[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0122320B2 - - Google Patents

Info

Publication number
JPH0122320B2
JPH0122320B2 JP52080020A JP8002077A JPH0122320B2 JP H0122320 B2 JPH0122320 B2 JP H0122320B2 JP 52080020 A JP52080020 A JP 52080020A JP 8002077 A JP8002077 A JP 8002077A JP H0122320 B2 JPH0122320 B2 JP H0122320B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
hydrogen sulfide
carried out
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52080020A
Other languages
Japanese (ja)
Other versions
JPS537705A (en
Inventor
Boode Deiruku
Hentoriku Uan Dongen Roberuto
Uan Kurinken Yaakobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS537705A publication Critical patent/JPS537705A/en
Publication of JPH0122320B2 publication Critical patent/JPH0122320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は水素の存在下昇温昇圧下にて炭化水素
油を触媒と接触させることによつて炭化水素油を
脱金属する方法に関する。 高沸点炭化水素油、たとえば大気圧または減圧
下での原油の蒸留で得られる残油、並びにある種
の重質原油、特に南アメリカ産の原油は相当量の
高分子量で蒸留不可能な化合物、たとえばアスフ
アルテンおよび金属化合物特にバナジウムおよび
ニツケル化合物を含んでいる。これらの高沸点炭
化水素油を接触法、たとえばクラツキング、水添
分解および水添脱流の供給物として使用すると、
バナジウムおよびニツケルのような金属は触媒粒
子上に沈着する。触媒の活性位置におけるバナジ
ウムおよびニツケル濃度の増加の結果、触媒の急
速な不活性化が生じる。 触媒の寿命を増加させるために、供給物を金属
に敏感な触媒と接触させる前に供給物から金属を
除去することはすでに提案されている。これは水
素の存在下昇温および昇圧下にて供給物を適当な
脱金属触媒と接触させることによつて行ない得
る。この目的のために、水添活性を有する一種ま
たはそれ以上の金属からなる多孔性物質よりなる
種々の触媒がすでに提案されてきた。 多くとも100m2/gの表面積を有する触媒の助
けによるバナジウムおよびニツケル総含有量が
350ppmw以上の炭化水素油の水添脱金属につい
ての本出願による研究で、この目的のためのすぐ
れた触媒は多孔度および粒子サイズに関するいく
つかの要件を満たさねばならないことがわかつ
た。これらの要件は水添脱金属を行なう水素分圧
にいくらかよる。この特許出願の範囲内のバナジ
ウムおよびニツケル総含有量が350ppmw以上の
炭化水素油の水添脱金属用にすぐれた触媒は、触
媒寿命の半分が経過したとき触媒の脱金属活性が
十分に高いレベルにありかつさらに十分に高い金
属取り上げ容量を有するものである。 多くとも100m2/gの表面積を有する触媒の助
けによるバナジウムおよびニツケル総含有量が
350ppmw以上の炭化水素油の接触水添脱金属に
対して、すぐれた触媒が満たすべき多孔度および
粒子サイズに関する要件は以下の通りであること
を見出した。触媒は0.2ml/g以上の全細孔容積
(VT)と少なくとも0.4mm、多くとも5mmの比平均
粒子直径(d)を有するべきである。さらに、触媒は
次の要件: 〔式中、PH2は使用した水素分圧である(P*
nm、dはmm、VTはml/g、PH2はバールの単位
である)〕 を満たすような平均細孔直径(P*)、VTおよびd
を有しているべきである。上記のdおよびP*
値はそれらの測定法に基づいて以下のように定義
した。 dを測定する方法は触媒粒子の形により異な
る。触媒粒子の直径分布がふるい分析によつて測
定できるような形を有する触媒粒子の場合には、
dは下記のようにして測定される。代表的触媒試
料の完全なふるい分析を、「ASTM規格・第30部
門(ASTM−E11−61)」、第96頁〜第101頁
(1969年)に記載の1組の標準ふるいを用いて行
なつた後、各連続ふるい分区分についてそれぞれ
触媒試料の全重量を基準とする重量百分比が当該
ふるい分区分の粒子の線平均直径の関数として累
積プロツトされているグラフからdを読み取る。
すなわちdは全重量の50%に相当する粒子直径で
ある。この方法は、球形および粒状物質およびそ
れらと同じような形をした物質たとえば長さと直
径の比が0.9〜1.1の範囲内に押出品およびペレツ
トのdを測定するのに使用することができる。長
さと直径の比が0.9より小さいかまたは1.1より大
きい押出品およびペレツトおよびそれらと同じよ
うな円筒形をなす物質でふるい分析では粒子の直
径分布を測定できないものは、それらのdの測定
は下記のようにして行なわれる。完全な長さ分布
分析(長さと直径の比が0.9より小さい場合)ま
たは完全な直径分布分析(長さと直径の比が1.1
より大きい場合)を代表的触媒試料について実施
した後、各連続した長さおよび直径の区分につい
て、それぞれ触媒試料の全重量に基づく重量百分
比が当該区分の線平均サイズの関数として累積プ
ロツトされているグラフから、dを読み取る。す
なわちdは全重量の50%に相当する値である。 触媒試料の完全な細孔直径分布を測定した後、
P*を次のグラフから読みとる。すなわち、0〜
100nmの範囲の細孔直径に関して、細孔容積の10
%より小さいかまたは10%に等しい各連続した細
孔容積の増分(ただしこの増分は、細孔を2nmよ
り小さいかまたは2nmに等しい等直径間隔で区分
したときの該細孔にみられる増分である)につい
てそれぞれ細孔容積の増分と対応する細孔直径の
間隔との商を、関連細孔直径の間隔に対する線平
均細孔直径の関数として累積プロツトされている
グラフから、P*を読み取る。すなわちP*は商全
体の50%に相当する細孔直径である。 触媒の完全な細孔直径分布(細孔直径分布は、
当該直径を有する細孔が全細孔容積に寄与する程
度を定める。)の測定は1〜2000バールの水銀圧
を用いた水銀浸入法(Industrial and
Engineering Chemistry、分析版17,787(1945)
でH.L.RitterおよびL.C.Drakeにより記載されて
いるような)を組合せた窒素吸着/脱吸着法
(Analytical Chemistry32,532(1960)でE.V.
