[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01244636A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01244636A
JPH01244636A JP7227888A JP7227888A JPH01244636A JP H01244636 A JPH01244636 A JP H01244636A JP 7227888 A JP7227888 A JP 7227888A JP 7227888 A JP7227888 A JP 7227888A JP H01244636 A JPH01244636 A JP H01244636A
Authority
JP
Japan
Prior art keywords
oxide film
trench
silicon
silicon nitride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227888A
Other languages
Japanese (ja)
Inventor
Satoshi Saigo
西郷 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7227888A priority Critical patent/JPH01244636A/en
Publication of JPH01244636A publication Critical patent/JPH01244636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To generate the lateral extension of a trench only at the time of isotropic etching, and to obtain a semiconductor device having the small lateral extension of an inter-element isolation oxide film by conducting anisotropic etching in addition to isotropic etching in a forming process for the trench. CONSTITUTION:The main surface of an silicon substrate 1 exposed by an opening section 4 is removed through an isotropic etching method, using an silicon nitride film 3 and an silicon oxide film 2 as masks, and a trench 5 is formed. The surface of the trench 5 is oxidized, an silicon oxide film 6 is grown, and an silicon nitride film 7 is deposited onto the film 6. The silicon nitride film 7 and an silicon oxide film 8 deposited on the base of the trench 5 are removed through an anisotropic etching method while employing an 'eave' projected to the top face of the trench 5 as a mask, and the opening section 8 is shaped. The silicon substrate 1 exposed to the opening section 8 is taken off using the silicon nitride film 7 and the silicon oxide film 8 as masks, and a trench 9 is formed and an inter-element isolation oxide film 10 is shaped through oxidation treatment while employing the silicon nitride films 3 and 7 as masks. Accordingly, the lateral extension of an inter-element isolation region diminishes, thus reducing an isolation region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特に素子間を酸化物によ
り電気的に分離する工程を含む半導体装置の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device including a step of electrically isolating elements using oxide.

〔従来の技術〕[Conventional technology]

半導体装置における素子間酸化膜分離の一方法として、
シリコン半導体基板上に第1耐酸化性膜を設け、分離領
域に対応する領域の第1耐酸化性膜を除去し、このシリ
コン半導体基板に少なくとも部分的に前記第1耐酸化性
膜の下方に延在する側壁を有する溝を形成し、この後前
記の第1耐酸化性膜に隣接した第2耐酸化性膜を前記の
溝上に設けてから、シリコン半導体基板に酸化処理を施
す方法がある。
As a method for separating oxide films between elements in semiconductor devices,
A first oxidation-resistant film is provided on a silicon semiconductor substrate, and the first oxidation-resistant film in a region corresponding to the isolation region is removed, and at least a portion of the first oxidation-resistant film is provided below the first oxidation-resistant film on the silicon semiconductor substrate. There is a method in which a trench having an extending sidewall is formed, a second oxidation-resistant film adjacent to the first oxidation-resistant film is provided on the trench, and then the silicon semiconductor substrate is subjected to oxidation treatment. .

第2図(a)〜(e)は従来の半導体装置の素子分離方
法の一例を説明するための工程順に示した半導体チップ
の断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an example of a conventional method for separating elements of a semiconductor device.

まず、第2図(a>に示すように、シリコン基板1の主
表面に酸化シリコン膜2を10〜1100nの厚さに成
長させ、この酸化シリコン膜2上に窒化シリコン膜3を
10〜300nmの厚さに堆積する。ホトリソグラフィ
技術により窒化シリコン膜3及び酸化シリコン膜2を選
択的にエツチングし、開孔部4を形成して、シリコン基
板1の分離領域に対応する領域の主表面を選択的に露出
させる。
First, as shown in FIG. 2 (a), a silicon oxide film 2 is grown on the main surface of a silicon substrate 1 to a thickness of 10 to 1100 nm, and a silicon nitride film 3 is grown on the silicon oxide film 2 to a thickness of 10 to 300 nm. The silicon nitride film 3 and silicon oxide film 2 are selectively etched using photolithography technology to form openings 4, and the main surface of the silicon substrate 1 in the region corresponding to the isolation region is etched. selectively exposed.

