JPH01244173A - Closed-circuit heat engine - Google Patents
Closed-circuit heat engineInfo
- Publication number
- JPH01244173A JPH01244173A JP7160388A JP7160388A JPH01244173A JP H01244173 A JPH01244173 A JP H01244173A JP 7160388 A JP7160388 A JP 7160388A JP 7160388 A JP7160388 A JP 7160388A JP H01244173 A JPH01244173 A JP H01244173A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- pressure
- temperature
- prime mover
- heating medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 230000008016 vaporization Effects 0.000 claims description 18
- 238000009835 boiling Methods 0.000 claims description 15
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 abstract 7
- 239000002699 waste material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 22
- 238000009834 vaporization Methods 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000002918 waste heat Substances 0.000 description 7
- 239000011555 saturated liquid Substances 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は廃熱あるいは比較的低温の熱を回収して機械的
エネルギとして取り出す閉回路の熱機関に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a closed-circuit heat engine that recovers waste heat or relatively low-temperature heat and extracts it as mechanical energy.
(従来の技術並びに発明の課題)
通常の熱機関としては、エンジン内部で燃料を直接的に
燃焼させる内燃機関と、外部熱源からの熱の供給を受け
て作動する外燃機関とがある。(Prior Art and Problems to be Solved by the Invention) Typical heat engines include internal combustion engines that burn fuel directly within the engine, and external combustion engines that operate by receiving heat from an external heat source.
内燃機関はエンジン出力の制御が比較的簡単にしかも急
速に調整できるのに対し、外燃機関は急速な出力制御が
コスト的に困難で、小型機関等への適用が難しい。In an internal combustion engine, engine output can be controlled relatively easily and rapidly, whereas in an external combustion engine, rapid output control is difficult due to cost considerations, making it difficult to apply to small engines and the like.
ところでいずれのタイプの機関も、燃料を燃焼させるな
ど高温の熱源を必要とするもので、低温の熱源では効率
的な運転は望めず、したがって外部に捨てる低温の廃熱
等を熱源として利用することは、コストその他のことを
考慮して6実用的には難しい。By the way, both types of engines require a high-temperature heat source, such as by burning fuel, and efficient operation cannot be expected with a low-temperature heat source, so low-temperature waste heat, etc., which is dumped outside, is used as a heat source. is difficult to implement in practice due to cost and other considerations.
本発明は熱源として低温の廃熱あるいは外気温度以下の
熱源からも熱エネルギを回収することができ、しかも急
速なる出力制御も可能な、外燃機関の一種である体積差
熱機関を提供することを目的とする。An object of the present invention is to provide a volume difference heat engine, which is a type of external combustion engine, which can recover thermal energy from low-temperature waste heat or a heat source below the outside air temperature as a heat source, and is also capable of rapid output control. With the goal.
(課題を解決するための手段)
このような目的を達成するために本発明は、気化した熱
媒質の供給により駆動される原動機と、この原動機から
の排出気体を液化する液化用熱交換器と、液化した熱媒
質を加圧するポンプと、この高圧液体を外部熱源からの
熱の供給を受けて気化する気化用熱交換器と、前記原動
機に送り込む気体の気化圧力を調整する圧力調整弁とで
閉回路を構成する。そして、この閉回路に循環する熱媒
質として、沸点が常温域もしくはそれ以下の熱媒質とを
封入した。(Means for Solving the Problems) In order to achieve such an object, the present invention includes a prime mover driven by supply of a vaporized heat medium, a liquefaction heat exchanger that liquefies exhaust gas from the prime mover, and a liquefaction heat exchanger that liquefies exhaust gas from the prime mover. , a pump that pressurizes the liquefied heat medium, a vaporization heat exchanger that vaporizes this high-pressure liquid by receiving heat from an external heat source, and a pressure regulating valve that adjusts the vaporization pressure of the gas sent to the prime mover. Configure a closed circuit. A heat medium having a boiling point in the room temperature range or lower was sealed as a heat medium circulating in this closed circuit.