BallouおよびO.K.Doolenにより記載されている
ような)で行なうのが非常に適している。この場
合、7.5nmを含めたそれ以下の細孔直径範囲にお
ける触媒の細孔直径分布はJournal of Catalysis
10,377(1968)にJ.C.P.BroekhoffおよびJ.H.do
Boerによつて記載された方法に従う窒素脱吸着
等温線から計算され(円筒状細孔と仮定して)、
7.5nm以上の細孔直径範囲における触媒の細孔直
径分布は式: 細孔直径(nm)=15000/絶対水銀圧(バール) で計算される。この特許出願で述べる窒素細孔容
積および全細孔容積は次のようにして測定する。
触媒の窒素細孔容積は上記の窒素吸着/脱吸着法
で測定する。触媒の全細孔容積は7.5nmを含めた
それ以下の直径を有する細孔中に存在する窒素細
孔容積(上記の窒素吸着/脱吸着法で測定した)
および7.5nm以上の直径を有する細孔中に存在す
る水銀細孔容積(上記の水銀浸入法で測定した)
の合計である。この特許出願で述べる表面積は
B.E.T.法に従つて測定した。 それ故本発明は、水素の存在下昇温および昇圧
下にて炭化水素油を触媒と接触させることによる
該油の脱金属法に関するものであり、処理を行な
う炭化水素油はバナジウムおよびニツケル総含有
量が350ppmw以上であり、一方触媒は上記の要
件を満たすものを使用する。 本発明の方法に使用される触媒は実質的にアル
ミナ、シリカまたはシリカ―アルミナからなる。
非常に適した触媒は、アルミナまたはシリカゲル
を噴霧乾燥し次に噴霧乾燥した微細粒子をたとえ
ば押出しによつてより大きな粒子に形づくること
によつて製造するアルミナまたはシリカ粒子、お
よびよく知られているオイルドロツプ法により得
られる球状アルミナまたはシリカである。後者の
方法はアルミナまたはシリカヒドロゾルを形成
し、ヒドロゾルをゲル化剤と混ぜ、この混合物を
上げた温度に保持し得る油中に小滴として分散さ
せることよりなる;小滴は固化して球状のヒドロ
ゲル粒子を形成するまで油中にとどめておき、こ
れをその後分離し、洗浄、乾燥そして〓焼する。
非常に適したシリカ―アルミナ触媒はシリカヒド
ロゲル上の水酸化アルミニウムゲルの共ゲルであ
る。 本発明の触媒は押出しまたはペレツト化によつ
て特に形づくりうる。これらの成形法に加えて特
によく知られている団粒法が本発明の触媒または
触媒担体の非常に魅力的な成形法である。この方
法によれば、多くとも0.1mmの直径を有する触媒
粒子を造粒液で凝集させて少なくとも1.0mmの直
径を有する粒子をつくる。 本発明の方法に使用される触媒は、本発明によ
り規定された諸条件を満足するものであればよ
く、たとえばカリケミエ(Kalichemie)社、カ
イザー(Kaiser)社、ケツジエン(Ketjen)社、
ローネ―ポウレンク(Rhone−Poulenc)社およ
びアメリカン・サイアナミド(American
Cyanamid)社の市販のものが含まれる。 原油およびトツプドクルード油よりなる群から
選択した、バナジウムおよびニツケルの総含有量
が1000ppmw以上の炭化水素油の脱金属に本発明
の方法を使用するとき、次の要件: 1 VTが0.6ml/gより大であり、 2 dが少なくとも1.5、多くとも3mmであり、
そして 3 式: にd,VTおよびPH2を代入した後、P*はnmで
表わしたある値Qより大でなければならないこ
とがわかる;本発明の場合P*はQ+10nmより
大きな値を有すべきである、 を満たす触媒が好ましい。 本発明の触媒の脱金属活性は硫化水素の添加に
よつて増大する。それ故、本発明の方法は硫化水
素を添加して行なうのが好ましい。重質炭化水素
油の脱金属に本発明の触媒を使用するときの硫化
水素の添加の影響に関する研究をさらに行なつた
ところ、硫化水素の効果は用いる水素分圧および
全圧に大いによることがわかつた。特にある全圧
で50%以上の脱金属活性の増加を生じるとき、脱
金属における硫化水素の使用が経済的に魅力のあ
るものであるという観点を取る場合、さらに硫化
水素の量を商PH2S/PH2が少なくとも4/PT+ 200/(PT2、多くとも2PT−60/PT+60となるように
選択すれ ばこの要件を満たし得ることがわかる。 式により定められた範囲内で触媒の脱金属活性
はあるPH2S(P* H2S)で最高値に達する。 P* H2Sの値は異なる触媒で異なり、いくつかの
仮試験から決めることができる。P* H2S以上また
は以下のしかし決められた範囲内のPH2Sの適用で
脱金属活性は依然として50%以上増加するが、こ
の増加は到達できる最高値よりは小さい。 脱金属操作の間、P* H2Sまたは他のPH2Sは脱金
属を行なう油へ十分な量の硫化水素を外部から連
続的に供給することによつて調整し得る。しかし
ながら、経済的観点から、脱金属操作および/ま
たは脱金属操作の後行なわれる脱硫操作で放出さ
れる硫化水素を可能な最高の程度まで使用するの
がより魅力的である。この考えから、追加の硫化
水素の存在下における本発明の脱金属法の次の3
つの魅力のある具体例が導き出された。 1 できるだけ多量の硫化水素を所望のPH2Sに達
するまで再循環ガスに残しておく、脱金属操作
におけるガス再循環の適用。ある量の硫化水素
をそこで再循環ガスから連続的に取出し所望の
硫化水素濃度に保つ。 2 特に高いPH2Sが必要なとき、再循環ガス中の
硫化水素濃度が所望の値に達するまでにかなり
の時間がかかる。この難点は操作の初期に外部
から硫化水素を供給し、操作の進行につれて硫
化水素の供給を徐々に減じることによつて応じ
ることができる。この追加の量の硫化水素はた
とえば水添脱硫操作からくる。 3 脱金属反応器へのガスの再循環の代わりにま
たはこれと組合せて、脱金属反応器の後に取付
けた脱硫反応器からのオフガスを脱金属反応器
に対する供給ガスとして使用する。後述の原理
に基づく水素の存在下での脱金属/脱硫を組合
せた方法の操作機構は添付の図面に示し、さら
にこの後で説明する。 プラントは順番に脱金属装置1、第一気−液
分離装置2、水添脱硫装置3、第二気−液分離
装置4および硫化水素除去装置5からなる。金
属および硫黄含有炭化水素残油6は2つの水素
および水素―硫化物含有ガス流7および8そし
て必要ならば外部からの硫化水素流9と共に脱
金属を行なう。このようにして得られた生成物
10は金属含有量の少ない液流11そして水素
および水素―硫化物含有ガス流7に分離し、後
者を脱金属装置へ再循環させる。液流11は水
素含有ガス流12および外部からの水素流13
と共に水添脱硫する。このようにして得た生成
物14は金属低含有および硫黄低含有液流15
そして水素および水素―硫化物含有ガス流16
に分離し、後者は同じ組成の2つの部分8およ
び17に分ける。部分8は脱金属装置へ再循環
し、部分17は硫化水素の除去の後ガス流12
として脱硫装置へ再循環する。 本発明の方法は、水素の存在下昇温および昇圧
下にて、関連している触媒粒子の固定または移動
床を含む1つまたはそれ以上の垂直に配置した反
応器へ炭化水素油を上方、下方または放射方向に
通すことによつて行なうのが好ましい。本発明は
たとえば炭化水素油を水素と共に垂直に配置した
触媒床を上向きの方向に通すことによつて行ない
え、用いる液体および気体速度は触媒床を広げる
ような速度である(エビユレイテツドベツト法で
の操作)。本発明の非常に魅力のある具体例は、
炭化水素油を垂直に配置した触媒床へ通し、ここ
