JPH01234542A - Aluminum clad fin material for heat exchanger - Google Patents
Aluminum clad fin material for heat exchangerInfo
- Publication number
- JPH01234542A JPH01234542A JP6291088A JP6291088A JPH01234542A JP H01234542 A JPH01234542 A JP H01234542A JP 6291088 A JP6291088 A JP 6291088A JP 6291088 A JP6291088 A JP 6291088A JP H01234542 A JPH01234542 A JP H01234542A
- Authority
- JP
- Japan
- Prior art keywords
- fin
- alloy
- fin material
- brazing
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 87
- 229910052782 aluminium Inorganic materials 0.000 title claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 22
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 239000011162 core material Substances 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 28
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- 238000005219 brazing Methods 0.000 abstract description 31
- 238000005253 cladding Methods 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 238000007665 sagging Methods 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 12
- 238000001953 recrystallisation Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/016—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はろう付接合により組立てられるアルミニウム製
熱交換器のフィン材に関し、より詳しくはろう付加熱時
に優れた耐座屈性を示し、かつ熱交換率(冷却効率)の
向上に好適な高熱伝導性を有するアルミニウム製熱交換
器用フィン材に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a fin material for an aluminum heat exchanger that is assembled by brazing, and more specifically, it exhibits excellent buckling resistance during brazing heat exchange and The present invention relates to a fin material for an aluminum heat exchanger that has high thermal conductivity and is suitable for improving heat exchange efficiency (cooling efficiency).
(従来の技術)
一般にろう付接合により組立てられるアルミニウム製熱
交換器は、水等の冷媒を通す通路(以下チューブという
)と熱を吸収又は放散するフィンとからなり、チューブ
としては、熱交換器の用途に応じて押出偏平多穴管、又
はA l −S i系ろう材を皮材としてクラッドした
プレージンクシートによるプレス成形プレートや電縫偏
平管か用いられている。また、フィン材としては第1図
に示すような、芯材1の両面に皮材2をクラッドしたプ
レージングシート、又は皮材をクラッドしない裸のフィ
ン材(ベア材)か用いられている。(Prior art) Aluminum heat exchangers, which are generally assembled by brazing, consist of passages (hereinafter referred to as tubes) through which a refrigerant such as water passes, and fins that absorb or dissipate heat. Depending on the application, extruded flat multi-hole tubes, press-formed plates made of pre-zinc sheets clad with Al-Si brazing material as a skin material, or electric resistance welded flat tubes are used. Further, as the fin material, a plating sheet in which both sides of a core material 1 are clad with a skin material 2, as shown in FIG. 1, or a bare fin material (bare material) without cladding with a skin material is used.
ろう付によるアルミニウム製熱交換器の具体例は第2図
及び第3図に示される。第2図はドロンカップエバポレ
ータであり、プレー、シングシートからなるプレス成形
プレート3を積層してチューブを形成させ、これにベア
材又はプレージングシートからなるコルゲートフィン4
を組合わせたものである。第3図(イ)はエバポレータ
てあり、押出偏平多穴管13とプレージングシートから
なるコルゲートフィン14を組合わせたものであり、同
図(ロ)はコンデンサであり、押出多穴管23とコルゲ
ートフィン24を組合わせたものてあり、同図(ハ)は
ラジェータであり、片面にA M −S i系ろう材を
クラッドしたプレージングシートで製作した電縫偏平管
33(管の外側にろう材がくる)とベア材のフィン材3
4と組合わせたものである。これらの熱交換器のチュー
ブとコルゲートフィンは約600°C@後の温度てフラ
ックスろう付、真空ろう付又は不活性ガス雰囲気ろう付
等により組立てられている。A specific example of a brazed aluminum heat exchanger is shown in FIGS. 2 and 3. Fig. 2 shows a Doron cup evaporator, in which press-formed plates 3 made of plastic and single sheets are stacked to form a tube, and corrugated fins 4 made of bare material or plastic sheets are stacked on top of each other to form a tube.
It is a combination of Figure 3 (A) shows an evaporator, which is a combination of an extruded flat multi-hole tube 13 and a corrugated fin 14 made of a plating sheet, and Figure 3 (B) shows a condenser, which is a combination of an extruded flat multi-hole tube 13 and a corrugated fin 14 made of a plating sheet. The corrugated fins 24 are combined, and the figure (c) shows a radiator, in which an ERW flat tube 33 (on the outside of the tube filler metal comes) and bare fin material 3
It is combined with 4. The tubes and corrugated fins of these heat exchangers are assembled by flux brazing, vacuum brazing, or inert gas atmosphere brazing at a temperature of about 600°C.
ところで従来このようなろう付組立によるアルミニウム
製熱交換器においてはフィン材として比較的耐座屈性の
よいA l −M n系合金、例えばJIS3003合
金(A l 〜0.05〜0.20w t%Cu −1
,0〜1.5 w t%Mn合金[以下wt%を単に%
と略記])又はJIS3203合金(A文−1,0〜1
.5%Mn合金)を芯材として、その両面にA文−3i
合金ろう材(A4−5〜12%Si合金)、Al−3,
i −M g合金ろう材(Au−5〜12%5i〜0.
5〜2%Mg合金)等をクラッドした厚さ0.1〜0.