次に、第2図(b)に示すように、開孔部4により露出
されたシリコン基板1の主表面を、窒化シリコン膜3及
び酸化シリコン膜2をマスクとして、等方性蝕刻法によ
り除去し、湧5を形成する。
Next, as shown in FIG. 2(b), the main surface of the silicon substrate 1 exposed through the opening 4 is removed by isotropic etching using the silicon nitride film 3 and the silicon oxide film 2 as masks. Then, spring 5 is formed.

次に、第2図(c)に示すように、消5の表面を酸化し
て酸化シリコン膜6を10〜1100nの厚さに成長さ
せ、更にその上に窒化シリコン膜7を10〜300nm
の厚さに堆積する。このとき、窒化シリコン膜7は、溝
5の底面及び側面の酸化シリコン膜6上に堆積され、ま
た溝5の上面に突き出た「ひさし」の周囲にも形成され
る。
Next, as shown in FIG. 2(c), the surface of the eraser 5 is oxidized to grow a silicon oxide film 6 to a thickness of 10 to 1100 nm, and a silicon nitride film 7 is further formed thereon to a thickness of 10 to 300 nm.
Deposited to a thickness of . At this time, the silicon nitride film 7 is deposited on the silicon oxide film 6 on the bottom and side surfaces of the trench 5, and is also formed around the "eaves" protruding from the top surface of the trench 5.

次に、第2図(d)に示すように、講5の上面に突き出
た[ひさしJをマスクとして、溝5の底面に堆積された
窒化シリコン膜7を異方性蝕刻法により除去し、開孔部
8を形成する。従って満5の側面には窒化シリコン膜7
が残った状態となる。
Next, as shown in FIG. 2(d), the silicon nitride film 7 deposited on the bottom surface of the groove 5 is removed by anisotropic etching using the eaves J protruding from the top surface of the groove 5 as a mask. An opening 8 is formed. Therefore, the silicon nitride film 7
remains.

次に、第2図(e)に示すように窒化シリコン3及び7
をマスクとして酸化処理を施して素子間分離酸化膜10
を形成する。
Next, as shown in FIG. 2(e), silicon nitride 3 and 7
The element isolation oxide film 10 is formed by performing oxidation treatment using the mask as a mask.
form.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した方法によって形成された素子間分離酸化膜は、
溝の側面に窒化シリコン膜7を堆積させない場合よりも
、酸化膜の構法がりが小さくなる。しかし、特に厚い素
子間分離酸化膜になると、厚さに比例して構法がりが大
きくなるため、分離領域の低減ができないという欠点が
あった。
The device isolation oxide film formed by the method described above is
The structure of the oxide film becomes smaller than when the silicon nitride film 7 is not deposited on the side surfaces of the trench. However, when a particularly thick element isolation oxide film is used, the structure has a disadvantage that the isolation region cannot be reduced because the structure becomes larger in proportion to the thickness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板に形成し
ようとする素子分離領域に第1の開孔部を有する第1の
耐酸化性膜を形成する工程と、前記第1の耐酸化性膜を
マスクにして前記半導体基板を等方性エツチングして前
記開孔部より広い第1の溝を形成する工程と、前記第1
の溝の表面を覆う第2の耐酸化性膜を形成する工程と、
前記第1の講の底面上の前記第2の耐酸化性膜に前記第
1の開孔部に対応する第2の開孔部を形成して前記半導
体基板の表面を露出させる工程と、前記第1及び第2の
耐酸化性膜をマスクとして前記第1の溝の底面を異方性
エツチングして第2の溝を形成する工程と、前記第1及
び第2の耐酸性膜をマスクとして酸化を行う工程とを含
んで構成されろ。
The method for manufacturing a semiconductor device of the present invention includes the steps of: forming a first oxidation-resistant film having a first opening in an element isolation region to be formed in a semiconductor substrate; isotropically etching the semiconductor substrate using a mask as a mask to form a first groove wider than the opening;
forming a second oxidation-resistant film covering the surface of the groove;
forming a second opening corresponding to the first opening in the second oxidation-resistant film on the bottom surface of the first hole to expose the surface of the semiconductor substrate; forming a second groove by anisotropically etching the bottom surface of the first groove using first and second oxidation-resistant films as masks; and using first and second acid-resistant films as masks to form a second groove. and a step of performing oxidation.