(作用)
常温あるいはそれ以下の温度で沸騰気化する熱媒質を循
環させ、これを低温の熱源からの受熱により気化して、
この循環させる熱媒質の液体と気体との体82差を利用
して仕事を取り出すため、従来、外部に放出していた低
温の廃熱を効率よく回収して機械的なエネルギとして取
り出すことができる。(Operation) A heat medium that boils and vaporizes at room temperature or lower temperature is circulated, and it is vaporized by receiving heat from a low-temperature heat source.
Since work is extracted by utilizing the difference between the circulating heat medium liquid and gas, the low-temperature waste heat that was conventionally released to the outside can be efficiently recovered and extracted as mechanical energy. .
また、本発明は一種の外燃機関でありながら、系内の圧
力制御により熱媒質の飽和液線の特性にもとづく沸点の
調整ができ、これにより急速なる出力制御が可能となる
。Further, although the present invention is a type of external combustion engine, the boiling point can be adjusted based on the characteristics of the saturated liquid line of the heat medium by controlling the pressure within the system, thereby enabling rapid output control.
(実施例)
第1図に第1の実施例を示す。この実施例は比較的に高
温の廃熱を利用して作動するタイプである。(Example) FIG. 1 shows a first example. This embodiment is of a type that operates using relatively high temperature waste heat.
図中1はたとえば往復動型のピストン機関等からなる体
積差原動機で、2は原動8!1から排出される低圧低温
気体から熱を奪い、これを液化する液化用熱交換器、3
は液化した低温低圧液体を加圧する圧送ポンプ、4は加
圧されて高圧化した液体を外部熱源からの熱を受けて気
化させ、高圧高温の気体とする気化用熱交換器で、この
気化用熱交換器4からの高圧高温気体を、圧力調整弁6
を経由して前記体積差原動機1に供給することにより、
原動機1の運軟が行なわれる。In the figure, 1 is a volume differential prime mover consisting of, for example, a reciprocating piston engine, 2 is a liquefaction heat exchanger that removes heat from the low-pressure low-temperature gas discharged from the prime mover 8!1, and liquefies it; 3
4 is a pressure pump that pressurizes the liquefied low-temperature, low-pressure liquid, and 4 is a vaporization heat exchanger that receives heat from an external heat source to vaporize the pressurized liquid into a high-pressure, high-temperature gas. The high pressure and high temperature gas from the heat exchanger 4 is transferred to the pressure regulating valve 6.
By supplying the volume difference prime mover 1 via
The operation of the prime mover 1 is changed.
そして、これら密閏回路に使用される熱媒質としては、
大気圧下での沸点が常温域もしくはそれよりも低温であ
る、例えばアンモニア(沸点−33℃)、70ン12(
沸点−29℃)、エチル(沸点34℃)等を用いる。勿
論熱媒質としては、これらに限定されるわけではなく、
回収する外部熱源の温度との関係で、これよりも沸点の
低い公知の熱媒質から適切なものを選択すれば良い。The heat medium used in these tight leap circuits is
The boiling point at atmospheric pressure is in the room temperature range or lower, such as ammonia (boiling point -33℃), 70N12 (
(boiling point -29°C), ethyl (boiling point 34°C), etc. are used. Of course, the heat medium is not limited to these.
Depending on the temperature of the external heat source to be recovered, an appropriate heat medium may be selected from known heat media with a lower boiling point than this.
このため、気化用熱交換器4の外部熱源がたとえば外気
1度よりも低温であっても、熱媒質を気化させることが
できる(ただし液化用熱交換器2で熱媒質を液化できる
ことが曲提となるが)。Therefore, the heat medium can be vaporized even if the external heat source of the vaporization heat exchanger 4 is at a temperature lower than, for example, 1 degree Celsius outside air. ).
また、これら熱媒質は気化用熱交換器4における圧力を
、圧力調整弁6により調整して飽和液線制御を行うこと
により、沸点が自由に変化し、これに基づいて出力制御
を行うことができる。In addition, the boiling point of these heat media can be freely changed by adjusting the pressure in the vaporizing heat exchanger 4 using the pressure regulating valve 6 to perform saturated liquid line control, and output control can be performed based on this. can.