で操作の間新しい触媒を触媒床の頂部で周期的に
導入し、使つた触媒を触媒床の底部で取出す方法
である(バンカーフロー法での操作)。本発明の
別の非常に魅力のある具体例は、各々固定触媒床
を含むいくつかの反応器を使用するものであり、
これらの反応器は関連した操作に交互に使用す
る;操作をこれらの反応器の1つまたはそれ以上
で行なつている間他の床の触媒を補充する(固定
触媒振動法での操作)。必要ならば、触媒を処理
する炭化水素油中に懸濁させることによつて操作
を実施することもできる(スラリー相法での操
作)。 本発明の方法は温度350〜450℃、水素分圧25〜
200バール、空間速度0.1〜10Kg・Kg-1・h-1で行
なうのが好ましい。特に好ましいのは次の条件の
ときである:温度375〜425℃、水素分圧50〜150
バール、空間速度0.5〜5Kg・Kg-1・h-1。金属を
含む炭化水素油の水添脱金属は、油をその後接触
分解、水添分解または水添脱硫するとしたら、特
に重要である。水添脱金属の結果としてこれらの
操作で使用した触媒の不活性化は相当程度抑制さ
れる。炭化水素油の水添分解および水添脱硫は昇
温および昇圧下かつ水素の存在下固定床、移動床
または触媒粒子の懸濁液の形で存在しうる適当な
触媒と油を接触させることによつて行ないうる。
本発明に従う脱金属と水添分解または水添脱硫と
の魅力のある組合せは脱金属を固定床振動操作ま
たはバンカーフロー操作で行ない、一方水添分解
または水添脱硫を通常の固定床操作で行なうもの
である。 本発明の脱金属に適するバナジウムおよびニツ
ケル総含有量が350ppmw以上の炭化水素油の例
は原油およびトツプドクルード油のような原油の
蒸留で得られる残油、ロング残油およびシヨート
残油である。 本発明を以下の実施例によつて説明する。 実施例 南アメリカ産の原油をトツピングおよび脱水し
た後得たバナジウムおよびニツケル総含有量が
1250ppmwの炭化水素残油を9つの異なる非促進
触媒を使用して接触的に水添脱金属を行なつた。
この後温度410℃、水素分圧(反応器の入口で測
定した)150バール、空間速度1時間当り触媒1
Kg当り新しい供給物2.1Kgおよびガス速度新しい
供給物1Kg当りH2を1000Nlにて油を水素と共に
円筒状の垂直に配置した固定触媒床へ下向きの方
向に通した。液体反応生成物を体積比22:1で同
じ組成の2つの部分に分けた。少ない方の部分を
系から取出し、多い方の部分を反応器の入口へ再
循環させた。 脱金属実験の結果を使用した触媒の性質と共に
表Aに集めた。P*および全細孔容積を測定する
ために前記の窒素吸着/脱吸着法および水銀侵入
法を使用した。 実験3の触媒は、市販のカリケミエ(Kali
Chemie)Ni/V含有シリカベース触媒(表面積
262m2/g、平均細孔直径9.5nm、商品名シリパ
ール(Siliperl)R600、ロツト番号KC286/1)
を酸浸出処理に付し(この触媒から不所望の金属
成分を除去するため)そしてその後175℃かつ
H2Oの圧力8.8バールにて熱水処理することによ
り製造された。 【表】 触媒の性能はVnaxおよびK1.5に基づいて評価す
る。Vnaxは、触媒粒子がそれらの細孔中に吸収
することができる新しい触媒に基づいて重量%で
表わしたバナジウムの最高の量であり、K1.5は触
媒寿命の半分(吸収したバナジウムの量に換算し
て)が経過した後のKg・Kg-1・h-1・(ppmwV)-1
/2で表わした触媒活性である。K1.5は式: K1.5=(Kg・Kg-1・h-1での空間速度)× 供給物中のppmwV−生成物中のppmwV/(生成物中
のppmwV)1 1/2 で計算する。 Vnaxが30重量%より大であり、K1.5が0.08Kg・
Kg-1・h-1・(ppmwV)-1/2より大であるという基
準が満たされれば、触媒の性能はこの脱金属で使
用した条件下で良好であると評価される。 Vnaxが40重量%より大であり、K1.5が0.08Kg・
Kg-1・h-1(ppmwV)-1/2より大であるという基準
が満たされれば、触媒の性能はこの脱金属で使用
した条件下ですぐれていると評価される。 VnaxおよびK1.5に関する上記の条件を満たす実
験1〜6は本発明に従う脱金属実験である。 【式】の触媒を使用し たこれらの実験において、これらの触媒は表面積
(100m2/g)、VT(>0.2ml/g)およびd(0.4
〜5mm)についての本発明の追加の要件をも満た
している。実験3〜6では、さらにP*(>Q+
10nm)、VT(>0.6ml/g)およびd(1.5〜3mm)
に関する追加の要件をも満たしている触媒を使用
した。これらは本発明に従うものであり、すぐれ
た触媒として評価された。 VnaxおよびK1.5に関する上記の要件を満たして
いない実験7〜9は本発明の範囲外の脱金属実験
である。実験7〜9では条件:
【式】を満たさなかつ た触媒を使用した。さらに、実験7では使用した
触媒はd>5mmであり、実験9ではVT<0.2ml/
gの触媒を使用した。 実施例 実施例の実験4を異なる硫化水素分圧で数回
操返した。これらの実験では硫化水素は外部から
加えた。全ての実験で150バールの一定の全圧
(反応器入口で測定した)を使用した。これらの
実験結果を表Bに集めた。 【表】 実験11〜13では関係: 4/PT+200/(PT2PH2S/PH22PT−60/PT+60 を満たすPH2S/PH2を使用し、50%以上の脱金属
活性の増加に達した。実験10では上記の関係を満
たさなかつたPH2S/PH2を使用し、50%以下の脱
金属活性の増加となつた。 実施例 410ppmwのバナジウムおよびニツケルの総含
有量および4.1重量%の硫黄含有量を有する中東
産シヨート残油を、実施例の実験3に記載の触
媒(63m2/gの表面積、57nmの平均細孔直径お
よび2.4mmの平均粒子直径を有するSiO2)上で標
準的な条件(温度410℃、水素分圧150バール、空
間速度1時間当り触媒1Kg当り新しい供給物2.1
Kgおよびガス速度新しい供給物1Kg当り
H21000Nl)において200時間処理した場合、触媒
の活性(K1.5で表わされる)は0.09であつた。触
媒の金属吸収能は70重量%であつた。 実施例 763ppmwのバナジウムおよびニツケルの総含
有量および5.4重量の硫黄含有量を有する南アメ
リカ産シヨート残油を、実施例に記載された同
じ標準的な条件において同じ触媒上で処理した場
合、K1.5についての0.09の値が170時間後に既に
達した。このタイプの供給物についての金属吸収
能は60重量%であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for demetallizing hydrocarbon oil by contacting the hydrocarbon oil with a catalyst in the presence of hydrogen at elevated temperature and pressure. High-boiling hydrocarbon oils, such as residual oils obtained from the distillation of crude oil at atmospheric or reduced pressure, as well as certain heavy crude oils, especially those from South America, contain significant amounts of high molecular weight, non-distillable compounds; These include, for example, asphaltenes and metal compounds, especially vanadium and nickel compounds. The use of these high-boiling hydrocarbon oils as feeds for catalytic processes, such as cracking, hydrocracking and hydrodeflowing,
