JPH01230739A - Aluminum alloy cast containing composite material component - Google Patents
Aluminum alloy cast containing composite material componentInfo
- Publication number
- JPH01230739A JPH01230739A JP5587388A JP5587388A JPH01230739A JP H01230739 A JPH01230739 A JP H01230739A JP 5587388 A JP5587388 A JP 5587388A JP 5587388 A JP5587388 A JP 5587388A JP H01230739 A JPH01230739 A JP H01230739A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- intermetallic compound
- aluminum alloy
- intermetallic compounds
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims description 62
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 83
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract 2
- 229910052742 iron Inorganic materials 0.000 claims abstract 2
- 229910052748 manganese Inorganic materials 0.000 claims abstract 2
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 2
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 229910052758 niobium Inorganic materials 0.000 claims abstract 2
- 229910052715 tantalum Inorganic materials 0.000 claims abstract 2
- 229910052719 titanium Inorganic materials 0.000 claims abstract 2
- 229910052721 tungsten Inorganic materials 0.000 claims abstract 2
- 239000000835 fiber Substances 0.000 claims description 43
- 238000005266 casting Methods 0.000 claims description 35
- 239000012779 reinforcing material Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 230000035939 shock Effects 0.000 description 26
- 239000000843 powder Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910000624 NiAl3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、アルミニウム合金鋳物に係り、更に詳細には
アルミニウム合金をマトリックスとし短繊維やウィスカ
を強化材とする複合材料部であって熱衝撃特性、強度、
摩擦摩耗特性、耐凝着性に優れた複合材料部を有するア
ルミニウム合金鋳物に係る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aluminum alloy casting, and more particularly to a composite material part having an aluminum alloy as a matrix and reinforcing materials as short fibers and whiskers. Strength,
It relates to an aluminum alloy casting having a composite material part with excellent friction and wear characteristics and adhesion resistance.
従来の技術
複合材料の摩擦摩耗特性を向上させるために複合材料中
に金属間化合物を形成させることが有効であることが知
られており、例えば特開昭61−132260号公報に
は、強化材としての鋳鉄繊維の表面層にマトリックスと
の金属間化合物を生成させた複合材料が記載されている
。Conventional Technology It is known that it is effective to form intermetallic compounds in composite materials in order to improve the friction and wear characteristics of composite materials. A composite material is described in which an intermetallic compound is formed with a matrix on the surface layer of cast iron fibers.
また本願出願人と同一の出願人により本願と同日付にて
出願された特願昭63− 号明細書には、アル
ミニウム合金をマトリックスとする複合材料の摩擦摩耗
特性や耐熱性等を向上させるべく、マトリックス中にA
Iと特定の金属元素との金属間化合物が微細に分散され
た複合材料が記載されており、この先の提案にかかる複
合材料によれば、金属間化合物を含まない従来の複合材
料及び上述の特開昭61−132260号公報に記載さ
れれた複合材料よりも摩擦摩耗特性や耐熱性等に優れた
複合材料を得ることができる。Furthermore, in the specification of Japanese Patent Application No. 1983 filed on the same date as the present application by the same applicant as the present applicant, there is a patent application for improving the friction and wear characteristics, heat resistance, etc. of a composite material having an aluminum alloy as a matrix. , A in the matrix
A composite material in which an intermetallic compound of I and a specific metal element is finely dispersed is described, and according to the composite material proposed in the future, the conventional composite material that does not contain an intermetallic compound and the above-mentioned special It is possible to obtain a composite material that has better friction and wear characteristics, heat resistance, etc. than the composite material described in JP-A-61-132260.
発明が解決しようとする課題
しかし金属間化合物は硬くて脆い性質の物質であるため
、金属間化合物が含まれる複合材料に於てはその脆化が
避けられず、特に金属間化合物を含む複合材料が厳しい
冷熱サイクルを受ける場合には熱疲労に起因して複合材
料に亀裂が生じることがある。Problems to be Solved by the Invention However, since intermetallic compounds are hard and brittle substances, embrittlement is unavoidable in composite materials containing intermetallic compounds, especially composite materials containing intermetallic compounds. Composite materials can crack due to thermal fatigue if they are subjected to severe cooling and heating cycles.
本願発明者等は金属間化合物を含む複合材料に於て熱疲
労に起因する亀裂が生じることを防止すべく種々の実験
的研究を行ったところ、複合材料部を有し該複合材料部
により表面の一部が郭定されたアルミニウム合金鋳物に
於て複合材料部に存在する金属間化合物の形態を限定す
ることにより、アルミニウム合金鋳物が比較的厳しい冷
熱サイクルを受ける場合にも複合材料部に熱疲労に起因
する亀裂が生じることを回避し、また複合材料部の強度
等を向上させ得ることを見い出した。The inventors of the present application conducted various experimental studies to prevent cracks caused by thermal fatigue in composite materials containing intermetallic compounds. By limiting the form of the intermetallic compounds present in the composite material part of aluminum alloy castings in which a part of It has been found that cracks caused by fatigue can be avoided, and the strength etc. of composite material parts can be improved.
本発明は、本願発明者等が行った実験的研究の結果得ら
れた知見に基づき、アルミニウム合金をマトリックスと
し短繊維若しくはウィスカを強化材とする複合材料部を
有し該複合材料部により表面の一部が郭定されたアルミ
ニウム合金鋳物であって、比較的厳しい冷熱サイクルを
受ける場合にも熱疲労に起因する亀裂が生じることがな
く、また強度等にも優れたアルミニウム合金鋳物を提O
tすることを目的としている。The present invention is based on the findings obtained as a result of experimental research carried out by the inventors of the present invention, and has a composite material part with an aluminum alloy as a matrix and short fibers or whiskers as a reinforcing material. We offer aluminum alloy castings that are partially delineated and do not crack due to thermal fatigue even when subjected to relatively severe cooling and heating cycles, and have excellent strength.
The purpose is to
課題を解決するための手段
上述の如き目的は、本発明によれば、アルミニウム合金
をマトリックスとじ短繊維若しくはウィスカ粒子を強化
材とする複合材料部を有し該複合材料部により少なくと
も表面の一部が郭定されたアルミニウム合金鋳物にして
、前記マトリックス中にはAlとFes Ni 、Co
5Cr、Cu、MnSMo、V、W、Ta5Nb、Ti
、Zrよりなる群より選択された少くとも一種の金属
元素との金属間化合物が微細に分散されており、前記複
合材料部の表面部の任意の断面でみて前記金属間化合物
の長さ及び幅をそれぞれそL及びDとするとL/D>3
である金属間化合物の面積比が金属間化合物の総量に対
し30%以下であるアルミニウム合金鋳物によって達成
される。Means for Solving the Problems According to the present invention, the above-mentioned object includes a composite material part in which an aluminum alloy is matrix-bound and short fibers or whisker particles are used as a reinforcing material. The matrix contains Al, FesNi, and Co.