次にtj113図の基本的理論図をも参照しながら、本
発明の作動について説明する。Next, the operation of the present invention will be explained with reference to the basic theoretical diagram shown in Figure tj113.
まずm1図において、気化用熱交換器4によって高温高
圧の気体となった熱媒質により、原動機1が駆動される
。原動機1を駆動して圧力、温度の低下した熱媒質は、
液化用熱交換器2でさらに冷却されて低圧低温の液体に
変化する。熱媒質は上記したように常温以下でも気体の
状態を保つので、原動機1から排出された気体は、さら
に冷却しないと液化しない。この場合、供給熱源の温度
が比較的高く、したがって使用する熱媒質の沸点もこれ
に対応して高いので、液化用熱交換器2は地下水や大気
への熱放出により、熱媒質を冷却して液化す名。First, in FIG. m1, the prime mover 1 is driven by a heat medium that has been turned into a high-temperature, high-pressure gas by the vaporizing heat exchanger 4. The heat medium whose pressure and temperature have decreased by driving the prime mover 1 is
It is further cooled in the liquefaction heat exchanger 2 and turns into a low-pressure, low-temperature liquid. As described above, the heat medium remains in a gaseous state even at room temperature or below, so the gas discharged from the prime mover 1 will not liquefy unless it is further cooled. In this case, since the temperature of the heat supply source is relatively high and the boiling point of the heat medium used is correspondingly high, the liquefaction heat exchanger 2 cools the heat medium by releasing heat to groundwater or the atmosphere. Liquefied name.
液化した熱媒質は圧送ポンプ3により加圧され、気化用
熱交換器4に送り込まれる。気化用熱交換器4は外部熱
源からの熱の供給を受け、液化熱媒質を気化するもので
あるが、熱媒質は供給熱源の温度よりも低い温度で沸騰
気化するものを選択するため、例えば外気温度よりも低
い低温の熱源であっても、これを利用して熱媒質を気化
することができる。The liquefied heat medium is pressurized by the pressure pump 3 and sent to the vaporization heat exchanger 4. The vaporization heat exchanger 4 receives heat from an external heat source and vaporizes the liquefied heat medium.The heat medium is selected to be one that boils and vaporizes at a lower temperature than the temperature of the supplied heat source. Even a low-temperature heat source lower than the outside air temperature can be used to vaporize the heat medium.
なお熱源としては各種の機器、装置類から放出される廃
熱を利用することも勿論可能である。Note that it is of course possible to use waste heat emitted from various devices and devices as the heat source.
そしてこのように気化した熱媒質を原動機1に供給する
ことにより、原fJJJm lが回転駆動され、その出
力を機械的なエネルギとして取り出すことができる。By supplying the heat medium thus vaporized to the prime mover 1, the prime mover fJJJml is rotationally driven, and its output can be extracted as mechanical energy.
なお、この閉回路熱機関のなす仕事としては、原四J磯
1が発生する出力から、ポンプ3と液化用熱交換器2の
消費仕事を差し引いたものとなる。The work done by this closed circuit heat engine is the output generated by the Hara 4J Iso 1 minus the work consumed by the pump 3 and the liquefaction heat exchanger 2.
ところでこの場合、圧力調整弁6を制御して気化用熱交
換器4の内部圧力を下げることにより、熱媒質の沸、α
が低下し、つまり気化温度が下がって原動機1を駆動す
る気体が増加するため、閉回路系としては系内圧力を下
げるほど、出力が増大することになる。この点、−船釣
な熱機関が圧力を上げることにより出力が増大するのと
、全く逆である。By the way, in this case, by controlling the pressure regulating valve 6 to lower the internal pressure of the vaporizing heat exchanger 4, boiling of the heat medium, α
In other words, the vaporization temperature decreases and the amount of gas that drives the prime mover 1 increases.As a closed circuit system, the lower the system pressure, the greater the output. This point is completely opposite to that of a marine heat engine, whose output increases by increasing the pressure.