Metals such as vanadium and nickel are deposited on the catalyst particles. The increase in vanadium and nickel concentration in the active position of the catalyst results in rapid deactivation of the catalyst. In order to increase the lifetime of the catalyst, it has already been proposed to remove metals from the feed before contacting the feed with a metal-sensitive catalyst. This may be accomplished by contacting the feed with a suitable demetalization catalyst in the presence of hydrogen at elevated temperature and pressure. For this purpose, various catalysts consisting of porous materials of one or more metals with hydrogenation activity have already been proposed. Total vanadium and nickel content with the help of a catalyst with a surface area of at most 100 m 2 /g
Research in this application on the hydrodemetallization of hydrocarbon oils above 350 ppmw has shown that a good catalyst for this purpose must meet several requirements regarding porosity and particle size. These requirements depend somewhat on the hydrogen partial pressure at which the hydrodemetallization is carried out. Catalysts within the scope of this patent application that are suitable for the hydrodemetalization of hydrocarbon oils with a total vanadium and nickel content of 350 ppmw or more are such that the demetalization activity of the catalyst is at a sufficiently high level when half of the catalyst life has elapsed. and has a sufficiently high metal uptake capacity. Total vanadium and nickel content with the help of a catalyst with a surface area of at most 100 m 2 /g
It has been found that for catalytic hydrodemetalization of hydrocarbon oils of 350 ppmw and above, the requirements regarding porosity and particle size that a good catalyst should meet are as follows. The catalyst should have a total pore volume (V T ) of at least 0.2 ml/g and a specific average particle diameter (d) of at least 0.4 mm and at most 5 mm. In addition, the catalyst has the following requirements: [In the formula, P H2 is the hydrogen partial pressure used (P * is
nm, d in mm, V T in ml/g, P H2 in bars)], the average pore diameter (P * ), V T and d
should have. The above values of d and P * were defined as follows based on their measurement methods. The method for measuring d differs depending on the shape of the catalyst particles. In the case of catalyst particles having such a shape that the diameter distribution of the catalyst particles can be determined by sieve analysis,
d is measured as follows. A complete sieve analysis of a representative catalyst sample was performed using a set of standard sieves as described in ASTM Standards, Division 30 (ASTM-E11-61), pages 96-101 (1969). After aging, read d from a graph in which the weight percentage, based on the total weight of the catalyst sample, for each successive sieve section is plotted cumulatively as a function of the linear average diameter of the particles in that sieve section.