2mmのツレ−シンクシート又は厚さ0.1〜0.2m
mの前記3003.3203合金からなるベア材か使用
されている。By the way, in conventional aluminum heat exchangers assembled by brazing, Al-Mn alloys with relatively good buckling resistance are used as fin materials, such as JIS 3003 alloy (Al ~0.05 ~ 0.20 wt). %Cu-1
,0~1.5 wt%Mn alloy [hereinafter wt% is simply %
]) or JIS3203 alloy (A-1,0-1
.. 5% Mn alloy) as the core material, and A-3i on both sides.
Alloy brazing filler metal (A4-5 to 12% Si alloy), Al-3,
i-Mg alloy brazing filler metal (Au-5~12%5i~0.
5-2% Mg alloy) etc. with a thickness of 0.1-0.
2mm thread sink sheet or thickness 0.1~0.2m
A bare material made of the above-mentioned 3003.3203 alloy of m is used.
一方、熱交換器の中でも特に自動車用熱交換器は近年重
量軽減、小型化の方向にあり、フィンの薄肉化と共に熱
交換器の性能向上、すなわち熱交換率(冷房能力)の向
上が求められてきている。On the other hand, in recent years, heat exchangers, especially those for automobiles, have become lighter and more compact, and there is a need for thinner fins and improved heat exchanger performance, that is, improved heat exchange efficiency (cooling capacity). It's coming.
したかって、薄肉化しても耐高温座屈性が低下せず、か
つ熱伝導性の優れたフィン材の開発が望まれている。Therefore, there is a desire to develop a fin material that does not deteriorate in high-temperature buckling resistance even when thinned and has excellent thermal conductivity.
ところでろう付加熱時の座屈はフィン材の薄肉化にとも
なって発生してきた問題であり、合わせ材フィンの座屈
については従来多くの検討がなされてきた。その結果ろ
う付加熱時にろう付成分か芯材中へ拡散することか座屈
の原因となることが明らかにされ、その対策としてろう
材が溶融しはしめる前に再結晶が完了し、粗大な再結晶
粒が得られるような芯材を使用することか行われている
。Incidentally, buckling during brazing heating is a problem that has arisen as fin materials become thinner, and many studies have been made in the past regarding buckling of laminated material fins. As a result, it was revealed that the brazing components diffuse into the core material during brazing addition heat, which causes buckling.As a countermeasure, recrystallization is completed before the brazing material melts and becomes coarse. The use of core materials that produce recrystallized grains is being practiced.
(発明が解決しようとする課題)
しかしながらJIS3003合金、3203合金のよう
なA l−M n系合金からなるフィン材は、耐座屈性
は比較的優れるものの薄肉化した場合耐座屈性は十分で
なく、また熱伝導性は必ずしも高いとは言えず、したが
ってこのフィン材を用いた場合熱交換器の放熱性を悪く
する原因となっていた。(Problem to be Solved by the Invention) However, although fin materials made of Al-M n-based alloys such as JIS 3003 alloy and 3203 alloy have relatively excellent buckling resistance, they do not have sufficient buckling resistance when made thin. Moreover, it cannot be said that the thermal conductivity is necessarily high, and therefore, when this fin material is used, it causes poor heat dissipation of the heat exchanger.
また、熱伝導性を向上させるために純アルミニウムに近
い組成の合金フィン材も近年提案されているが、そのよ
うな合金の場合フィン材の高温強度が低く、耐座屈性(
耐垂下性)に劣り、ろう付加熱時にフィンの変形を生じ
易く、薄肉化が困難てあった。In addition, alloy fin materials with compositions close to pure aluminum have been proposed in recent years to improve thermal conductivity, but such alloys have low high-temperature strength and poor buckling resistance (
The fins tend to deform during brazing heat, making it difficult to reduce the thickness of the fins.
したかって、本発明の目的は薄肉化してもろう付加熱に
おいて優れた耐座屈性(耐垂下性)を有し、かつ高い熱
伝導性を有し熱交換器の熱効率を高めることのできるア
ルミニウムフィン材を提供することにある。Therefore, it is an object of the present invention to produce aluminum that has excellent buckling resistance (sagging resistance) during brazing heat addition even when the wall thickness is reduced, and also has high thermal conductivity and can improve the thermal efficiency of heat exchangers. Our goal is to provide fin materials.
(課題を解決するための手段)
本発明者らは上記問題点を解決するため高温での座屈の
メカニズムを中心に種々検討を行った結果、フィン材の
ろう付加熱において以下に示す現象が生じていることを
見出した。(Means for Solving the Problems) In order to solve the above problems, the present inventors conducted various studies focusing on the mechanism of buckling at high temperatures. I found out what was happening.
(1)フィン材のコルゲート成形時に生じる不均一な歪
の分布がろう付加熱時の再結晶挙動に影響し不均一な再
結晶状態となり耐座屈性が損われる。(比較的厚いフィ
ン材では再結晶挙動の多少の変化は耐座屈性を損わない
。)
(2)フィンの座屈は再結晶の開始される250°C付
近の温度から生じはじめ、再結晶の終了する温度まで統
〈。(1) Non-uniform strain distribution that occurs during corrugation molding of the fin material affects recrystallization behavior during brazing heating, resulting in a non-uniform recrystallization state and impairing buckling resistance. (For relatively thick fin materials, slight changes in recrystallization behavior do not impair buckling resistance.) (2) Fin buckling begins to occur at temperatures around 250°C, where recrystallization begins, and Until the temperature at which the crystallization ends.