5Cr, Cu, MnSMo, V, W, Ta5Nb, Ti
, an intermetallic compound with at least one metal element selected from the group consisting of Zr is finely dispersed, and the length and width of the intermetallic compound are Let L and D be respectively, then L/D>3
This is achieved by an aluminum alloy casting in which the area ratio of intermetallic compounds is 30% or less based on the total amount of intermetallic compounds.
発明の作用及び効果
本発明によれば、複合材料部のマトリックス中にはAI
と特定の金属元素との金属間化合物が微細に分散されて
おり、金属間化合物によって強化材の間のマトリックス
が強化、即ち地固めされ、これにより高温度に於ても強
化材が所定の状態に保持され、マ!・リプレスが直接相
手材に接触することが回避されるので、金属間化合物が
含まれていない従来の複合材料に比して強度、耐摩耗性
及び高温度に於ける耐凝着性を向上させることができる
だけでなく、複合材料部の表面部の任意の断面でみて金
属間化合物の長さ及び幅をそれぞれL及びDとするとL
/D>3である金属間化合物、即ち方向性を有する針状
の金属間化合物の面積比が金属間化合物の総量に対し3
0%以下に設定されるので、後に本願発明者等が行った
実験的研究の結果より明らかである如く、比較的厳しい
冷熱サイクルを受ける場合にも複合材料部に熱疲労に起
因する亀裂が生じることのない熱衝撃特性に優れたアル
ミニウム合金鋳物を得ることができる。Effects and Effects of the Invention According to the present invention, AI is contained in the matrix of the composite material part.
The intermetallic compounds between the reinforcing material and the specific metal elements are finely dispersed, and the intermetallic compounds strengthen, or consolidate, the matrix between the reinforcing materials, which allows the reinforcing materials to maintain their desired state even at high temperatures. Held, Ma!・Since direct contact of the repress with the mating material is avoided, it improves strength, wear resistance, and adhesion resistance at high temperatures compared to conventional composite materials that do not contain intermetallic compounds. In addition, when the length and width of the intermetallic compound are L and D, respectively, when viewed from an arbitrary cross section of the surface of the composite material part, L
/D>3, that is, the area ratio of acicular intermetallic compounds with directionality is 3 to the total amount of intermetallic compounds.
Since the temperature is set to 0% or less, cracks due to thermal fatigue occur in the composite material even when subjected to relatively severe cooling and heating cycles, as is clear from the results of experimental research later conducted by the inventors of the present application. It is possible to obtain aluminum alloy castings with excellent thermal shock properties.
本願発明者等が行った実験的研究の結果によれば、L/
D>3である金属間化合物の面積比か金属間化合物の総
量に対し30%以下である層か複合材料部の表面よりl
am、特に1.5.mm以上の深さに亙り形成されてい
る場合に複合材料部の表面層に熱疲労による亀裂が生じ
ることを確実に回避することができる。従って本発明の
一つの詳細な特徴によれば、L/D>3である金属間化
合物の面積比が金属間化合物の総量に対し30%以下で
ある層が複合材料部の表面よりI n+m、特に1.5
1以上の深さに亙り形成される。According to the results of experimental research conducted by the inventors, L/
The area ratio of intermetallic compounds that is D>3 or the layer that is 30% or less of the total amount of intermetallic compounds or l from the surface of the composite material part
am, especially 1.5. It is possible to reliably avoid cracks caused by thermal fatigue in the surface layer of the composite material when the composite material is formed over a depth of mm or more. Therefore, according to one detailed feature of the invention, the layer in which the area ratio of intermetallic compounds with L/D>3 is 30% or less relative to the total amount of intermetallic compounds is I n+m from the surface of the composite material part, Especially 1.5
It is formed over one or more depths.
また本願発明者等が行った実験的研究の結果によれば、
強化材の体積率が低過ぎる場合には複合材料部の耐摩耗
性や耐凝着性を十分に向上させることができず、逆に強
化材の体積率が高過ぎる場合には相手材の摩耗量が増大
する。また金属開化合物の体積率が低過ぎる場合には複
合材料部の耐凝着性を十分に向上させることができず、
逆に金属間化合物の体積率が高過ぎる場合には複合材料
部の脆化が著しくなり、複合材料部の強度を確保するこ
とが困難になる。従って本発明の他の一つの詳細な特徴
によれば、強化材の体積率は3〜50%に設定され、金
属間化合物の体積率は5〜60%に設定される。Also, according to the results of experimental research conducted by the inventors of the present application,
If the volume fraction of the reinforcing material is too low, it will not be possible to sufficiently improve the wear resistance and adhesion resistance of the composite material part, and conversely, if the volume fraction of the reinforcing material is too high, it will cause wear of the mating material. The amount increases. Furthermore, if the volume fraction of the metal open compound is too low, the adhesion resistance of the composite material part cannot be sufficiently improved.
On the other hand, if the volume fraction of the intermetallic compound is too high, the composite material portion becomes extremely brittle, making it difficult to ensure the strength of the composite material portion. According to another detailed feature of the invention, therefore, the volume fraction of the reinforcement is set between 3 and 50%, and the volume fraction of the intermetallic compound is set between 5 and 60%.
また本願発明者等が行った実験的研究の結果によれば、
複合材料部の強度、耐摩耗性、耐凝着性を向上させるた
めには、金属間化合物のうち針状の金属間化合物の比率
か低い値であるよりも高い値であることが好ましい。従
って本発明の更に他の一つの詳細な特徴によれば、L/
D>3である金属間化合物の面積比が金属間化合物の総
量に対し20%以上である領域、好ましくは40%以上
である領域が複合材料部に設けられる。Also, according to the results of experimental research conducted by the inventors of the present application,
In order to improve the strength, wear resistance, and adhesion resistance of the composite material part, it is preferable that the ratio of acicular intermetallic compounds among the intermetallic compounds be higher than lower. According to yet another detailed feature of the invention, therefore, L/
A region in which the area ratio of the intermetallic compound with D>3 is 20% or more, preferably 40% or more of the total amount of the intermetallic compound is provided in the composite material part.