That is, d is the particle diameter corresponding to 50% of the total weight. This method can be used to determine the d of spherical and granular materials and similarly shaped materials such as extrudates and pellets with length to diameter ratios in the range 0.9 to 1.1. For extrudates, pellets, and similar cylindrical materials whose length-to-diameter ratio is less than 0.9 or greater than 1.1, and whose particle diameter distribution cannot be determined by sieve analysis, the measurement of d is as follows. It is done as follows. Complete length distribution analysis (if length to diameter ratio is less than 0.9) or complete diameter distribution analysis (if length to diameter ratio is less than 1.1)
For each successive length and diameter segment, the weight percentage based on the total weight of the catalyst sample is cumulatively plotted as a function of the linear average size of that segment. Read d from the graph. That is, d is a value corresponding to 50% of the total weight. After measuring the complete pore diameter distribution of the catalyst sample,
Read P * from the following graph. That is, 0~
For pore diameters in the range of 100 nm, 10 of the pore volume
Each successive pore volume increment less than or equal to 10%, where this increment is the increment observed in the pore when the pore is divided into equal diameter intervals smaller than or equal to 2 nm. P * is read from a graph in which the quotient of the increment in pore volume and the corresponding pore diameter spacing for each of the following equations is plotted cumulatively as a function of the line average pore diameter for the associated pore diameter spacing. That is, P * is the pore diameter corresponding to 50% of the total quotient. The complete pore diameter distribution of the catalyst (the pore diameter distribution is
The extent to which pores with the relevant diameter contribute to the total pore volume is determined. ) is measured using the mercury immersion method (industrial and
Engineering Chemistry, Analytical Edition 17 , 787 (1945)
EV in a combined nitrogen adsorption/desorption method (as described by HLRitter and LCDrake in Analytical Chemistry 32 , 532 (1960))
(as described by Ballou and OKDoolen) is very suitable. In this case, the pore diameter distribution of the catalyst in the pore diameter range below 7.5 nm is the Journal of Catalysis
JCP Broekhoff and JHdo in 10, 377 (1968)
Calculated from the nitrogen desorption isotherm according to the method described by Boer (assuming a cylindrical pore),
The pore diameter distribution of the catalyst in the pore diameter range of 7.5 nm and above is calculated by the formula: Pore diameter (nm) = 15000/absolute mercury pressure (bar). The nitrogen pore volume and total pore volume described in this patent application are measured as follows.
The nitrogen pore volume of the catalyst is measured by the nitrogen adsorption/desorption method described above. The total pore volume of the catalyst is the nitrogen pore volume present in pores with diameters up to and including 7.5 nm (measured using the nitrogen adsorption/desorption method described above).
and the mercury pore volume present in pores with a diameter of 7.5 nm or more (measured by the mercury infiltration method described above)
is the sum of The surface area mentioned in this patent application is
Measured according to the BET method. The present invention therefore relates to a process for demetallizing hydrocarbon oils by contacting them with a catalyst in the presence of hydrogen at elevated temperature and pressure, the hydrocarbon oil being treated having a total vanadium and nickel content. The amount is 350 ppmw or more, and the catalyst used satisfies the above requirements. The catalyst used in the process of the invention consists essentially of alumina, silica or silica-alumina.
Very suitable catalysts are alumina or silica particles prepared by spray-drying alumina or silica gel and then shaping the spray-dried fine particles into larger particles, for example by extrusion, and the well-known oil droplets. This is spherical alumina or silica obtained by the method. The latter method consists of forming an alumina or silica hydrosol, mixing the hydrosol with a gelling agent, and dispersing this mixture as droplets in an oil that can be maintained at elevated temperatures; the droplets solidify into spherical shapes. The particles remain in the oil until they form hydrogel particles, which are then separated, washed, dried, and calcined.
A very suitable silica-alumina catalyst is a cogel of aluminum hydroxide gel on silica hydrogel. The catalysts of the invention may be particularly shaped by extrusion or pelletization. In addition to these shaping methods, the particularly well-known agglomeration method is a very attractive shaping method for the catalysts or catalyst supports of the invention. According to this method, catalyst particles having a diameter of at most 0.1 mm are agglomerated in a granulating liquid to form particles having a diameter of at least 1.0 mm. The catalyst used in the process of the present invention may be any catalyst that satisfies the conditions specified by the present invention, such as Kalichemie, Kaiser, Ketjen, etc.