(3)さらに、フィン材を約560°C以上の温度に加
熱した場合、再結晶が完了していても(ろう材成分の拡
散がなくても)座屈か生じる。これは一種の高温クリー
プ現象に対応している。(3) Furthermore, when the fin material is heated to a temperature of about 560° C. or higher, buckling occurs even if recrystallization is completed (even if there is no diffusion of the brazing material components). This corresponds to a kind of high-temperature creep phenomenon.
そこで、本発明者らはさらに鋭意研究を重ねた結果、A
l −M n系合金の組成を限定し、かつろう付時の
温度で第2相粒子の数を所定数以上有するように材料を
作ることにより耐座屈性を高めることかでき、このよう
な芯材に、純度99%以上のアルミニウムまたはZr0
.03〜0.35%含有したアルミニウム合金を皮材と
してクラッドしたアルミニウム複合フィン材か上記目的
(耐座屈性と高熱伝導性を有すること)に合致すること
を見い出し、この知見に基づき本発明を完成するに至っ
た。Therefore, as a result of further intensive research, the present inventors found that A.
The buckling resistance can be improved by limiting the composition of the l -M n-based alloy and making the material so that it has a predetermined number or more of second phase particles at the brazing temperature. The core material is aluminum or Zr0 with a purity of 99% or more.
.. It was discovered that an aluminum composite fin material clad with an aluminum alloy containing 03 to 0.35% as a skin material meets the above objectives (having buckling resistance and high thermal conductivity), and based on this knowledge, the present invention was developed. It has been completed.
すなわち本発明は、
1、Mn 0.6〜2.0 %、 F e 0.
05〜0.8 %、Si0.6%以下を含有するA
I −M n系合金であって、610°Cで10分間加
熱した場合に組織内に第2相粒子を1mm3当り30X
10”個以上宥するアルミニウム合金を芯材とし、該芯
材の片面又は両面に、純度99%以上のアルミニウム皮
材をクラッドしてなることを特徴とする熱交換器用アル
ミニウム複合フィン材、及び2、 Mn 0.6〜2
.0%、F e 0.05〜0.8%、Si0.5%以
下を含有するA !;L−M n系合金てあって、61
0℃で10分間加熱した場合に組織内に第2相粒子を1
mm”当り30X109個以上有するアルミニウム合金
を芯材とし、該芯材の片面又は両面に、Zr0.0:l
〜0.35%を含有するアルミニウム合金皮材をクラッ
ドしてなることを特徴とする熱交換器用アルミニウム複
合フィン材である。That is, the present invention has the following properties: 1. Mn 0.6-2.0%, Fe 0.
05-0.8%, A containing 0.6% or less of Si
I-M n-based alloy, when heated at 610°C for 10 minutes, the second phase particles are generated in the structure at 30X per mm3.
An aluminum composite fin material for a heat exchanger, characterized in that the core material is an aluminum alloy containing 10" or more, and one or both sides of the core material is clad with an aluminum skin material with a purity of 99% or more, and 2 , Mn 0.6-2
.. A containing 0%, Fe 0.05-0.8%, Si 0.5% or less! ;L-M n-based alloy, 61
When heated at 0°C for 10 minutes, 1 second phase particle was added into the tissue.
The core material is an aluminum alloy having 30x109 or more per mm", and Zr0.0:l is applied to one or both sides of the core material.
This is an aluminum composite fin material for a heat exchanger, characterized in that it is clad with an aluminum alloy skin material containing ~0.35%.
いいかえると本発明は耐座屈性の優れた合金を芯材とし
て用い、これに熱伝導性の優れた皮材をクラッドしてな
るアルミニウム複合フィン材である。In other words, the present invention is an aluminum composite fin material in which an alloy with excellent buckling resistance is used as a core material, and this is clad with a skin material with excellent thermal conductivity.
本発明のフィン材に用いられる芯材において含有成分及
びその含有量を限定した理由は次の通りである。The reasons for limiting the components and their content in the core material used in the fin material of the present invention are as follows.
本発明のフィン材の芯材においてMn含有量は0.6〜
2.0%とする。Mnは合金の強度を向上させる。さら
にA立−Fe−Mn、A文−Mn−3iあるいはAl−
Fe−Mn−3i系の晶出又は析出相を生じ、これらを
適正にコントロールした場合に、耐座屈性を向上させる
働きをもつ。The Mn content in the core material of the fin material of the present invention is from 0.6 to
It shall be 2.0%. Mn improves the strength of the alloy. Furthermore, A-stand-Fe-Mn, A-stand-Mn-3i or Al-
It produces Fe-Mn-3i-based crystallized or precipitated phases, and when properly controlled, has the function of improving buckling resistance.
Mnの添加量が0.6%未満では、その効果が小さく、
2.0%を越えて添加した場合は、巨大晶出物か生しや
すく、フィンの成形性を損なう。If the amount of Mn added is less than 0.6%, the effect is small;
If it is added in an amount exceeding 2.0%, giant crystallized substances tend to form, impairing the formability of the fin.