圧力1凋整弁6を操作して系内圧力を上げれば沸点ら上
がり、発生蒸気量を減じて出力を低下させることができ
る。If the pressure in the system is increased by operating the pressure control valve 6, the boiling point will be raised, the amount of steam generated can be reduced, and the output can be lowered.
このとき液化用熱交換器4の熱媒質は液体のまま温度が
相対的に上昇し、したがって外部熱源からの供給熱を熱
媒質に蓄熱しておくことができ、次ぎに出力を増加させ
るべく系内圧力を下げる場合には、熱媒質を瞬時に応答
よく気化し、原動機1を急加速することが可能となる。At this time, the temperature of the heat medium of the liquefaction heat exchanger 4 increases relatively while remaining in liquid state, so that the heat supplied from the external heat source can be stored in the heat medium. When lowering the internal pressure, the heat medium is instantly vaporized with good response, and the prime mover 1 can be rapidly accelerated.
次にfjS3図の基本的な理論図にしたがって発生仕事
についてさらに説明する。Next, the generated work will be further explained according to the basic theoretical diagram of fjS3 diagram.
この図において、圧縮ピストン10が前記圧送ボンプコ
3に、また膨張ピストン11が原動機1に相当し、この
例では圧縮ピストン10と膨張ピストン111′を互い
に連動すると共に、シリンダ室10AとIIBとは互い
に連通している。In this figure, the compression piston 10 corresponds to the pressure-feeding pumpco 3, and the expansion piston 11 corresponds to the prime mover 1. In this example, the compression piston 10 and the expansion piston 111' are interlocked with each other, and the cylinder chambers 10A and IIB are connected to each other. It's communicating.
圧縮ピストン10は液化した熱媒質を加圧するもので、
圧縮ピストン10がら膨張ピストン11に同一圧力のま
ま移行する途中で、熱を受けて熱媒質は気化する。気化
した熱t!A質により膨張ピストン11は駆動され、こ
の運動が出力として取り出されると共に、一部は圧縮ピ
ストン10を駆動するために消費される。The compression piston 10 pressurizes the liquefied heat medium.
During the transition from the compression piston 10 to the expansion piston 11 with the same pressure, the heat medium receives heat and vaporizes. Vaporized heat! The expansion piston 11 is driven by the A quality, and this movement is taken out as an output, and a portion is consumed to drive the compression piston 10.
一般に液体が外部から熱を奪って気体に変化するときに
、その体積が者しく増大する。したがって同一圧力の*
ま膨張する液体から気体への体積差を利用して、膨張ピ
ストン11を等圧のまま駆動すると、その発生仕事は液
体のまま加圧する圧縮ピストン10の消費仕事よりもは
るかに大きくなる。Generally, when a liquid absorbs heat from the outside and changes into a gas, its volume increases significantly. Therefore, at the same pressure *
If the expansion piston 11 is driven at the same pressure by utilizing the volume difference between the expanding liquid and the gas, the work generated will be much greater than the work consumed by the compression piston 10, which pressurizes the liquid.
シリンダ室10AとIIAの圧力は同圧であるが、この
圧力を上下させることにより液体がら気体へ変化する沸
、αが変わり、前記したように、圧力を下げるほど気化
しやすくなり、体積差を利用して原動機1を駆動する構
成のため、閉回路の系内圧力を変化させることにより、
飽和液線による特性に基づいて、簡単かつ応答よく出力
を制御することができる。The pressures in the cylinder chambers 10A and IIA are the same, but by increasing or decreasing this pressure, the boiling point, α, at which liquid changes to gas changes, and as mentioned above, the lower the pressure, the easier it is to vaporize, and the difference in volume is reduced. Because of the configuration in which the prime mover 1 is driven using the
The output can be easily and responsively controlled based on the characteristics of the saturated liquid line.
なお第3図において、Q=熱量、L=液体、G=気体、
M=質量、■=体積(有効シリンダ容積)、P=正圧力
F=出力、W=仕事、T=湿温度S=飽和液線、l=効
率、a、b、c=常数とすると、以下の理論式が成立す
る。In addition, in FIG. 3, Q=heat amount, L=liquid, G=gas,
M=mass, ■=volume (effective cylinder volume), P=positive pressure F=output, W=work, T=humidity temperature S=saturated liquid line, l=efficiency, a, b, c=constants, then the following The theoretical formula holds true.