Rhone-Poulenc and American Cyanamid
Includes commercially available products from Cyanamid. When using the method of the invention for the demetallization of hydrocarbon oils selected from the group consisting of crude oil and topped crude oil and having a total content of vanadium and nickel of 1000 ppmw or more, the following requirements: 1 V T is 0.6 ml /g, 2 d is at least 1.5 and at most 3 mm,
And 3 formulas: After substituting d, V T and P H2 into , we find that P * must be greater than some value Q in nm; for the present invention P * should have a value greater than Q + 10 nm. A catalyst that satisfies the following is preferred. The demetalization activity of the catalyst of the invention is increased by the addition of hydrogen sulfide. Therefore, the process of the invention is preferably carried out with the addition of hydrogen sulfide. Further research on the effect of adding hydrogen sulfide when using the catalyst of the present invention for the demetalization of heavy hydrocarbon oils revealed that the effect of hydrogen sulfide largely depends on the hydrogen partial pressure and total pressure used. I understood. If we take the view that the use of hydrogen sulfide in demetallization is economically attractive, especially when it results in an increase in demetallization activity of more than 50% at a given total pressure, we can further reduce the amount of hydrogen sulfide to commercial P H2S It can be seen that this requirement can be met if /P H2 is selected to be at least 4/P T +200/(P T ) 2 and at most 2P T -60/P T +60. Within the range defined by the formula, the demetalization activity of the catalyst reaches a maximum value at a certain P H2S (P * H2S ). The value of P * H2S varies for different catalysts and can be determined from several preliminary tests. Application of P H2S above or below P * H2S but within a defined range still increases the demetalization activity by more than 50%, but this increase is smaller than the highest value that can be reached. During the demetalization operation, P * H2S or other P H2S may be adjusted by continuously feeding a sufficient amount of hydrogen sulfide externally to the oil being demetallized. However, from an economic point of view, it is more attractive to use the hydrogen sulfide released in the demetalization operation and/or the desulphurization operation carried out after the demetallization operation to the highest possible extent. From this idea, the following three demetalization methods of the present invention in the presence of additional hydrogen sulfide
Two attractive concrete examples were derived. 1 Application of gas recirculation in demetalization operations, leaving as much hydrogen sulfide as possible in the recycle gas until the desired P H2S is reached. A quantity of hydrogen sulfide is then continuously removed from the recycle gas to maintain the desired hydrogen sulfide concentration. 2. Especially when high P H2S is required, it takes a considerable amount of time for the hydrogen sulfide concentration in the recycle gas to reach the desired value. This difficulty can be overcome by supplying hydrogen sulfide externally at the beginning of the operation and gradually reducing the supply of hydrogen sulfide as the operation progresses. This additional amount of hydrogen sulfide comes from, for example, hydrodesulfurization operations. 3. Instead of or in combination with gas recirculation to the demetalization reactor, off-gas from a desulfurization reactor installed after the demetalization reactor is used as feed gas to the demetalization reactor. The operating mechanism of the combined demetallization/desulfurization process in the presence of hydrogen, based on the principles described below, is illustrated in the accompanying drawings and is further described hereinafter. The plant consists of a demetallization device 1, a first gas-liquid separation device 2, a hydrodesulfurization device 3, a second gas-liquid separation device 4 and a hydrogen sulfide removal device 5 in order. The metal and sulfur-containing hydrocarbon residue 6 is demetallized together with two hydrogen and hydrogen-sulfide-containing gas streams 7 and 8 and, if necessary, an external hydrogen sulfide stream 9. The product 10 obtained in this way is separated into a metal-poor liquid stream 11 and a hydrogen- and hydrogen-sulfide-containing gas stream 7, the latter being recycled to the demetallization unit. The liquid stream 11 includes a hydrogen-containing gas stream 12 and an external hydrogen stream 13.
Hydrodesulfurization is also carried out. The product 14 thus obtained is a low metal and low sulfur liquid stream 15
and hydrogen and hydrogen-sulfide-containing gas stream 16
and the latter is divided into two parts 8 and 17 of the same composition. Portion 8 is recycled to the demetalization unit and portion 17 is recycled to the demetallization unit, and portion 17 is recycled to the gas stream 12 after removal of the hydrogen sulfide.
recycled to the desulfurization equipment. The process of the present invention involves passing a hydrocarbon oil upwardly in the presence of hydrogen at elevated temperature and pressure into one or more vertically arranged reactors containing a fixed or moving bed of associated catalyst particles. Preferably this is done by passing downwardly or radially. The invention may be carried out, for example, by passing hydrocarbon oil with hydrogen in an upward direction through a vertically arranged catalyst bed, and the liquid and gas velocities used are such as to spread the catalyst bed. operation). A very attractive embodiment of the invention is
Hydrocarbon oil is passed through a vertically arranged catalyst bed where, during the operation, fresh catalyst is introduced periodically at the top of the catalyst bed and used catalyst is removed at the bottom of the catalyst bed (bunker flow method). Operation of). Another very attractive embodiment of the invention is the use of several reactors, each containing a fixed catalyst bed,
These reactors are used alternately for the associated operations; while an operation is being carried out in one or more of these reactors, the catalyst in the other bed is replenished (operation in fixed catalyst oscillation mode). If necessary, the operation can also be carried out by suspending the catalyst in the hydrocarbon oil to be treated (operation in the slurry phase). The method of the present invention is performed at a temperature of 350 to 450°C and a hydrogen partial pressure of 25 to 450°C.
Preferably, it is carried out at 200 bar and a space velocity of 0.1 to 10 Kg·Kg −1 ·h −1 . Particularly preferred are the following conditions: temperature 375-425°C, hydrogen partial pressure 50-150.
Bar, space velocity 0.5-5Kg・Kg -1・h -1 . Hydrodemetallization of metal-containing hydrocarbon oils is of particular importance if the oil is subsequently subjected to catalytic cracking, hydrocracking or hydrodesulfurization. As a result of hydrogenation demetallization, the deactivation of the catalysts used in these operations is suppressed to a considerable extent. Hydrocracking and hydrodesulfurization of hydrocarbon oils involves contacting the oil with a suitable catalyst, which may be present in a fixed bed, a moving bed or in the form of a suspension of catalyst particles, under elevated temperature and pressure and in the presence of hydrogen. I can turn it over and go.
An attractive combination of demetallization and hydrocracking or hydrodesulfurization according to the invention is that the demetallization is carried out in a fixed bed vibratory or bunker flow operation, while the hydrocracking or hydrodesulfurization is carried out in a conventional fixed bed operation. It is something. Examples of hydrocarbon oils having a total vanadium and nickel content of 350 ppmw or more that are suitable for the demetallization of the present invention are crude oil and resid oils obtained by distillation of crude oils such as topped crude oils, long resid oils, and short resid oils. . The invention will be illustrated by the following examples. Example: The total vanadium and nickel content obtained after topping and dehydration of South American crude oil is
A 1250 ppmw hydrocarbon residue was catalytically hydrodemetallized using nine different non-promoted catalysts.
This was followed by a temperature of 410 °C, a hydrogen partial pressure (measured at the inlet of the reactor) of 150 bar, and a space velocity of 1 catalyst per hour.