Feの添加量は0.05〜0.8%とする。The amount of Fe added is 0.05 to 0.8%.
FeはA l−F e −M nあるいはA l −F
e −M n −S i系の晶出又は析出相を生し、
これらを適正にコントロールした場合、耐座屈性の向上
効果を有する。さらにFe自体高温強度を高め、耐座屈
性な向上させる働きを持っている。Fe添加量が0.0
5%未満ては上記の効果かなく、0.8%を越えると晶
出又は析出相の量が増え、成形性が低下しコルゲート加
工か困難となる。Fe is A l-F e -M n or A l -F
producing a crystallized or precipitated phase of e-Mn-Si system,
When these are properly controlled, it has the effect of improving buckling resistance. Furthermore, Fe itself has the function of increasing high temperature strength and improving buckling resistance. Fe addition amount is 0.0
If it is less than 5%, the above effect will not be achieved, and if it exceeds 0.8%, the amount of crystallized or precipitated phases will increase, resulting in decreased formability and difficulty in corrugating.
Siの添加量は0.6%以下とする。SiはAn−Fe
−Mn−3i系の析出相の析出を促進させる働きを有す
る。0.6%を越えると合金の融点か低下し、高温強度
か低下する。The amount of Si added is 0.6% or less. Si is An-Fe
-Has the function of promoting the precipitation of a Mn-3i-based precipitate phase. If it exceeds 0.6%, the melting point of the alloy will decrease and the high temperature strength will decrease.
本発明のフィン材の芯材において、上記以外の元素は、
例えば鋳塊組織微細化のために、0.05%以下のTi
やBを添加することがてきる。また、フィン材の犠牲陽
極効果を高めるために必要に応じてIn (0,05〜
0.2%)、Sn (0,01〜0.1%) 、 Zn
(0,3〜2%)の1種又は2種以上を選択して添加
する場合もある。さらに強度を高めるために必要に応じ
て、Cu (0,2%以下)、Zr (0,2%以下)
、Cr (0,3%以下)、N1(0,6%以下)等を
添加してもよい。このような元素の添加は次に述べる第
2相粒子の分布状態の範囲をはずれないかぎり本発明の
フィン材の特性に影響しない。In the core material of the fin material of the present invention, elements other than the above are:
For example, in order to refine the ingot structure, Ti of 0.05% or less is used.
or B can be added. In addition, In (0,05~
0.2%), Sn (0.01~0.1%), Zn
(0.3 to 2%) may be selected to add one or more kinds. In order to further increase the strength, Cu (0.2% or less), Zr (0.2% or less)
, Cr (0.3% or less), N1 (0.6% or less), etc. may be added. Addition of such elements does not affect the characteristics of the fin material of the present invention unless the distribution state of the second phase particles is outside the range described below.
次に本発明のフィン材の芯材は610℃て10分間加熱
した場合に組織内に1mm3当り30X109個以上の
第2相粒子を含有するようにした材料である。第2相粒
子とは、アルミニウム合金中に存在する金属間化合物粒
子を指し、圧延によって分断された晶出相や均質化処理
や焼鈍を行う際に析出する析出相粒子である。その粒径
はす’(て0.001〜3ルの範囲であり、さらに詳し
くは大部分、晶出相は0.5〜3ルであり、析出相はo
、ooi〜0.5Jしてある。これらの第2相粒子は座
屈挙動に大きな影響を与え、その量か610℃XIO分
間の加熱で1mm’当り30X109個以」二の場合、
フィン材の座屈挙動に対する加工度の感受性を鈍くする
。すなわち、コルゲート成形により、歪量か不均一とな
ってもその影響を受けなくなり、それか原因で座屈を生
じなくなる。Next, the core material of the fin material of the present invention is a material that contains 30×10 9 or more second phase particles per 1 mm 3 in its structure when heated at 610° C. for 10 minutes. The second phase particles refer to intermetallic compound particles present in the aluminum alloy, and are crystallized phases separated by rolling or precipitated phase particles precipitated during homogenization treatment or annealing. The particle size is in the range of 0.001 to 3 mm, more specifically, most of the crystallized phase is in the range of 0.5 to 3 mm, and the precipitated phase is in the range of 0.001 to 3 mm.
, ooi~0.5J. These second phase particles have a large effect on buckling behavior, and if the amount is 30 x 109 particles per mm or more when heated at 610 °C for XIO minutes,
Reduces the sensitivity of processing degree to buckling behavior of fin material. In other words, by corrugating, even if the amount of strain is uneven, it will not be affected by it, and buckling will not occur due to it.
また、第2相粒子は再結晶の進行にともなって生じる座
屈を減少させる作用かあるが、1mm3当り30X10
9個未満の場合ではその効果は十分でない。In addition, the second phase particles have the effect of reducing buckling that occurs as recrystallization progresses, but 30X10 particles per 1 mm3
If the number is less than 9, the effect is not sufficient.