また本願発明者等が行った実験的研究の結果によれば、
金属間化合物はできるだけ均一に分散されていることが
好ましく、金属間化合物間の最短距離の平均値は100
μm以下、特に50μm以下であることが好ましく、ま
たマトリックスの脆化を回避するためには金属間化合物
間の最短距離の平均値は3μm以上、特に5μm以上で
あることが好ましい。従って本発明の更に他の一つの詳
細な特徴によれば、金属間化合物間の最短距離の平均値
は3〜100μm1特に5〜50μmに設定される。Also, according to the results of experimental research conducted by the inventors of the present application,
It is preferable that the intermetallic compounds are dispersed as uniformly as possible, and the average value of the shortest distance between the intermetallic compounds is 100
The average value of the shortest distance between intermetallic compounds is preferably 3 μm or more, particularly 5 μm or more in order to avoid embrittlement of the matrix. According to yet another detailed feature of the invention, therefore, the average value of the shortest distances between the intermetallic compounds is set between 3 and 100 μm, particularly between 5 and 50 μm.
また本願発明者等が行った実験的研究の結果によれば、
金属間化合物はAlと上述の金属元素の何れかとの金属
間化合物であればよいが、特に金属間化合物のビッカー
ス硬さが300以上であることが好ましく、また強化材
の硬さよりも低いことが好ましい。従って本発明の更に
他の一つの詳細な特徴によれば、金属間化合物のビッカ
ース硬さは300以上であり、強化材の硬さよりも低い
値に設定される。Also, according to the results of experimental research conducted by the inventors of the present application,
The intermetallic compound may be an intermetallic compound of Al and any of the above-mentioned metal elements, but it is particularly preferable that the intermetallic compound has a Vickers hardness of 300 or more, and that it is lower than the hardness of the reinforcing material. preferable. Therefore, according to yet another detailed feature of the invention, the Vickers hardness of the intermetallic compound is set to a value of 300 or more and lower than the hardness of the reinforcing material.
更に本願発明者等が行った実験的研究の結果によれば、
金属間化合物が粒状である場合にはその最大粒径が50
μm以下、特に30μm以下であることか好ましく、金
属間化合物が針状である場合にはその最大長さが100
μm以下、特に50μm以下であることが好ましい。Furthermore, according to the results of experimental research conducted by the inventors of the present application,
When the intermetallic compound is granular, its maximum particle size is 50
It is preferred that the intermetallic compound is acicular in length, preferably 30 μm or less, and the maximum length is 100 μm or less.
It is preferably 50 μm or less, particularly 50 μm or less.
尚、本発明の鋳物に於ける強化材は従来より複合材料の
製造に使用されている圧意の材質のものであってよいが
、耐摩耗性向上効果や高la安定性等に優れている点か
らセラミックよりなっていることが好ましい。Note that the reinforcing material in the casting of the present invention may be made of a pressure material that has been conventionally used in the production of composite materials, but the reinforcing material is excellent in the effect of improving wear resistance, high LA stability, etc. Preferably, it is made of ceramic.
以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.
実施例1
平均繊維径2 mm s繊維長2〜3+n+nのアルミ
ナ短繊維(95%AI 203.5%5I02、ICI
社製[サフィルRFJと粒径3〜7μmのNl粉末(純
度99%)とを重量比で5.6:8.9の割合にてコロ
イダルシリカ水溶液中に混入し、これを十分に撹拌した
後吸引成形を行うことにより、第1図に示されている如
き成形体10を3個形成した。この場合成形体は外径9
5+cm、内径89mm、高さ20mmの円筒状をなし
、アルミナ短繊維及びN1粉末の体積率はそれぞれ10
%、5%であり、これらは実質的に互いに均一に混合さ
れた状態にあった。Example 1 Alumina short fibers (95% AI 203.5% 5I02, ICI
[Saphir RFJ and Nl powder (purity 99%) with a particle size of 3 to 7 μm were mixed into a colloidal silica aqueous solution at a weight ratio of 5.6:8.9, and this was thoroughly stirred. By performing suction molding, three molded bodies 10 as shown in FIG. 1 were formed. In this case, the molded body has an outer diameter of 9
It has a cylindrical shape with a diameter of 5+ cm, an inner diameter of 89 mm, and a height of 20 mm, and the volume ratio of alumina short fibers and N1 powder is 10 each.
%, 5%, and these were substantially uniformly mixed with each other.
次いで各成形体を窒素ガス中にて400℃に予熱した後
、第2図に示されている如く、各成形体10を高圧鋳造
装置12の温度400℃の鋳型14のモールドキャビテ
ィ16内に圧入により固定し、それぞれのモールドキャ
ビティ内に750℃、800℃、850℃のアルミニウ
ム合金(JIS規格AC8A、12%S1.1%Cu
s 196 M g s1%Nl、残部実質的にAI)
の溶湯18を注湯し、該溶湯をプランジャ20により1
000 kg/C−の圧力に加圧し、その加圧状態を溶
湯が完全に凝固するまで保持した。Next, after preheating each molded body to 400°C in nitrogen gas, each molded body 10 is press-fitted into a mold cavity 16 of a mold 14 of a high-pressure casting device 12 at a temperature of 400°C, as shown in FIG. 750℃, 800℃, 850℃ aluminum alloy (JIS standard AC8A, 12%S1.1%Cu
s 196 M g s1%Nl, remainder substantially AI)
molten metal 18 is poured, and the molten metal is poured into 1
The pressure was increased to 000 kg/C-, and the pressurized state was maintained until the molten metal completely solidified.
次いでかくして形成された各鋳物を鋳型より取り出し、
それらの鋳物に対し機械加工を施すことにより、第3図
に示されている如く各鋳物より外径93)、厚さ7■の
円板状の熱衝撃試験片22(試験片No、1〜3)を2
個ずつ形成した。尚各試験片の径方向の外周面には深さ
2+mの範囲に亙リアルミナ短繊維にて複合強化された
複合材料よりなる部分22aが存在していた。Each casting thus formed is then removed from the mold,
By performing machining on these castings, as shown in FIG. 3) to 2
Formed one by one. A portion 22a made of a composite material reinforced with realumina short fibers was present in the radial outer circumferential surface of each test piece in a depth range of 2+m.