M1=M2(液体と気体の質量は等しい)P1=P2(
液体と気体の圧力は等しい)T1≦1゛2(熱源からの
受熱により気体の方が温度が高い)
Q1≦Q2(熱源からの受熱により気体の方が熱量が大
きい)
■1≦V2(気化による体積膨張相当分)P / ’I
’ = c(温度は圧力に比例)W/Q=a(仕事は熱
量に比例)
P=b/W(圧力は仕事に反比例)
F2−F1=F3(膨張ピストン11の出力から圧縮ピ
ストン10の駆動力を差し引くと、体積差に対応する正
の仕事)
F3Xη=W(系の機械効率を’t tft、 した実
際の仕事量)
次に第2図のff12y!、施例について説明すると、
これはPt51の実施例よりも気化用熱交換器4の供給
熱源が低温で、これに伴い使用する熱媒質を沸点の低い
ものを選択した場合であって、液化用熱交換器2におい
て沸点の低い熱媒質の液化に必要な冷却性能を得るため
に、熱移動効率の非常に高いヒートポンプ5を備えてい
る。M1=M2 (the masses of liquid and gas are equal) P1=P2(
The pressure of the liquid and the gas are equal) T1≦1゛2 (the gas has a higher temperature due to the heat received from the heat source) Q1≦Q2 (the gas has a larger calorific value due to the heat received from the heat source) ■1≦V2 (vaporization (equivalent to volumetric expansion due to) P/'I
' = c (temperature is proportional to pressure) W/Q = a (work is proportional to heat) P = b/W (pressure is inversely proportional to work) F2 - F1 = F3 (from the output of the expansion piston 11 to the output of the compression piston 10 When the driving force is subtracted, the positive work corresponding to the volume difference) F3Xη=W (Actual amount of work with the mechanical efficiency of the system 't tft) Next, ff12y in Figure 2! , to explain the example,
This is a case where the heat source supplied to the vaporization heat exchanger 4 is lower temperature than in the Pt51 example, and the heat medium used is selected to have a lower boiling point. In order to obtain the cooling performance necessary for liquefying a low heat medium, a heat pump 5 with extremely high heat transfer efficiency is provided.
ヒートポンプ5は、液化用熱交換器2の内部に吸熱?1
FIS5Aを、また気化用熱交換器4の内部に放熱部5
Bを設け、これらの間を閉回路で接続すると共に、内部
に封入した冷媒を循環させるコンプレッサ5Cを付加し
たものである。Does the heat pump 5 absorb heat inside the liquefaction heat exchanger 2? 1
FIS5A is also installed inside the heat exchanger 4 for vaporization.
A compressor 5C is provided, and a closed circuit is connected between them, and a compressor 5C is added to circulate the refrigerant sealed inside.
コンプレッサ5Cにより加圧された冷媒は高圧高温気体
となり、気化用熱交換器4の放熱部5Bにおいて熱を放
出し、高圧低温の液体となる。The refrigerant pressurized by the compressor 5C becomes a high-pressure, high-temperature gas, releases heat in the heat radiation section 5B of the vaporization heat exchanger 4, and becomes a high-pressure, low-temperature liquid.
この高圧液体は、蒸発弁5Dの下流で急激に圧力が下が
るため、これに応じて液化用熱交換器2の吸熱部5A″
C′膨張蒸発し、このとき周囲から熱を奪って、液化用
熱交換器2の熱媒質の温度を下げ、その液化を促進する
。そして低圧低温の気体はコンプレッサ5Cにより再び
加圧され、高圧高温の気体となって放熱部5Bへと循環
するのである。Since the pressure of this high-pressure liquid rapidly decreases downstream of the evaporation valve 5D, the heat absorption section 5A'' of the liquefaction heat exchanger 2 responds accordingly.
C' expands and evaporates, taking heat from the surroundings, lowering the temperature of the heat medium in the liquefaction heat exchanger 2, and promoting its liquefaction. The low-pressure, low-temperature gas is then pressurized again by the compressor 5C to become a high-pressure, high-temperature gas and circulated to the heat radiation section 5B.