The oil was passed with hydrogen in a downward direction through a cylindrical vertically arranged fixed catalyst bed at a gas rate of 2.1 Kg of fresh feed per Kg and a gas rate of 1000 Nl H2 per Kg of fresh feed. The liquid reaction product was divided into two parts of the same composition in a volume ratio of 22:1. A smaller portion was removed from the system and a larger portion was recycled to the reactor inlet. The results of the demetalization experiments are collected in Table A along with the properties of the catalysts used. The nitrogen adsorption/desorption and mercury intrusion methods described above were used to measure P * and total pore volume. The catalyst for Experiment 3 was commercially available Kali
Chemie) Ni/V-containing silica-based catalyst (surface area
262m 2 /g, average pore diameter 9.5nm, product name Siliperl R600, lot number KC286/1)
was subjected to an acid leaching treatment (to remove undesired metal components from the catalyst) and then heated at 175°C and
Produced by hydrothermal treatment in H 2 O at a pressure of 8.8 bar. [Table] Catalyst performance is evaluated based on V nax and K 1.5 . V nax is the highest amount of vanadium in weight percent based on fresh catalyst that catalyst particles can absorb in their pores, and K 1.5 is the maximum amount of vanadium in weight percent based on fresh catalyst that catalyst particles can absorb into their pores, and K 1.5 is the Kg・Kg -1・h -1・(ppmwV) -1 after conversion)
The catalytic activity is expressed as /2 . K 1.5 is calculated using the formula: K 1.5 = (space velocity in Kg Kg -1 H -1 ) x ppmwV in feed - ppmwV in product / (ppmwV in product) 1 1/2 . V nax is greater than 30% by weight, K 1.5 is 0.08Kg・
If the criterion of greater than Kg -1 h -1 (ppmwV) -1/2 is met, the performance of the catalyst is evaluated as good under the conditions used for this demetalization. V nax is greater than 40% by weight, K 1.5 is 0.08Kg・
If the criterion of greater than Kg -1 h -1 (ppmwV) -1/2 is met, the performance of the catalyst is evaluated as excellent under the conditions used for this demetalization. Experiments 1 to 6 satisfying the above conditions regarding V nax and K 1.5 are demetalization experiments according to the invention. In these experiments using catalysts of the formula, these catalysts have a surface area (100 m 2 /g), a V
5 mm). In experiments 3 to 6, P * (>Q+
10nm), V T (>0.6ml/g) and d (1.5-3mm)
A catalyst was used that also met the additional requirements regarding. These are in accordance with the present invention and were evaluated as excellent catalysts. Runs 7-9 which do not meet the above requirements regarding V nax and K 1.5 are demetallization experiments outside the scope of the present invention. In experiments 7-9, the conditions were:
A catalyst that did not satisfy the formula was used. Furthermore, in Experiment 7, the catalyst used was d > 5 mm, and in Experiment 9, V T < 0.2 ml/
g of catalyst was used. Example Experiment 4 of Example was repeated several times at different hydrogen sulfide partial pressures. In these experiments hydrogen sulfide was added externally. A constant total pressure of 150 bar (measured at the reactor inlet) was used in all experiments. The results of these experiments are collected in Table B. [Table] In experiments 11 to 13, P H2S /P H2 satisfying the relationship: 4/P T +200/(P T ) 2 P H2S /P H2 2P T −60/P T +60 was used, and 50% or more desorption was achieved. reached an increase in metal activity. In Experiment 10, P H2S /P H2 that did not satisfy the above relationship was used, and the demetalization activity increased by less than 50%. EXAMPLE A Middle Eastern shoot residue having a total vanadium and nickel content of 410 ppmw and a sulfur content of 4.1 wt. diameter and average particle diameter of 2.4 mm ) under standard conditions (temperature 410 °C, hydrogen partial pressure 150 bar, space velocity 2.1 fresh feed per kg of catalyst per hour).
Kg and gas rate per Kg of new feed
The activity of the catalyst (expressed as K 1.5 ) was 0.09 when treated for 200 hours in 1000 Nl H 2 . The metal absorption capacity of the catalyst was 70% by weight. Example When a South American shoot residue with a total vanadium and nickel content of 763 ppmw and a sulfur content of 5.4 wt. is treated over the same catalyst at the same standard conditions described in the example, K 1.5 A value of 0.09 for was already reached after 170 hours. The metal absorption capacity for this type of feed was 60% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法の実施例のフローシートで
ある。 1……脱金属装置、2……第一気−液分離装
置、3……水添脱硫装置、4……第二気−液分離
装置、5……硫化水素除去装置。
The drawing is a flow sheet of an embodiment of the method of the invention. 1... Demetallization device, 2... First gas-liquid separation device, 3... Hydrodesulfurization device, 4... Second gas-liquid separation device, 5... Hydrogen sulfide removal device.