次いで各組の試験片の一方について複合材料よりなる部
分の組織を調査したところ、元の成形体中に含まれてい
たN1粉末が高圧鋳造時にマトリックスであるアルミニ
ウム合金中のAlと反応して形成された金属間化合物N
I At ]がアルミニウム合金中に微細に分散されて
いることが認められ、各試験片の複合材料の部分に生成
した金属間化合物の体積率は約27%であった。これら
の金属間化合物を更に詳細に調査すると、金属間化合物
の形態は高圧鋳造時のアルミニウム合金の溶湯の温度に
よって異なっていることが認められた。Next, we investigated the structure of the composite material part of one of the test specimens in each set, and found that it was formed by the N1 powder contained in the original compact reacting with Al in the matrix aluminum alloy during high-pressure casting. intermetallic compound N
I At ] was found to be finely dispersed in the aluminum alloy, and the volume fraction of the intermetallic compound formed in the composite material portion of each test piece was about 27%. When these intermetallic compounds were investigated in more detail, it was found that the morphology of the intermetallic compounds differed depending on the temperature of the molten aluminum alloy during high-pressure casting.
第4図乃至第5図はそれぞれアルミニウム合金の溶湯の
温度を750℃、800℃、850℃に設定することに
より形成された試験片No、1〜3の複合材料の部分の
断面の金属組織を400倍にて示す光学顕微鏡写真であ
る。尚これらの図に於て、白色乃至灰色の島状又は粒状
の部分がN j−A I金属間化合物の部分であり、黒
色の棒状又は丸い部分がアルミナ短繊維である。Figures 4 and 5 show the metallographic structure of the cross section of the composite material parts of test pieces No. 1 to 3, which were formed by setting the temperature of the molten aluminum alloy to 750°C, 800°C, and 850°C, respectively. It is an optical micrograph shown at 400 times magnification. In these figures, the white to gray island-like or granular parts are the N j-A I intermetallic compound parts, and the black rod-like or round parts are the alumina short fibers.
これら第4図乃至第6図の比較より、形成される金属間
化合物の形態はマトリックスの溶湯のfH度に依存して
おり、溶l易の温度が高くなる程金属間化合物の形態が
粒状より針状へ変化することが解る。尚金属間化合物の
形態に影響する因子として、上述の溶湯の温度の他に鋳
型のl3度や成形体の予熱温度があることが認められて
いる。Comparison of these figures 4 to 6 shows that the form of the intermetallic compound formed depends on the fH degree of the matrix molten metal, and the higher the molten temperature, the more granular the form of the intermetallic compound. It can be seen that it changes to a needle shape. In addition to the above-mentioned temperature of the molten metal, it is recognized that factors that influence the form of the intermetallic compound include the temperature of 13 degrees of the mold and the preheating temperature of the compact.
次に組織の調査に供されなかった他方の試験片N051
〜3について各試験片をアセチレンがスバーナにて40
0℃まで加熱した後水焼入を行うことにより第7図に示
されている如き冷熱サイクルによる熱衝撃試験を500
サイクルまで行った。Next, the other test piece N051 that was not subjected to the structure investigation
~3. Each specimen was heated with acetylene in Svarna for 40 minutes.
By heating to 0°C and then water quenching, a thermal shock test using a cold/heat cycle as shown in Fig. 7 is carried out for 500 degrees.
I went to the cycle.
その結果を第8図に示す。The results are shown in FIG.
第8図より、試験片No、1及び2に於ては亀裂が全く
発生していないのに対し、試験片No、3に於ては冷熱
サイクルが50サイクルの時点に於て既に亀裂が発生し
ており、冷熱サイクルの増大と共に亀裂の長さが増大し
ていくことが解る。From Figure 8, no cracks have occurred in test specimens No. 1 and 2, while cracks have already occurred in test specimen No. 3 at the 50th cooling/heating cycle. It can be seen that the length of the crack increases as the heating and cooling cycle increases.
この熱衝撃試験の結果より、複合材料のマトリックス中
に実質的に同量の金属間化合物が分散されている場合で
あっても、金属間化合物の形態により熱衝撃特性が大き
く相違し、金属間化合物が粒状の場合に耐熱衝撃性が高
く、金属間化合物が針状である場合に耐熱衝撃性が低い
ことが解る。The results of this thermal shock test show that even when substantially the same amount of intermetallic compounds are dispersed in the matrix of a composite material, the thermal shock properties differ greatly depending on the form of the intermetallic compound, and It can be seen that the thermal shock resistance is high when the compound is granular, and the thermal shock resistance is low when the intermetallic compound is acicular.
また第5図に示された複合材料は粒状の金属間化合物と
針状の金属間化合物とを含んでおり、第5図に示された
金属組織を含む試験片No、2に於ては亀裂が発生して
いないことから判断すると、針状の金属間化合物が存在
することが全く許容されないわけではなく、その比率が
所定の値に抑制されればよいことが解る。Furthermore, the composite material shown in Fig. 5 contains granular intermetallic compounds and acicular intermetallic compounds, and test pieces No. 2 containing the metallographic structure shown in Fig. 5 showed no cracks. Judging from the fact that acicular intermetallic compounds are not generated, it can be seen that the presence of acicular intermetallic compounds is not completely unacceptable, and it is only necessary to suppress the ratio to a predetermined value.
実施例2
上述の実施例1の試験結果より、複合材料のマトリック
ス中に存在する針状の金属間化合物の比率が重要である
ことが解ったので、針状の金属間化合物の比率が複合材
料の熱衝撃特性に如何なる影響を及すかを検討する試験
を行った。Example 2 From the test results of Example 1 above, it was found that the ratio of acicular intermetallic compounds present in the matrix of the composite material is important. A test was conducted to examine the effect on the thermal shock characteristics of
先ず実施例1の場合と同一の成形体を形成し、高圧鋳造
時のマトリックスとしてのアルミニウム合金(JIS規
格AC8A)の溶湯の温度を8409C,830℃、8
20℃、810℃に設定した点を除き、上述の実施例1
の場合と同一の要領及び条件にて鋳物を製造し、各鋳物
より熱衝撃試験片No、4〜7を形成した。First, the same molded body as in Example 1 was formed, and the temperature of the molten aluminum alloy (JIS standard AC8A) as a matrix during high-pressure casting was 8409C, 830C, 8C.
Example 1 above, except that the temperatures were set at 20°C and 810°C.
Castings were manufactured in the same manner and under the same conditions as in the case of Example 1, and thermal shock test pieces Nos. 4 to 7 were formed from each casting.
次いで実施例1に於て形成された試験片No、1〜3及
びこの実施例に於て形成された試験片No。Next, test piece numbers 1 to 3 formed in Example 1 and test piece Nos. formed in this example.