このようにして非常に熱移動効率のすぐれたヒートポン
プ5を付設することにより、気化用熱交換器4の供給熱
源の温度が相対的に低く、したがって使用される熱1&
質の沸点が低い場合でも、液化用熱交換器2の冷却効率
を商めで確実に液化することが可能となるのである。ま
たヒートポンプ5の吸熱部5Aで回収した熱は、放熱部
5Bで熱媒質に放出されるので、その分だけ閉回路熱機
関の出力効率は向上する。By installing the heat pump 5 with extremely high heat transfer efficiency in this way, the temperature of the heat source supplied to the vaporization heat exchanger 4 is relatively low, and therefore the heat used 1&
Even if the boiling point of the material is low, it is possible to reliably liquefy the material by keeping the cooling efficiency of the liquefaction heat exchanger 2 low. Furthermore, the heat recovered by the heat absorption part 5A of the heat pump 5 is released to the heat medium by the heat radiation part 5B, so that the output efficiency of the closed circuit heat engine is improved accordingly.
(発明の効果)
以上のように本発明によれば、常温あるいはそれ以下の
温度で沸騰気化する熱媒質を循環させ、これを低温の熱
源からの受熱により気化して、この循環させる熱媒質の
液体と気体との体積差を利用して仕事を取り出すため、
従来、外部に放出していた低温の廃熱を効率よく回収し
て機械的なエネルギとして取り出すことができる。(Effects of the Invention) As described above, according to the present invention, a heat medium that boils and vaporizes at room temperature or lower temperature is circulated, and is vaporized by receiving heat from a low-temperature heat source. In order to extract work by using the volume difference between liquid and gas,
The low-temperature waste heat that was conventionally released to the outside can be efficiently recovered and extracted as mechanical energy.
また、本発明は一種の外燃機関でありながら、系内の圧
力制御により熱媒質の飽和液線の特性にもとづく急速な
る出力制御が可能で、とくに、出力制限時に外部熱源か
らの供給熱を熱媒質に蓄熱することができるため、次ぎ
の出力増加時にこれを利用して応答よく急加速すること
ができるという効果もある。Furthermore, although the present invention is a type of external combustion engine, it is possible to rapidly control the output based on the characteristics of the saturated liquid line of the heat medium by controlling the pressure within the system. Since heat can be stored in the heat medium, this can be used to quickly accelerate the vehicle with good response when the next output is increased.
第1図は本発明のPt51の実施例を示す構成図、第2
図は第2の実施例を示す構成図、第3図は本発明の基本
理論図である。
1・・・原動機、2・・・液化用熱交換器、3・・・ポ
ンプ、4・・・気化用熱交換器、5・・・ヒートポンプ
、6・・・圧力調整弁。
枳 C
呂 油Figure 1 is a configuration diagram showing an embodiment of Pt51 of the present invention, Figure 2 is a block diagram showing an embodiment of Pt51 of the present invention.