[実施例〕 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、シリコン基板1の主
表面に、酸化シリコン膜2を10〜1100nの厚さに
成長させ、この酸化シリコン膜2上に窒化シリコン膜3
を10〜300nmの厚さに堆積し、ホトリソグラフィ
技術を用いて窒化シリコン膜3及び酸化シリコン膜2を
選択的にエツチングして開孔部4を形成し、分離領域に
対応する領域のシリコン基板1の主表面を選択的に露出
させる。
First, as shown in FIG. 1(a), a silicon oxide film 2 is grown to a thickness of 10 to 1100 nm on the main surface of a silicon substrate 1, and a silicon nitride film 3 is grown on the silicon oxide film 2.
is deposited to a thickness of 10 to 300 nm, and the silicon nitride film 3 and the silicon oxide film 2 are selectively etched using photolithography technology to form openings 4, and the silicon substrate in the region corresponding to the isolation region is etched. The main surface of 1 is selectively exposed.

次に、第1図(b)に示すように、開孔部4により露出
されたシリコン基板1の主表面を窒化シリコン膜3及び
酸化シリコン膜2をマスクとして等方性蝕刻法により除
去し、満5を形成する。
Next, as shown in FIG. 1(b), the main surface of the silicon substrate 1 exposed through the opening 4 is removed by isotropic etching using the silicon nitride film 3 and the silicon oxide film 2 as masks. Form 5.

次に、第1図(c)に示ずように、溝5の表面を酸化し
、酸化シリコンM6を10〜300nmの厚さに成長さ
せ、その上に窒化シリコン膜7を10〜300 nmの
厚さに堆積する。このとき、窒化シリコン膜7は、満5
の上面及び側面の酸化シリコン膜6上に堆積され、また
溝5の上方に突き出た「ひさし」の周囲にも堆積される
Next, as shown in FIG. 1(c), the surface of the groove 5 is oxidized to grow silicon oxide M6 to a thickness of 10 to 300 nm, and a silicon nitride film 7 is grown thereon to a thickness of 10 to 300 nm. Deposits in thickness. At this time, the silicon nitride film 7 fills up to 50%
It is deposited on the silicon oxide film 6 on the top and side surfaces, and also around the "eaves" projecting above the groove 5.

次に、第1図(d)に示すように、満5の上面に突き出
た[ひさしJをマスクとして、満5の底面に堆積された
窒化シリコン膜7及び酸化シリコン膜8を異方性蝕刻法
により除去し、開孔部8を形成する。従って、溝5の側
面には窒化シリコン膜7が残った状態となる。
Next, as shown in FIG. 1(d), the silicon nitride film 7 and the silicon oxide film 8 deposited on the bottom surface of the wafer 5 are anisotropically etched using the eaves J protruding from the top surface of the wafer 5 as a mask. The aperture 8 is formed by removing the aperture 8 by a method. Therefore, the silicon nitride film 7 remains on the side surfaces of the groove 5.