4〜7の複合材料部の表面部の断面をそれぞれ光学顕微
鏡にて10視野観察し、金属間化合物NiAl3の長さ
をLとし幅をDとするとL/D>3である金属間化合物
を針状の金属間化合物として、各視野について金属間化
合物の総量に対する針状の金属間化合物の面積比を41
1j定した。その結果を下記の表1に示す。Ten fields of view of the cross sections of the surface of composite material parts 4 to 7 were each observed with an optical microscope, and when the length of the intermetallic compound NiAl3 is L and the width is D, the intermetallic compound with L/D>3 was examined with a needle. As the acicular intermetallic compound, the area ratio of the acicular intermetallic compound to the total amount of intermetallic compound is 41 for each field of view.
1j was determined. The results are shown in Table 1 below.
表1
No、 溶湯温度 針状金属間化合物の面積比1
850℃ 60%
4 840℃ 50%
5 830℃ 40%
6 820℃ 30%
7 810℃ 25%
2 800℃ 20%
3 750℃ 0%
この表1より、アルミニウム合金の溶湯の温度が低くな
ればなる程複合材料のマトリックス中に生成する針状の
N l−A I金属間化合物の比率が減少することが解
る。Table 1 No. Molten metal temperature Area ratio of acicular intermetallic compound 1
850℃ 60% 4 840℃ 50% 5 830℃ 40% 6 820℃ 30% 7 810℃ 25% 2 800℃ 20% 3 750℃ 0% From Table 1, the lower the temperature of the molten aluminum alloy, the lower the temperature of the molten aluminum alloy. It can be seen that the proportion of acicular N l-A I intermetallic compounds formed in the matrix of the composite material decreases as the temperature increases.
次いでこの実施例に於て形成された試験片No。Next, test piece No. formed in this example.
4〜7について実施例1の場合と同一の要領及び条件に
て熱衝撃試験を行った。その結果を第8図に示す。A thermal shock test was conducted on Samples 4 to 7 in the same manner and under the same conditions as in Example 1. The results are shown in FIG.
第8図より、L/D>3である針状の金属間化合物の面
積率が30%を越えると複合材料の熱衝撃特性が悪化し
、従って複合材料の耐熱衝撃性を向上させるためには針
状の金属間化合物の面積比が30%以下であることが好
ましいことが解る。From Figure 8, if the area ratio of acicular intermetallic compounds with L/D > 3 exceeds 30%, the thermal shock characteristics of the composite material deteriorates, and therefore, in order to improve the thermal shock resistance of the composite material, It can be seen that the area ratio of the acicular intermetallic compound is preferably 30% or less.
実施例3
上述の実施例1に於けるN1粉末の代りに平均粒径10
μmのTI粉末、平均粒径3μmのCr粉末、平均粒径
3μmのFB粉末、平均粒径1゜μmのCu粉末、平均
粒径5μmのTa粉末が使用された点を除き上述の実施
例1の場合と同一の要領及び条件にて成形体を形成し、
各成形体について実施例2の場合と同様の要領にてアル
ミニウム合金の溶湯の温度を種々の値に設定して鋳物を
製造し、各鋳物よりそれぞれ2個ずつ熱衝撃試験片を形
成した。Example 3 Instead of the N1 powder in Example 1 above, an average particle size of 10
Example 1 described above except that TI powder with an average particle size of 3 μm, Cr powder with an average particle size of 3 μm, FB powder with an average particle size of 3 μm, Cu powder with an average particle size of 1° μm, and Ta powder with an average particle size of 5 μm were used. A molded body is formed in the same manner and under the same conditions as in the case of
For each compact, castings were produced in the same manner as in Example 2 by setting the temperature of the molten aluminum alloy to various values, and two thermal shock test pieces were formed from each casting.
次いで各組の試験片の一方について実施例1の場合と同
一の要領にて金属間化合物の種類を調査したところ、そ
れぞれマトリックスとしてのアルミニウム合金中にTI
At 3 、Cr At 7 、FeAl 3 、C
u Al 2 、Ta Al 3が微細に分散されてい
ることが認められた。また各試験片の複合材料部の表面
部についてL/D>3である針状の金属間化合物の面積
比を測定し、更に各対の試験片の他方について実施例1
の場合と同一の要領及び条件にて熱衝撃試験を行った。Next, one of the test pieces in each set was investigated for the type of intermetallic compound in the same manner as in Example 1, and it was found that TI was present in the aluminum alloy as a matrix.
At 3 , Cr At 7 , FeAl 3 , C
It was observed that u Al 2 and Ta Al 3 were finely dispersed. In addition, the area ratio of acicular intermetallic compounds with L/D > 3 was measured on the surface of the composite material part of each test piece, and the other of each pair of test pieces was further measured in Example 1.
A thermal shock test was conducted under the same procedure and conditions as in the case of .
この試験を結果を第9図に示す。尚第9図に於て、各元
素記号は金属間化合物を形成するために使用された粉末
の元素を示している。The results of this test are shown in FIG. In FIG. 9, each element symbol indicates the element of the powder used to form the intermetallic compound.
第9図より、複合材料のマトリックス中に生成される金
属間化合物の種類に拘らず、L/D > 3である針状
の金属間化合物の面積比が30%以下の場合に複合材料
の耐熱衝撃性を向上させることができることが解る。From Figure 9, regardless of the type of intermetallic compound generated in the matrix of the composite material, the heat resistance of the composite material increases when the area ratio of acicular intermetallic compounds with L/D > 3 is 30% or less. It can be seen that impact resistance can be improved.
実施例4
上述の実施例1の場合と同一の要領の吸引成形法により
、外径95mm、内径73mm、高さ2oInfflの
円筒状の成形体を形成した。尚使用されたアルミナ短繊
維及びN1粉末は実施例1に於て使用された繊維及び粉
末と同一であり、これらの体積率は実施例1の場合と同
一であった。Example 4 A cylindrical molded body having an outer diameter of 95 mm, an inner diameter of 73 mm, and a height of 2 inffl was formed by the same suction molding method as in Example 1 described above. The alumina short fibers and N1 powder used were the same as those used in Example 1, and their volume fractions were the same as in Example 1.