さらに本発明のフィン材の芯材は、ろう付加熱時に56
0°C付近で比較的大きな再結晶粒を示す。これは析出
相による再結晶の妨害効果によるものであり、これによ
り副次的に560℃付近の温度から生じる座屈(高温ク
リープ特性と対応しており、粒径か小さいほど変形しゃ
すい)、およびチューブ材からのろうの拡散にょる座屈
を生じさせない。Furthermore, the core material of the fin material of the present invention has a
It shows relatively large recrystallized grains around 0°C. This is due to the effect of interfering with recrystallization by the precipitated phase, which results in secondary buckling that occurs at temperatures around 560°C (corresponding to high-temperature creep characteristics, the smaller the grain size, the easier it is to deform). and does not cause buckling due to diffusion of wax from the tube material.
芯材の第2相粒子の分布の測定は透過型電子顕微鏡を用
いて行う。すなわち、測定する試料の膜厚を等逗子渉縞
を用いて求め、各視野中の面積とその中の第2相粒子の
数を測定して決定する。粒子数の測定は、フィン材の製
造後測定してもよいがフィン材が製造されたままの加工
材では転位が多く、第2相粒子の判別が難しいため、フ
ィン材をろう付加熱条件で加熱(例えば、610℃で1
0分間加熱)した後常温まで冷却して、常温で測定する
のがよい。本発明のフィン材の場合ろう付加熱は600
°C付近の高温で行うため、加熱前に存在する第2相粒
子はろう付加熱て再固溶、粗犬死が進行し粒子数が減少
することはあるが増加することはないため、一定の条件
である610℃で10分間加熱後に30X10”個/
m rn’以上の第2相粒子が存在するフィン材は、必
ず加熱前にもそれ以上の数の第2相粒子が存在している
。The distribution of second phase particles in the core material is measured using a transmission electron microscope. That is, the film thickness of the sample to be measured is determined using an isometric stripe, and the area in each field of view and the number of second phase particles therein are measured and determined. The number of particles may be measured after the fin material is manufactured, but since the processed material from which the fin material has been manufactured has many dislocations and it is difficult to distinguish the second phase particles, the fin material is heated under brazing conditions. Heating (e.g. 1 at 610°C)
It is preferable to heat the sample for 0 minutes) and then cool it to room temperature and measure at room temperature. In the case of the fin material of the present invention, the additional heat of brazing is 600
Since the process is carried out at a high temperature around °C, the second phase particles that existed before heating will be solidified again by the brazing heat, and the number of particles will decrease, but will not increase. After heating at 610℃ for 10 minutes, 30 x 10” pieces/
In a fin material in which there are m rn' or more second phase particles, a larger number of second phase particles are always present even before heating.
このように芯材の第2相粒子の分布状態とするとさらに
、ろう付加熱橋のフィンの強度も若干向上する。これは
粒子が数多く分散しており、分散強化による効果である
が、この効果がフィンの薄肉化による熱交換器自体の強
度低下も防いでいる。When the second phase particles of the core material are distributed in this manner, the strength of the fins of the brazing thermal bridge is also slightly improved. This is due to the dispersion-strengthening effect of a large number of dispersed particles, but this effect also prevents the strength of the heat exchanger itself from decreasing due to thinning of the fins.
第1の発明の皮材として用いられるアルミニウムは、A
n純度99%以上とする。具体的にはJISI100合
金、1050合金等を用いることができる。A文純度の
高いほど熱伝導性が高まる。An純度99%未満では熱
伝導性か十分に向上しない。The aluminum used as the skin material of the first invention is A
n Purity should be 99% or more. Specifically, JISI 100 alloy, 1050 alloy, etc. can be used. The higher the purity of the A pattern, the higher the thermal conductivity. If the An purity is less than 99%, the thermal conductivity will not be sufficiently improved.
第2の発明の皮材として用いられるアルミニウム合金は
、A l −Z r系合金である。この場合Zr含有量
は0.03〜0.35%とする。Zrは合金の熱伝導性
を損なうことなく、耐高温座屈性を大幅に向上させる。The aluminum alloy used as the skin material of the second invention is an Al-Zr alloy. In this case, the Zr content is 0.03 to 0.35%. Zr significantly improves the high temperature buckling resistance without impairing the thermal conductivity of the alloy.
Zr含有量が0.03%未満ではその作用が十分でなく
、0635%を越えるとAJlj−Zr系の粗大な晶出
物を生じ、フィン材としての成形性が悪くなる。本発明
において皮材として用いられる合金はZrのほかに、例
えば鋳塊組織の微細化のために0.05%以下のTiや
Bを、犠牲陽極効果を持たせるために0.1%以下のS
nやIn、0.6%以下のZn、0.5%以下のCaを
、耐座屈性(耐垂下性)を向上させるために0.7%以
下のFe、0.3%以下のCu、0.5%以下のSiや
Mnをそれぞれ添加してよい。しかし、これらの元素は
フィン材の熱伝導性を低下させるのて、その量は少ない
ほど望ましい。If the Zr content is less than 0.03%, the effect is not sufficient, and if it exceeds 0.635%, coarse crystallized substances of the AJlj-Zr system are produced, resulting in poor formability as a fin material. In addition to Zr, the alloy used as the skin material in the present invention contains, for example, 0.05% or less of Ti or B to refine the ingot structure, and 0.1% or less to provide a sacrificial anode effect. S
n, In, 0.6% or less Zn, 0.5% or less Ca, 0.7% or less Fe, 0.3% or less Cu to improve buckling resistance (sagging resistance). , 0.5% or less of Si and Mn may be added, respectively. However, since these elements reduce the thermal conductivity of the fin material, it is desirable that the amount thereof be as small as possible.