次に、第1図(e)に示すように、開孔部8に露出され
たシリコン基板1を窒化シリコン膜7及び酸化シリコン
膜8をマスクとして異方性蝕刻法により除去し、溝9を
形成する。
Next, as shown in FIG. 1(e), the silicon substrate 1 exposed in the opening 8 is removed by anisotropic etching using the silicon nitride film 7 and the silicon oxide film 8 as a mask to form the groove 9. Form.

次に、第1図(f)に示すように、窒化シリコン膜3及
び7をマスクとして、酸化処理を施して素子間分離酸化
膜10を形成する。
Next, as shown in FIG. 1(f), an oxidation process is performed using the silicon nitride films 3 and 7 as masks to form an element isolation oxide film 10.

従来技術で素子間分離酸化膜を形成しなとき、酸化処理
による素子間分離領域の構法がりlは、その形成する素
子間分離酸化膜の厚さに比例して大きくなる。これに対
して本発明では、酸化処理による素子間分離領域の構法
がりをLとするとLは、等方性蝕刻法により開孔した開
孔部の深さによってのみ決定される。従って、従来技術
と本発明とで同じ厚さの素子間分離領域を形成する場合
、本発明での等方性蝕刻量と異方性蝕刻量の比を1;x
とすると、従来技術に比べ、本発明の素子間分離領域の
構法がりLは少なくなり、L=e−kx (kは定数)
となる。従って、本発明によると、従来技術の構法がり
に対してk xたけ小さくなり、分離領域の低減となる
When an element isolation oxide film is not formed using the conventional technique, the construction thickness l of the element isolation region by oxidation treatment increases in proportion to the thickness of the element isolation oxide film formed. On the other hand, in the present invention, where L is the construction method of the element isolation region by oxidation treatment, L is determined only by the depth of the hole formed by the isotropic etching method. Therefore, when forming an element isolation region with the same thickness in the prior art and the present invention, the ratio of the isotropic etching amount to the anisotropic etching amount in the present invention is 1; x
Then, compared to the conventional technology, the construction method L of the isolation region of the present invention is smaller, and L=e−kx (k is a constant).
becomes. Therefore, according to the present invention, the structure size is reduced by k x compared to the construction method of the prior art, and the separation area is reduced.