次いで各成形体を窒素ガス中にて400℃に予熱した後
、各成形体を高圧鋳造装置の鋳型内に配置し、該鋳型内
に湯温850℃のアルミニウム合金(JIS規格AC8
A)の溶湯を注湯し、実施例1の場合と同一の要領及び
条件にて高圧鋳造を行った。この場合鋳型の温度が40
0℃、350℃、300℃、250℃、200℃、15
0℃、100℃に設定され、それぞれの条件にて鋳物の
製造が行われた。Next, after preheating each molded body to 400°C in nitrogen gas, each molded body is placed in a mold of a high-pressure casting machine, and an aluminum alloy (JIS standard AC8
The molten metal A) was poured and high-pressure casting was performed in the same manner and under the same conditions as in Example 1. In this case, the temperature of the mold is 40
0℃, 350℃, 300℃, 250℃, 200℃, 15
The temperature was set at 0°C and 100°C, and castings were manufactured under each condition.
次いで上述の如く鋳型の温度を種々の値に設定して形成
された鋳物を鋳型より取り出し、実施例1の場合と同−
寸法及び形状の熱衝撃試験片No。Next, the castings formed by setting the temperature of the mold at various values as described above were taken out from the mold, and the same as in Example 1 was carried out.
Thermal shock test piece No. of size and shape.
8〜14を機械加工により形成した。尚各試験片の径方
向外周面より深さ10IIlfflの範囲の部分はアル
ミナ短繊維にて複合強化された複合材料よりなっていた
。8 to 14 were formed by machining. The portion of each test piece within a depth of 10IIffl from the radial outer circumferential surface was made of a composite material reinforced with alumina short fibers.
次いで各試験片の複合材料の断面を調査したところ、鋳
物を製造する際の鋳型の温度によって複合材料内に生成
するN i−A I金属間化合物の形態が異なっている
ことが認められた。かくして形成された各試験片の複合
材料部の表面部マトリックス中に生成されたL / D
>’ 3である針状の金属間化合物の面積比が30%
である組織(以下X組織という)の幅と鋳型の温度との
関係を下記の表2に示す。Next, when the cross section of the composite material of each test piece was investigated, it was recognized that the form of the N i-A I intermetallic compound generated in the composite material differed depending on the temperature of the mold during manufacturing the casting. L/D generated in the surface matrix of the composite material part of each specimen thus formed
The area ratio of the acicular intermetallic compound with >' 3 is 30%.
Table 2 below shows the relationship between the width of the structure (hereinafter referred to as X structure) and the temperature of the mold.
表 2
No、 鋳型温度(℃) X組織の幅(++un
)9 B50 0.5
10 300 1、0
11 250 1、5
14 1、00 4
表2より、鋳型の温度が400℃である場合にはX粗織
の幅は0であるのに対し、鋳型の温度が350℃以下の
場合には、鋳型の温度が低下するに連れてX組織の幅が
次第に増大していることが解る。Table 2 No. Mold temperature (°C) X Width of structure (++un
)9 B50 0.5 10 300 1,0 11 250 1,5 14 1,00 4 From Table 2, when the temperature of the mold is 400°C, the width of the It can be seen that when the temperature of is below 350°C, the width of the X structure gradually increases as the temperature of the mold decreases.
次いで各試験片No、8〜14について実施例1の場合
と同一の要領及び条件にて熱衝撃試験を行った。その結
果を第10図に示す。Next, a thermal shock test was conducted on each test piece No. 8 to 14 in the same manner and under the same conditions as in Example 1. The results are shown in FIG.
第10図より複合材料の部分の熱衝撃特性を向上させる
ためには、複合材料部の表面よりのX組織の幅が1mm
5特に1.5m+n以上であることが好ましいことが解
る。From Figure 10, in order to improve the thermal shock properties of the composite material part, the width of the X structure from the surface of the composite material part should be 1 mm.
5, it can be seen that it is particularly preferable that it is 1.5m+n or more.
尚上述の実施例2及び3の結果より針状の金属間化合物
の面積比が小さい値である程複合材料の耐熱衝撃性が向
上することが解っているので、L/D〉3である針状の
金属間化合物の面積比が30%未満である組織の複合材
料に於ても、その組織の幅が上述の範囲にあれば、良好
な耐熱衝撃性を確保し得ることは明らかである。Furthermore, from the results of Examples 2 and 3 mentioned above, it is known that the smaller the area ratio of the needle-like intermetallic compound, the better the thermal shock resistance of the composite material. It is clear that even in a composite material having a structure in which the area ratio of the intermetallic compound is less than 30%, good thermal shock resistance can be ensured as long as the width of the structure is within the above range.
実施例5
実施例4の成形体中の繊維及び粉末の種類及び重量比が
それぞれ下記の表3に示されている如く変更された点を
除き、実施例4の場合と同一の要領及び条件にて鋳物を
製造し、各鋳物について実施例4の場合と同一の要領及
び条件にて熱衝撃試験を行った。同表3に示された何れ
の場合に於ても成形体中の繊維及び粉末の体積率はそれ
ぞれ1026.5%であり、各粉末の粒径は10μm以
上であり、純度は99%以上であった。また繊維がステ
ンレス鋼短繊維及び鋳鉄短繊維である場合に於ては、成
形体は圧縮成形により形成された。Example 5 The procedure and conditions were the same as in Example 4, except that the types and weight ratios of fibers and powder in the molded body of Example 4 were changed as shown in Table 3 below. A thermal shock test was conducted on each casting in the same manner and under the same conditions as in Example 4. In all cases shown in Table 3, the volume fraction of fiber and powder in the compact is 1026.5%, the particle size of each powder is 10 μm or more, and the purity is 99% or more. there were. In addition, when the fibers were stainless steel staple fibers and cast iron staple fibers, the compacts were formed by compression molding.
表 3 313 N4短繊維” C。Table 3 313 N4 short fiber” C.