本発明のアルミニウム複合フィン材は、上記の組成及び
第2相粒子を有する芯材と上記組成の皮材をクラッドし
てなるが、この場合のクラッドは両面クラッド、片面ク
ラッドのいずれでもよい。The aluminum composite fin material of the present invention is formed by cladding a core material having the above composition and second phase particles and a skin material having the above composition, but the cladding in this case may be either double-sided cladding or single-sided cladding.
またクラツド率(両面クラッドの場合は両面クラッド率
の合計)は10〜60%か好ましい。本発明のアルミニ
ウム複合フィン材は耐座屈性に優れる芯材にフィン全体
の熱伝導性のよい皮材をクラッドすることにより熱伝導
性を高めているのてあり、クラッド率が低すぎると熱伝
導性が十分に向上せず、高すぎると芯材の割合か減少し
、耐座屈性か不足する。なお、本発明のフィン材の調質
は、硬質の状態(0材ではなくH材)て使用され、詳し
くは、いわゆる最終冷間圧延による硬質板(HIX)又
は最終冷間圧延後部分焼鈍した硬質板(H2X)の状態
で使用される。Further, the cladding ratio (in the case of double-sided cladding, the sum of the cladding ratios on both sides) is preferably 10 to 60%. The aluminum composite fin material of the present invention has improved thermal conductivity by cladding the core material with excellent buckling resistance with a skin material with good thermal conductivity for the entire fin. If the conductivity is not sufficiently improved and it is too high, the proportion of the core material will decrease and the buckling resistance will be insufficient. In addition, the fin material of the present invention is tempered in a hard state (H material instead of 0 material), and in detail, it is used in a hard state (H material instead of 0 material), and in detail, it is used as a hard plate (HIX) by so-called final cold rolling or partially annealed after final cold rolling. It is used in the form of a hard plate (H2X).
(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.
第1表に示す組成を有するアルミニウム合金の芯材及び
皮材を同表に示すクラッド率て第1図に示すような両面
クラッドのフィン材を作製した。A double-sided clad fin material as shown in FIG. 1 was prepared using aluminum alloy core materials and skin materials having the compositions shown in Table 1 and the cladding ratios shown in the same table.
第1図において符号lは芯材、2は皮材である。In FIG. 1, numeral 1 is a core material, and 2 is a skin material.
フィン材の作製は芯材インゴットに、皮材プレートを溶
接て仮止め後、均質化処理、熱間圧延し、その後冷間圧
延と焼鈍の組合せの工程で行った。The fin material was produced by welding and temporarily fixing a skin plate to a core ingot, followed by homogenization treatment, hot rolling, and then a combination of cold rolling and annealing.
これらの工程のうち熱間圧延はいずれも300〜350
℃で行い、熱延の終了板厚は3.5+wmであった。ま
た均質化処理は400〜600°Cで1〜48時間、焼
鈍は320〜600’Cで1〜48時間の範囲で実施し
、フィン材のろう付加熱時の第2相粒子の分布状態をコ
ントロールした。これらの工程によって最終板厚0.1
0mmの薄肉フィン材試料を得た。それぞれのフィン材
試料の芯材中の第2相粒子の分布を第1表に示す。ここ
で第2相粒子の分布はフィン材を610’cxlO分間
加熱後、常温まで冷却し、透過型電子顕微鏡を用いて求
めた。Of these processes, hot rolling requires 300 to 350
℃, and the final thickness of the hot rolled sheet was 3.5+wm. In addition, the homogenization treatment was carried out at 400 to 600°C for 1 to 48 hours, and the annealing was carried out at 320 to 600'C for 1 to 48 hours. I controlled it. Through these steps, the final plate thickness is 0.1
A thin fin material sample with a thickness of 0 mm was obtained. Table 1 shows the distribution of second phase particles in the core material of each fin material sample. Here, the distribution of the second phase particles was determined using a transmission electron microscope after heating the fin material for 610'cxlO minutes, cooling it to room temperature.
このようにして得られたフィン材試料をコルゲートフィ
ンとし、これを゛用い第2図に示すドロンカップエバポ
レータを試作した。第2図において符号3はプレスプレ
ートであり、4はコルゲートフィンである。プレスプレ
ート3は芯材3003合金、ろう材4004合金(クラ
ツド率両面15%)からなる板厚0.6Hのプレージン
プレートを用いた。フィン4の幅は100+s■とじ、
ろう付は真空ろう打法を用いた。得られたフィン材につ
いては耐垂下性、エバポレータについては冷房能力、フ
ィンの耐座屈性を測定した。The fin material sample thus obtained was made into a corrugated fin, and a Dron cup evaporator shown in FIG. 2 was manufactured as a prototype using this. In FIG. 2, numeral 3 is a press plate, and 4 is a corrugated fin. As the press plate 3, a platen plate having a thickness of 0.6H and made of a core material 3003 alloy and a brazing material 4004 alloy (cladding ratio of 15% on both sides) was used. The width of fin 4 is 100+s■,
For brazing, a vacuum brazing method was used. The sagging resistance of the obtained fin material, the cooling capacity of the evaporator, and the buckling resistance of the fin were measured.
