioned steel plated in this manner. The strip is charged into a batch annealing furnace, the atmosphere in the furnace is maintained in a non-oxidizing atmosphere or a reducing atmosphere, and the steel strip is heated in an open coil state to a temperature within the range of 320° C. to the melting point of Zn. 1. A method for producing an alloyed hot-dip galvanized steel sheet, comprising heating for 1 to 50 hours, thus alloying the plating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7416688A JPH01246348A (en) | 1988-03-28 | 1988-03-28 | Manufacture of alloying hot dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7416688A JPH01246348A (en) | 1988-03-28 | 1988-03-28 | Manufacture of alloying hot dip galvanized steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01246348A true JPH01246348A (en) | 1989-10-02 |
Family
ID=13539297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7416688A Pending JPH01246348A (en) | 1988-03-28 | 1988-03-28 | Manufacture of alloying hot dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01246348A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0472048A (en) * | 1990-07-10 | 1992-03-06 | Nippon Steel Corp | Galvannealed steel sheet excellent in weldability |
KR100312405B1 (en) * | 1997-12-29 | 2001-12-17 | 이구택 | Method for manufacturing hot dipped galvanized iron with superior surface quality |
WO2013018726A1 (en) * | 2011-07-29 | 2013-02-07 | 新日鐵住金株式会社 | Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same |
-
1988
- 1988-03-28 JP JP7416688A patent/JPH01246348A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0472048A (en) * | 1990-07-10 | 1992-03-06 | Nippon Steel Corp | Galvannealed steel sheet excellent in weldability |
KR100312405B1 (en) * | 1997-12-29 | 2001-12-17 | 이구택 | Method for manufacturing hot dipped galvanized iron with superior surface quality |
WO2013018726A1 (en) * | 2011-07-29 | 2013-02-07 | 新日鐵住金株式会社 | Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same |
JP5510607B2 (en) * | 2011-07-29 | 2014-06-04 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized layer, steel sheet having the same, and method for producing the same |
EP2738283A4 (en) * | 2011-07-29 | 2015-11-11 | Nippon Steel & Sumitomo Metal Corp | Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same |
US9551057B2 (en) | 2011-07-29 | 2017-01-24 | Nippon Steel & Sumitomo Metal Corporation | Galvannealed layer and steel sheet comprising the same, and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5914541B2 (en) | Alloying treatment method for galvanized steel sheets | |
JPH04147955A (en) | Production of hot-dip zn-mg-al coated steel sheet | |
JPH01246348A (en) | Manufacture of alloying hot dip galvanized steel sheet | |
JPH0238549A (en) | Manufacture of alloyed hot-dip galvanized steel sheet | |
JP2525165B2 (en) | Method for manufacturing high strength galvanized steel sheet | |
JP3367456B2 (en) | Method for producing hot-dip coated steel sheet with spangle pattern | |
JP4508378B2 (en) | Manufacturing method of galvannealed steel sheet with excellent press formability | |
JPH02118088A (en) | Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property | |
JPH0711409A (en) | Production of galvanized steel sheet | |
JPS5834168A (en) | Treatment for fe-zn alloying of zinc hot dipped steel plate | |
JP2776701B2 (en) | Striped steel sheet with excellent workability and corrosion resistance | |
JPH05106001A (en) | Hot-dip galvanizing method for silicon-containing steel sheet | |
JPH07243012A (en) | Production of galvannealed steel sheet excellent in external appearance of surface | |
JP3014536B2 (en) | Manufacturing method for high strength galvannealed steel sheet | |
JP2574011B2 (en) | Manufacturing method of galvannealed steel sheet | |
JPS62182260A (en) | Manufacture of hot dip galvanized steel sheet | |
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2754590B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH02118087A (en) | Hot-dip galvanizing alloyed steel sheet excellent in workability and coating property and production thereof | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JPH07252623A (en) | Production of hot-dip galvanized steel sheet excellent in durability to impact at low temperature | |
JPH03207845A (en) | Production of alloying hot dip galvanized steel sheet | |
JP2727597B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
KR100287921B1 (en) | Method for manufacturing galvannealed steel sheet |