炭素短繊維3ン CrAl 20
3 Si 02短繊維” M。Short carbon fiber 3 CrAl 20
3 Si 02 short fiber”M.
ガラス繊維5 ) M n鉱物
繊維5ン Vステンレス鋼短繊
維7)TI
鋳鉄短繊維θ〕Zr
注:1) β−3i C,平均繊維径10μ12ン
β−313N4 、繊維径0.2〜3)パン系、繊維径
12μm1平均繊
4) 47%Al2O3,53%5iO5フ Eグラス
、平均繊維径10μ115)40%CaO110%Mg
O1残7ン 平均繊維径20μm、平均繊維長B)平
均繊維径30μm、平均繊維長
繊維/粉末の重量比
1:1.2B
1:1.40
1:2
1:1.96
1:1.54
1:1.27
1:0.29
1:0.45
、繊維長2〜3μmチョツプド繊維
0.5μm、平均繊維長100μm
維長3開1チョツプド繊維
2、繊維径2〜3um、繊維長2〜3 +nn+平均繊
維長5mm5チョツプド繊維
部S I 02 、平均繊維径5μm、平均繊維長2〜
3ram3市、チョツプド繊維
3mtasチョツプド繊維
何れの試験片の場合にも、X組織の幅がllll11以
上、特に1.5mff1以上の場合に鋳物の複合材料の
部分に良好な耐熱衝撃性を確保することができることが
認められた。Glass fiber 5) Mn Mineral fiber 5mm V Stainless steel short fiber 7) TI Cast iron short fiber θ] Zr Note: 1) β-3i C, average fiber diameter 10μ12mm
β-313N4, fiber diameter 0.2-3) Bread type, fiber diameter 12 μm 1 average fiber 4) 47% Al2O3, 53% 5iO5 E glass, average fiber diameter 10 μ115) 40% CaO 110% Mg
O1 remaining 7. Average fiber diameter 20 μm, average fiber length B) Average fiber diameter 30 μm, average long fiber/powder weight ratio 1:1.2B 1:1.40 1:2 1:1.96 1:1. 54 1:1.27 1:0.29 1:0.45, fiber length 2-3 μm chopped fiber 0.5 μm, average fiber length 100 μm fiber length 3 opening 1 chopped fiber 2, fiber diameter 2-3 μm, fiber length 2 ~3 +nn+average fiber length 5mm5 chopped fiber portion SI02, average fiber diameter 5μm, average fiber length 2~
In the case of both 3ram3city and chopped fiber 3mtas chopped fiber test specimens, it is possible to ensure good thermal shock resistance in the cast composite material part when the width of the X structure is lllll11 or more, especially 1.5mff1 or more. It was recognized that it could be done.
尚この実施例には示されていないが、成形体中に含まれ
る粉末がNb粉末、Ta粉末、Cu粉末、W粉末である
場合にもX組織の幅が1ram以上、特に1.5m11
以上であることが好ましいことが認められた。Although not shown in this example, even when the powder contained in the compact is Nb powder, Ta powder, Cu powder, or W powder, the width of the X structure is 1 ram or more, especially 1.5 m11.
It was recognized that the above is preferable.
以上に於ては本発明を本願発明者等が行った実験的研究
との関連に於て幾つかの特定の実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。例えば上述
の各実施例に於ける鋳物の形状は円板状であるが、本発
明による鋳物の形状は任意の形状であってよく、またL
/D〉3である金属間化合物の面積比が30%以下であ
る表面層は鋳物の任意の特定の部分又は鋳物の外周部全
体の何れであってもよい。Although the present invention has been described above in detail with respect to several specific embodiments in connection with the experimental research conducted by the inventors of the present application, the present invention is not limited to these embodiments. Instead, it will be apparent to those skilled in the art that various other embodiments are possible within the scope of the invention. For example, the shape of the casting in each of the above-mentioned embodiments is a disk shape, but the shape of the casting according to the present invention may be any shape, and the shape of the casting according to the present invention may be any shape.
The surface layer in which the area ratio of the intermetallic compound of /D>3 is 30% or less may be any specific part of the casting or the entire outer periphery of the casting.
第1図はアルミナ短繊維とNi粉末とよりなる円筒状の
成形体を示す斜視図、第2図は第1図に示された成形体
を用いて行われる高圧鋳造を示す射口、第3図は第2図
に示された高圧鋳造により得られた鋳物より形成された
熱衝撃試験片の一部を破断して示す斜視図、第4図乃至
第6図はそれぞれ第2図に示された高圧鋳造に於てアル
ミニウム合金の溶湯の温度を750℃、800°018
50℃に設定することにより形成された鋳物の複合月料
の断面の金属組織を400倍にて示す光学顕微鏡写真、
第7図は熱衝撃試験に於ける冷熱サイクルを示すグラフ
、第8図は熱衝撃試験の結果を冷熱サイクル数を横軸に
とって示すグラフ、第9図は熱衝撃試験の結果をL/D
>3である針状の金属間化合物の面積比を横軸にとって
示すグラフ、第10図は熱衝撃試験の結果をL/D>3
である針状の金属間化合物の面積比が30%である組織
の幅を横軸にとって示すグラフである。
10・・・成形体、12・・・高圧鋳造装置、14・・
・鋳型、16・・・モールドキャビティ、18・・・ア
ルミニウム合金の溶l易、20・・・プランジャ、22
・・・熱衝撃試験片、22a・・・複合材料よりなる部
分時 許 出 願 人 トヨタ自動車株式会社代
理 人 弁理士 明 石 昌
毅第1図
18・・アルミニウム合金の溶湯
第2図
第3図
第7図
サイクル数FN)
第8図
冷熱サイクル数+N)
第9図
針状の金属間化合物の面積比 (’/、)第1Q図
X組織の幅 (mmlFig. 1 is a perspective view showing a cylindrical molded body made of short alumina fibers and Ni powder, Fig. 2 is an injection port showing high-pressure casting performed using the molded body shown in Fig. 1; The figure is a partially cutaway perspective view of a thermal shock test piece formed from a casting obtained by high-pressure casting shown in Fig. 2, and Figs. 4 to 6 are each shown in Fig. 2. During high-pressure casting, the temperature of the molten aluminum alloy was set at 750°C and 800°C.
Optical micrograph showing the metallographic structure of a cross section of a cast composite material formed by setting the temperature to 50°C at 400x magnification;
Figure 7 is a graph showing the cooling and heating cycles in the thermal shock test, Figure 8 is a graph showing the results of the thermal shock test with the number of cooling and heating cycles on the horizontal axis, and Figure 9 is the graph showing the results of the thermal shock test at L/D.
A graph showing the area ratio of acicular intermetallic compounds with L/D>3 on the horizontal axis, and Figure 10 shows the results of the thermal shock test when L/D>3.
It is a graph showing the width of a structure in which the area ratio of acicular intermetallic compounds is 30% on the horizontal axis. 10... Molded body, 12... High pressure casting device, 14...