試験方法及び判定方法は次の通りである。結果は第2表
に示す。The test method and judgment method are as follows. The results are shown in Table 2.
■冷房能力試験
JIS D 1618(自動車用冷房機試験方法)
に準じて行った。■Cooling capacity test JIS D 1618 (automobile air conditioner test method)
I followed the instructions.
■垂下性試験
幅22mm、長さ60mmのフィン材の試料片を切り出
し、一端を50mm突出させ他端を固定した片持ち状態
で610’Cで10分間の加熱を行った後、突出前端の
垂下量(mm)を測定した。垂下量の少ない方か耐垂下
性(耐座屈性)が優れる。■ Drooping test A sample piece of fin material with a width of 22 mm and a length of 60 mm was cut out, one end protruded 50 mm, and the other end was fixed in a cantilevered state. After heating at 610'C for 10 minutes, the front end of the protrusion dropped. The amount (mm) was measured. The one with less droop or droop resistance (buckling resistance) is better.
■耐座屈性試験
第2図のドロンカップエバポレータ作製においてろう付
時にフィンの座屈によるフィンとプレスプレートのろう
行不良がないことを前提とし、さらにプレスプレートの
間隔(ろう付前10mm)をろう付前後で比較し、減少
量0.3mm以下を耐座屈性良とし、0.31■を越え
るものを不良とした。■Buckling Resistance Test In manufacturing the Doron cup evaporator shown in Figure 2, it is assumed that there will be no brazing defects between the fins and the press plate due to buckling of the fins during brazing, and the interval between the press plates (10 mm before brazing) is assumed. A comparison was made before and after brazing, and buckling resistance was judged to be good if the reduction amount was 0.3 mm or less, and if it exceeded 0.31 cm, it was judged to be poor.
第2表
注)本試料NO67及びN018はエバポレーター組立
て不能であった。Table 2 Note) Samples No. 67 and No. 018 could not be assembled into an evaporator.
第2表の結果から明らかなように、本発明のアルミニウ
ム合金フィン材(No、1〜5)は優れた耐垂下性とと
もにエバポレータ用コルゲートフィンとして良好な耐座
屈性を有し、かつエバポレータの冷房能力を従来のエバ
ポレータ(No、9)よりも向上させる高熱伝導性を有
している。これに対し比較例(No、6〜8)は耐垂下
性が劣りエバポレータに組立てることがてきないか、ま
たは耐座屈性が劣る。As is clear from the results in Table 2, the aluminum alloy fin materials (Nos. 1 to 5) of the present invention have excellent drooping resistance and good buckling resistance as corrugated fins for evaporators, and It has high thermal conductivity that improves cooling capacity compared to the conventional evaporator (No. 9). On the other hand, the comparative examples (Nos. 6 to 8) have poor droop resistance and cannot be assembled into an evaporator, or have poor buckling resistance.
(発明の効果)
本発明によれば耐垂下性、高温座屈性か優れ、しかも高
熱伝導性を有するアルミニウム合金フィン材が得られる
。したがって、本発明のアルミニウム合金フィン材によ
り薄肉化が可能となり、また放熱特性にも優れるため、
小型、軽量化した熱交換器の製造か可能となる。(Effects of the Invention) According to the present invention, an aluminum alloy fin material having excellent droop resistance and high temperature buckling resistance, and high thermal conductivity can be obtained. Therefore, the aluminum alloy fin material of the present invention allows for thinner walls and has excellent heat dissipation properties.
It becomes possible to manufacture smaller and lighter heat exchangers.
第1図はフィン用プレージングシートの1例て、その断
面図、第2図はドロンカップエバポレータの側面図であ
り、第3図(イ)はエバポレータの斜視図、同図(ロ)
はコンデンサーの斜視図、同図(ハ)はラジェータの側
面図(一部破断図)である。
符号の説明
■・・・芯材、2・・・皮材、3・・・プレスプレート
、4・・・コルゲートフィン、
13.23.33・・・チューブ、
14.24.34−・・コルゲートフィン特許出願人
古河アルミニウム工業株式会社第 1 図
第
(イ)
第 2 図
3図
逼−一124
】盆趣沙PFig. 1 is a cross-sectional view of an example of a plating sheet for fins, Fig. 2 is a side view of a doron cup evaporator, Fig. 3 (a) is a perspective view of the evaporator, and Fig. 3 (b) is a side view of the evaporator.
is a perspective view of the condenser, and (c) is a side view (partially cut away) of the radiator. Explanation of symbols■...core material, 2...skin material, 3...press plate, 4...corrugate fin, 13.23.33...tube, 14.24.34-...corrugate fin patent applicant
Furukawa Aluminum Industry Co., Ltd. Figure 1 (A) Figure 2 Figure 3 Figure 1-1124] Bon Shusa P
Claims (2)
%、Si0.6%以下(以上wt%)を含有するAl−
Mn系合金であって、610℃で10分間加熱した場合
に組織内に第2相粒子を1mm^3当り30×10^9
個以上有するアルミニウム合金を芯材とし、該芯材の片
面又は両面に、純度99wt%以上のアルミニウム皮材
をクラッドしてなることを特徴とする熱交換器用アルミ
ニウム複合フィン材。(1) Mn0.6-2.0%, Fe0.05-0.8
%, Si containing 0.6% or less (or more wt%)
It is a Mn-based alloy, and when heated at 610°C for 10 minutes, the second phase particles are 30 × 10^9 per 1 mm^3 in the structure.