The figure is a block diagram showing the second embodiment, and FIG. 3 is a basic theoretical diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Prime mover, 2... Heat exchanger for liquefaction, 3... Pump, 4... Heat exchanger for vaporization, 5... Heat pump, 6... Pressure adjustment valve.枳 C Lu Yu
Claims (1)
原動機からの排出気体を液化する液化用熱交換器と、液
化した熱媒質を加圧するポンプと、この高圧液体を外部
熱源からの熱の供給を受けて気化する気化用熱交換器と
、前記原動機に送り込む気体の気化圧力を調整する圧力
調整弁と、前記循環熱媒質として沸点が常温域もしくは
それ以下の熱媒質とを備えたことを特徴する閉回路熱機
関。A prime mover driven by the supply of a vaporized heat medium, a liquefaction heat exchanger that liquefies exhaust gas from the prime mover, a pump that pressurizes the liquefied heat medium, and a supply of heat from an external heat source to this high-pressure liquid. The present invention is characterized by comprising: a vaporizing heat exchanger that vaporizes the gas that it receives; a pressure regulating valve that adjusts the vaporizing pressure of the gas sent to the prime mover; and a heat medium whose boiling point is in the normal temperature range or lower as the circulating heat medium. Closed circuit heat engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7160388A JPH01244173A (en) | 1988-03-25 | 1988-03-25 | Closed-circuit heat engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7160388A JPH01244173A (en) | 1988-03-25 | 1988-03-25 | Closed-circuit heat engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01244173A true JPH01244173A (en) | 1989-09-28 |
Family
ID=13465397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7160388A Pending JPH01244173A (en) | 1988-03-25 | 1988-03-25 | Closed-circuit heat engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01244173A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231633A (en) * | 2010-04-24 | 2011-11-17 | Oike Motors:Kk | Power conversion apparatus with small temperature difference |
JP2014047722A (en) * | 2012-08-31 | 2014-03-17 | Hino Motors Ltd | External combustion engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51104151A (en) * | 1975-03-11 | 1976-09-14 | Fuji Electric Co Ltd | EKIKATENNENGASUNOREINETSURYONYORU DORYOKUHATSUSEISOCHI |
JPS6237210A (en) * | 1985-08-09 | 1987-02-18 | Kayaba Ind Co Ltd | Attitude controller |
-
1988
- 1988-03-25 JP JP7160388A patent/JPH01244173A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51104151A (en) * | 1975-03-11 | 1976-09-14 | Fuji Electric Co Ltd | EKIKATENNENGASUNOREINETSURYONYORU DORYOKUHATSUSEISOCHI |
JPS6237210A (en) * | 1985-08-09 | 1987-02-18 | Kayaba Ind Co Ltd | Attitude controller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231633A (en) * | 2010-04-24 | 2011-11-17 | Oike Motors:Kk | Power conversion apparatus with small temperature difference |
JP2014047722A (en) * | 2012-08-31 | 2014-03-17 | Hino Motors Ltd | External combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10488085B2 (en) | Thermoelectric energy storage system and an associated method thereof | |
US6745574B1 (en) | Microturbine direct fired absorption chiller | |
US5522356A (en) | Method and apparatus for transferring heat energy from engine housing to expansion fluid employed in continuous combustion, pinned vane type, integrated rotary compressor-expander engine system | |
US9021807B2 (en) | Waste heat utilization device and operating method | |
US8904818B2 (en) | Refrigerator | |
JPS6119443B2 (en) | ||
WO1991005974A1 (en) | Ericsson cycle machine | |
JPH11270352A (en) | Intake air cooling type gas turbine power generating equipment and generation power plant using the power generating equipment | |
US5931021A (en) | Straightforward method and once-through apparatus for gas liquefaction | |
JP2015203417A (en) | Device for controlling closed loop working based on rankine cycle and method using the same | |
KR102207200B1 (en) | Power generation efficiency improvement system through temperature control of intake air of turbine | |
JP2003278598A (en) | Exhaust heat recovery method and device for vehicle using rankine cycle | |
KR102062439B1 (en) | Tank internal pressure suppression device | |
KR102538228B1 (en) | Energy saving system of encune by using waste heat and ocean construction comprising the same | |
JP4555784B2 (en) | Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method | |
KR102005157B1 (en) | Apparatus for cooling working fluid and Power generation plant using the same | |
JPH01244173A (en) | Closed-circuit heat engine | |
KR102479057B1 (en) | System for generation able to stirling engine | |
KR101391071B1 (en) | Electric generating apparatus using latent heat air | |
KR101487629B1 (en) | A Boil-off Gas Treatment System | |
KR102630473B1 (en) | Phase change heat management system for heating element using heat source supply system | |
KR102645678B1 (en) | Combined system of inter-cooling regenerative gas turbine and refrigerant composite bottom cycle | |
JP7241794B2 (en) | Composite system of intermediate cooling recuperation gas turbine and refrigerant composite bottoming cycle | |
JP2024044881A (en) | Organic Rankine Cycle Cooling System | |
WO1997000373A1 (en) | Method of converting thermal energy to mechanical energy |