・Mold, 16...Mold cavity, 18...Aluminum alloy meltability, 20...Plunger, 22
...Thermal shock test piece, 22a... Part made of composite material Applicant: Toyota Motor Corporation representative
Patent Attorney Masaaki Akai Ratio ('/,) Fig. 1Q Width of X tissue (mml
Claims (1)
ウイスカを強化材とする複合材料部を有し該複合材料部
により少なくとも表面の一部が郭定されたアルミニウム
合金鋳物にして、前記マトリックス中にはAlとFe、
Ni、Co、Cr、Cu、Mn、Mo、V、W、Ta、
Nb、Ti、Zrよりなる群より選択された少くとも一
種の金属元素との金属間化合物が微細に分散されており
、前記複合材料部の表面部の任意の断面でみて前記金属
間化合物の長さ及び幅をそれぞれL及びDとするとL/
D>3である金属間化合物の面積比が金属間化合物の総
量に対し30%以下であるアルミニウム合金鋳物。The aluminum alloy casting has a composite material part having an aluminum alloy as a matrix and short fibers or whiskers as a reinforcing material, and at least a part of the surface is defined by the composite material part, and the matrix contains Al and Fe,
Ni, Co, Cr, Cu, Mn, Mo, V, W, Ta,
An intermetallic compound with at least one metal element selected from the group consisting of Nb, Ti, and Zr is finely dispersed, and the length of the intermetallic compound is Letting the length and width be L and D, respectively, L/
An aluminum alloy casting in which the area ratio of intermetallic compounds with D>3 is 30% or less based on the total amount of intermetallic compounds.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63055873A JPH0645834B2 (en) | 1988-03-09 | 1988-03-09 | Method for manufacturing aluminum alloy casting having composite material part |
AU31058/89A AU615265B2 (en) | 1988-03-09 | 1989-03-06 | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
DE68920346T DE68920346T2 (en) | 1988-03-09 | 1989-03-08 | Composite material based on aluminum alloy, which contains finely divided intermetallic compounds in a matrix between reinforcing elements. |
EP89302322A EP0332430B1 (en) | 1988-03-09 | 1989-03-08 | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
US07/660,221 US5449421A (en) | 1988-03-09 | 1991-02-20 | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63055873A JPH0645834B2 (en) | 1988-03-09 | 1988-03-09 | Method for manufacturing aluminum alloy casting having composite material part |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01230739A true JPH01230739A (en) | 1989-09-14 |
JPH0645834B2 JPH0645834B2 (en) | 1994-06-15 |
Family
ID=13011211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63055873A Expired - Lifetime JPH0645834B2 (en) | 1988-03-09 | 1988-03-09 | Method for manufacturing aluminum alloy casting having composite material part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645834B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61104037A (en) * | 1984-10-27 | 1986-05-22 | Sumitomo Electric Ind Ltd | Wear resistant member |
JPS61163249A (en) * | 1985-01-12 | 1986-07-23 | Sumitomo Electric Ind Ltd | Wear resisting aluminium composite material and its production |
JPS61163250A (en) * | 1985-01-12 | 1986-07-23 | Sumitomo Electric Ind Ltd | Production of wear resisting aluminium composite material |
JPS63312901A (en) * | 1987-06-16 | 1988-12-21 | Kobe Steel Ltd | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder |
JPH01152229A (en) * | 1987-12-10 | 1989-06-14 | Honda Motor Co Ltd | Fiber reinforced heat-resistant al alloy powder sintered material |
JPH01205041A (en) * | 1988-02-09 | 1989-08-17 | Honda Motor Co Ltd | Fiber reinforced aluminum alloy composite material |
-
1988
- 1988-03-09 JP JP63055873A patent/JPH0645834B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61104037A (en) * | 1984-10-27 | 1986-05-22 | Sumitomo Electric Ind Ltd | Wear resistant member |
JPS61163249A (en) * | 1985-01-12 | 1986-07-23 | Sumitomo Electric Ind Ltd | Wear resisting aluminium composite material and its production |
JPS61163250A (en) * | 1985-01-12 | 1986-07-23 | Sumitomo Electric Ind Ltd | Production of wear resisting aluminium composite material |
JPS63312901A (en) * | 1987-06-16 | 1988-12-21 | Kobe Steel Ltd | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder |
JPH01152229A (en) * | 1987-12-10 | 1989-06-14 | Honda Motor Co Ltd | Fiber reinforced heat-resistant al alloy powder sintered material |
JPH01205041A (en) * | 1988-02-09 | 1989-08-17 | Honda Motor Co Ltd | Fiber reinforced aluminum alloy composite material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
Also Published As
Publication number | Publication date |
---|---|
JPH0645834B2 (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5385195A (en) | Nickel coated carbon preforms | |
TW201037092A (en) | Iron vanadium powder alloy | |
GB2248454A (en) | Sintered materials | |
WO1998010111A1 (en) | Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast | |
US4720434A (en) | Composite material including silicon carbide and/or silicon nitride short fibers as reinforcing material and aluminum alloy with copper and relatively small amount of silicon as matrix metal | |
US6432557B2 (en) | Metal matrix composite and piston using the same | |
EP0665301B1 (en) | A titanium-free, nickel-containing maraging steel die block article and method of manufacture | |
JPH0617550B2 (en) | Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock | |
US4889557A (en) | Aluminium alloy having an excellent forgiability | |
US4547336A (en) | Method for the manufacture of piston ring inserts by a powder metallurgy technique | |
CN114318060A (en) | Corrosion-resistant metal ceramic powder, application and corrosion-resistant metal ceramic | |
CN111549341A (en) | Nickel-based laser cladding powder and preparation method and application thereof | |
JPH01230739A (en) | Aluminum alloy cast containing composite material component | |
JP6271310B2 (en) | Iron-based sintered material and method for producing the same | |
JP3301441B2 (en) | Composite cylinder for high-temperature and high-pressure molding | |
EP0207314A1 (en) | Composite material including silicon carbide short fibers as reinforcing material and aluminum alloy with copper and magnesium as matrix metal | |
AU696386B2 (en) | Method of manufacturing high temperature resistant shaped parts | |
Shafizadeh et al. | Mechanical Properties of Al–30Si–5Fe Alloy Using Combination of Rapid Solidification and Thixoforming Processes | |
JP2000337511A (en) | Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity | |
EP0236729A2 (en) | Composite material including silicon nitride whisker type short fiber reinforcing material and aluminum alloy matrix metal with moderate copper and magnesium contents | |
KR20020019871A (en) | Hardening material having high tenacity for an inner surface of cylinder | |
JPH0645833B2 (en) | Method for manufacturing aluminum alloy-based composite material | |
JPS6328841A (en) | Manufacture of aluminum alloy material and sliding member | |
JPH11303847A (en) | Connecting rod having high fatigue strength and excellent toughness and manufacture thereof | |
EP0205084A1 (en) | Composite material including silicon carbide short fibers as reinforcing material and aluminum alloy with copper and relatively small amount of magnesium as matrix metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080615 Year of fee payment: 14 |