1. An aluminum composite fin material for a heat exchanger, characterized in that the core material is an aluminum alloy having at least 10% of aluminum, and one or both sides of the core material are clad with an aluminum skin material having a purity of 99 wt% or more.
%、Si0.6%以下(以上wt%)を含有するAl−
Mn系合金であって、610℃で10分間加熱した場合
に組織内に第2相粒子を1mm^3当り30×10^9
個以上有するアルミニウム合金を芯材とし、該芯材の片
面又は両面に、Zr0.03〜0.35wt%を含有す
るアルミニウム合金皮材をクラッドしてなることを特徴
とする熱交換器用アルミニウム複合フィン材。(2) Mn0.6-2.0%, Fe0.05-0.8
%, Si containing 0.6% or less (or more wt%)
It is a Mn-based alloy, and when heated at 610°C for 10 minutes, the second phase particles are 30 × 10^9 per 1 mm^3 in the structure.
An aluminum composite fin for a heat exchanger, characterized in that the core material is an aluminum alloy having Zr or more, and one or both sides of the core material are clad with an aluminum alloy skin material containing 0.03 to 0.35 wt% Zr. Material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6291088A JPH01234542A (en) | 1988-03-16 | 1988-03-16 | Aluminum clad fin material for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6291088A JPH01234542A (en) | 1988-03-16 | 1988-03-16 | Aluminum clad fin material for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01234542A true JPH01234542A (en) | 1989-09-19 |
Family
ID=13213883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6291088A Pending JPH01234542A (en) | 1988-03-16 | 1988-03-16 | Aluminum clad fin material for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01234542A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212371A (en) * | 1993-01-19 | 1994-08-02 | Furukawa Alum Co Ltd | Production of high strength aluminum alloy fin material for forming |
WO2001056782A3 (en) * | 2000-02-03 | 2002-03-14 | Corus Lp | Improved electrical conductivity and high strength aluminium alloy composite material and methods of manufacturing and use |
JP2013204077A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger |
JP2014125658A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger and method for producing the same |
JP2018003045A (en) * | 2016-06-27 | 2018-01-11 | 三菱アルミニウム株式会社 | Brazing member excellent in strength after brazing, clad material, and heat exchanger for automobile |
-
1988
- 1988-03-16 JP JP6291088A patent/JPH01234542A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212371A (en) * | 1993-01-19 | 1994-08-02 | Furukawa Alum Co Ltd | Production of high strength aluminum alloy fin material for forming |
WO2001056782A3 (en) * | 2000-02-03 | 2002-03-14 | Corus Lp | Improved electrical conductivity and high strength aluminium alloy composite material and methods of manufacturing and use |
KR100737020B1 (en) * | 2000-02-03 | 2007-07-09 | 코루스 엘.피. | Improved electrical conductivity and high strength aluminium alloy composite material and methods of manufacturing and use |
JP2013204077A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger |
JP2014125658A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Alum Co Ltd | Aluminum alloy clad material for heat exchanger and method for producing the same |
JP2018003045A (en) * | 2016-06-27 | 2018-01-11 | 三菱アルミニウム株式会社 | Brazing member excellent in strength after brazing, clad material, and heat exchanger for automobile |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01234542A (en) | Aluminum clad fin material for heat exchanger | |
JPH06306519A (en) | Aluminum alloy fin material for vacuum brazing and its production | |
JPH01195263A (en) | Manufacture of al-alloy fin material for heat exchanger | |
JPH08104934A (en) | Aluminum alloy fin material | |
JP3222577B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP3384835B2 (en) | Method for producing aluminum alloy fin material for heat exchanger | |
JP3256907B2 (en) | Manufacturing method of aluminum alloy fin material for heat exchanger | |
JPH01198453A (en) | Manufacture of high electric conductive aluminum alloy fin material | |
JPH03197652A (en) | Production of aluminum alloy fin material for brazing | |
JP2555187B2 (en) | Method for manufacturing aluminum fin material for heat exchanger | |
JPH0347940A (en) | Aluminum alloy for heat exchanger fin | |
JPH0357177B2 (en) | ||
JPS6323260B2 (en) | ||
JP3256910B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP2786641B2 (en) | Method for producing aluminum alloy sheet for brazing having excellent droop resistance and sacrificial anode effect | |
JPH01198443A (en) | High heat conductive aluminum alloy fin material | |
JP2846544B2 (en) | Aluminum alloy high thermal conductive fin material | |
JP3256909B2 (en) | Aluminum alloy fin material | |
JPH10298687A (en) | Aluminum alloy high thermal conductivity fin material | |
JPH11269591A (en) | Aluminum alloy fin material | |
JP2001207231A (en) | Al ALLOY EXTRUDED MATERIAL FOR HEAT EXCHANGER EXCELLENT IN HIGH TEMPERATURE STRENGTH | |
JPH03197639A (en) | Heat-exchanger fin material made of aluminum | |
JPS641544B2 (en) | ||
JPH0483844A (en) | Al and al alloy for heat exchanger fin material by brazing | |
JP2000160271A (en) | Aluminum alloy fin material for brazing and heat exchanger using the fin material |