上記実施例では、等方性蝕刻法によりシリコン基板を除
去して溝5を形成したが、その代りに開孔部4を酸化し
、その酸化シリコン膜を等方性蝕刻法で除去することに
より溝5を形成することもできる。その後の工程は、上
記実施例と同じである。このようにしても前記実施例の
同様に、素子間分離領域の構法がりは小さくなり、分M
領域の低減となる。
In the above embodiment, the groove 5 was formed by removing the silicon substrate by isotropic etching, but instead, the opening 4 was oxidized and the silicon oxide film was removed by isotropic etching. Grooves 5 can also be formed. The subsequent steps are the same as in the above embodiment. Even in this case, as in the above embodiment, the structure of the isolation region becomes small, and
This results in a reduction in area.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、溝の形成工程において
、等方性蝕刻に加えて異方性蝕刻を行うことにより、清
の構法がりが等方性蝕刻時にのみ発生するため、素子間
分離酸化膜の構法がりが小さい半導体装置を得ることが
できるという効果がある。
As explained above, in the present invention, by performing anisotropic etching in addition to isotropic etching in the groove forming process, the structural gap in the structure occurs only during isotropic etching, so that separation between elements is achieved. This has the effect that it is possible to obtain a semiconductor device in which the structure of the oxide film is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
)〜(e)は従来の半導体装置の素子分離方法の一例を
説明するための工程順に示した半導体チップの断面図で
ある。 ■・・・シリコン基板、2・・・酸化シリコン膜、3・
・・窒化シリコン膜、4・・・開孔部、5・・・溝、6
・・・酸化シリコン膜、7・・・窒化シリコン膜、8・
・・開孔部、9・・・溝、10・・・素子間分離酸化膜
1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
) to (e) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an example of a conventional method for separating elements of a semiconductor device. ■...Silicon substrate, 2...Silicon oxide film, 3.
...Silicon nitride film, 4...Opening part, 5...Groove, 6
... silicon oxide film, 7... silicon nitride film, 8.
. . . Opening portion, 9 . . . Groove, 10 . . . Inter-element isolation oxide film.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に形成しようとする素子分離領域に第1の
開孔部を有する第1の耐酸化性膜を形成する工程と、前
記第1の耐酸化性膜をマスクにして前記半導体基板を等
方性エッチングして前記開孔部より広い第1の溝を形成
する工程と、前記第1の溝の表面を覆う第2の耐酸化性
膜を形成する工程と、前記第1の溝の底面上の前記第2
の耐酸化性膜に前記第1の開孔部に対応する第2の開孔
部を形成して前記半導体基板の表面を露出させる工程と
、前記第1及び第2の耐酸化性膜をマスクとして前記第
1の溝の底面を異方性エッチングして第2の溝を形成す
る工程と、前記第1及び第2の耐酸性膜をマスクとして
酸化を行う工程とを含むことを特徴とする半導体装置の
製造方法。
a step of forming a first oxidation-resistant film having a first opening in an element isolation region to be formed on a semiconductor substrate; forming a second oxidation-resistant film covering the surface of the first groove; and forming a second oxidation-resistant film on the bottom surface of the first groove. Said second
forming a second opening corresponding to the first opening in the oxidation-resistant film to expose the surface of the semiconductor substrate; and masking the first and second oxidation-resistant films. the step of anisotropically etching the bottom surface of the first groove to form a second groove; and the step of performing oxidation using the first and second acid-resistant films as masks. A method for manufacturing a semiconductor device.
JP7227888A 1988-03-25 1988-03-25 Manufacture of semiconductor device Pending JPH01244636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227888A JPH01244636A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227888A JPH01244636A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01244636A true JPH01244636A (en) 1989-09-29

Family

ID=13484661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227888A Pending JPH01244636A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01244636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182227A (en) * 1986-04-25 1993-01-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
KR100258857B1 (en) * 1997-03-26 2000-06-15 김영환 Manufacturing method for isolation structure of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206645A (en) * 1988-02-15 1989-08-18 Sharp Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206645A (en) * 1988-02-15 1989-08-18 Sharp Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182227A (en) * 1986-04-25 1993-01-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
KR100258857B1 (en) * 1997-03-26 2000-06-15 김영환 Manufacturing method for isolation structure of semiconductor device

Similar Documents

Publication Publication Date Title
EP0293979A2 (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPS61247051A (en) Manufacture of semiconductor device
JPH01244636A (en) Manufacture of semiconductor device
JPH0817813A (en) Manufacture of semiconductor device
JPH07326621A (en) Minute pattern forming method for semiconductor element
JPH06326091A (en) Formation method for field oxide film in semiconductor element
US5792671A (en) Method of manufacturing semiconductor device
JPS6387741A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH05304143A (en) Formation of isolation region
JPS63258020A (en) Formation of element isolation pattern
JPS5994844A (en) Manufacture of semiconductor device
JPS583244A (en) Manufacture of semiconductor device
JPH07245402A (en) Manufacture of semiconductor device
JPS60240131A (en) Manufacture of semiconductor device
KR100218727B1 (en) Forming method of contact hole of semiconductor device
JP2669160B2 (en) Method for manufacturing semiconductor device
JPH01206645A (en) Manufacture of semiconductor device
JPH03125427A (en) Manufacture of semiconductor device
JPH09260664A (en) Manufacture of semiconductor device
JPH01136349A (en) Formation of inter-element isolation film of semiconductor device
JPS6059749A (en) Manufacture of semiconductor device
JPH11354626A (en) Element separating method for semiconductor element and semiconductor device
JPH0478168A (en) Mos semiconductor device thereof and manufacture
JPS6246527A (en) Manufacture of semiconductor device