Claims (1)

【特許請求の範囲】 1 バナジウムおよびニツケルの総含有量が
350ppmw以上の炭化水素油を、水素の存在下昇
温および昇圧下にて、次の要件:1 〔式中、P*は平均細孔直径(nm)、dは比
平均粒子直径(mm)、VTは全細孔容積(ml/
g)およびPH2は水素分圧(バール)である〕、 2 表面積は多くとも100m2/gであり、 3 VTは0.2ml/gより大であり、 4 dは少なくとも0.4、多くとも5mmである、 を満たす触媒であつて実質的にシリカ、アルミ
ナまたはシリカ―アルミナからなる触媒と接触
させることを特徴とする、炭化水素油の脱金属
法。 2 バンカーフロー操作または固定床振動操作で
行なう、特許請求の範囲第1項に記載の方法。 3 原油およびトツプドクルード油よりなる群か
ら選択した炭化水素油であつてバナジウムおよび
ニツケル総含有量が1000ppmw以上の炭化水素油
の脱金属に、次の要件: 1 VTは0.6ml/gより大であり、 2 dは少なくとも1.5、多くとも3mmであり、 3 式: にd,VTおよびPH2を代入した後、P*はnmで
表わしたある値Qより大でなければならないこ
とがわかる;本発明ではP*はQ+10nmより大
きい値を持つべきである、 を満たす触媒を使用することを特徴とする、特許
請求の範囲第1または2項に記載の方法。 4 硫化水素を添加して実施することを特徴とす
る特許請求の範囲第1〜3項のいずれか一項に記
載の方法。 5 商PH2S/PH2が関係: 4/PT+200/(PT2PH2S/PH22PT−60/PT+60 〔式中、PH2,PH2SおよびPTは各々水素分圧、
硫化水素分圧および全圧(バール)を表わす〕 を満足するような量の硫化水素の存在下で実施す
ることを特徴とする、特許請求の範囲第4項に記
載の方法。 6 脱金属操作および/または脱金属操作後行な
う脱硫操作において放出される硫化水素を操作中
に使用することを特徴とする、特許請求の範囲第
4または5項に記載の方法。 7 脱金属操作においてガスの再循環を行ない、
可能な最も多量の硫化水素を所望のPH2Sに達する
まで再循環ガス中に残し、その後ある量の硫化水
素を再循環ガスから連続的に取り出して所望の硫
化水素濃度に保つことを特徴とする特許請求の範
囲第6項に記載の方法。 8 操作の初期の段階の間外部から硫化水素を供
給し、硫化水素の供給量を操作の進行につれて
徐々に減少させることを特徴とする、特許請求の
範囲第7項に記載の方法。 9 金属および硫黄含有炭化水素残油を二つの水
素および水素―硫化物含有ガス流(AおよびB)、
それに所望ならば外部から導入する硫化水素流と
共に水添脱金属を行ない、得られた生成物を低金
属液体流と水素および水素―硫化物含有ガス流に
分け、後者をガス流Aとして脱金属反応器へ再循
環させ、低金属液体流を水素含有ガス流Cおよび
外部からの水素流と共に水添脱硫し、得られた生
成物を低金属および低硫黄液体流と水素および水
素―硫化物含有ガス流に分離し、後者を同じ組成
の2つの部分に分け、そのうちの1つをガス流B
として脱金属反応器へ再循環させ、他の部分を硫
化水素の除去後脱硫反応器へガス流Cとして再循
環させることを特徴とする、特許請求の範囲第6
項に記載の方法。 10 油を初めに脱金属し、次いで接触的に変換
する、クラツキング、水添分解または水添脱硫に
よる金属含有炭化水素油の接触変換法において、
脱金属を特許請求の範囲第1〜9項のいずれか一
項に従つて行なうことを特徴とする方法。 11 温度350〜450℃、水素分圧25〜200バール
および空間速度0.1〜10Kg・Kg-1・h-1で行なうこ
とを特徴とする、特許請求の範囲第1〜10項の
いずれか一項に記載の方法。 12 温度375〜425℃、水素分圧50〜150バール
および空間速度0.5〜5Kg・Kg-1・h-1で行なうこ
とを特徴とする、特許請求の範囲第11項に記載
の方法。
[Claims] 1. The total content of vanadium and nickel is
Hydrocarbon oil of 350 ppmw or more is heated under increased temperature and pressure in the presence of hydrogen to meet the following requirements: 1 [In the formula, P * is the average pore diameter (nm), d is the specific average particle diameter (mm), and V T is the total pore volume (ml/
g) and P H2 is the hydrogen partial pressure (bar)], 2 the surface area is at most 100 m 2 /g, 3 V T is greater than 0.2 ml/g, 4 d is at least 0.4 and at most 5 mm A method for demetallizing hydrocarbon oil, characterized by contacting the hydrocarbon oil with a catalyst that satisfies the following and substantially consists of silica, alumina, or silica-alumina. 2. The method according to claim 1, which is carried out by bunker flow operation or fixed bed vibration operation. 3. For the demetallization of hydrocarbon oils selected from the group consisting of crude oil and topped crude oil, with a total vanadium and nickel content of 1000 ppmw or more, the following requirements: 1 V T from 0.6 ml/g is large, 2 d is at least 1.5 and at most 3 mm, and 3 formula: After substituting d, V T and P H2 into , we see that P * must be greater than some value Q in nm; in the present invention P * should have a value greater than Q + 10 nm, 3. Process according to claim 1, characterized in that a catalyst is used that satisfies the requirements of the invention. 4. The method according to any one of claims 1 to 3, characterized in that the method is carried out by adding hydrogen sulfide. 5 Quotient P H2S /P H2 is related: 4/P T +200/(P T ) 2 P H2S /P H2 2P T -60/P T +60 [In the formula, P H2 , P H2S and P T are each hydrogen content pressure,
5. The process according to claim 4, characterized in that it is carried out in the presence of an amount of hydrogen sulfide such that the hydrogen sulfide partial pressure and the total pressure (in bars) are satisfied. 6. Process according to claim 4 or 5, characterized in that hydrogen sulfide released during the demetalization operation and/or the desulfurization operation carried out after the demetallization operation is used during the operation. 7 Performing gas recirculation in the demetalization operation,
characterized in that the largest possible amount of hydrogen sulfide remains in the recycle gas until the desired P H2S is reached, and then a quantity of hydrogen sulfide is continuously withdrawn from the recycle gas to maintain the desired hydrogen sulfide concentration. A method according to claim 6. 8. Process according to claim 7, characterized in that hydrogen sulfide is supplied externally during the initial stages of operation, and the amount of hydrogen sulfide supplied is gradually reduced as the operation progresses. 9 metal and sulfur-containing hydrocarbon residues into two hydrogen and hydrogen-sulfide-containing gas streams (A and B),
Hydrodemetallization is then carried out, if desired, with a hydrogen sulfide stream introduced externally, and the product obtained is divided into a metal-low liquid stream and a hydrogen- and hydrogen-sulfide-containing gas stream, the latter being demetalized as gas stream A. The low metal liquid stream is recycled to the reactor and hydrodesulfurized together with the hydrogen-containing gas stream C and the external hydrogen stream, and the resulting product is combined with the low metal and low sulfur liquid stream containing hydrogen and hydrogen-sulfide. into two gas streams, dividing the latter into two parts of the same composition, one of which is called gas stream B.
Claim 6, characterized in that the hydrogen sulfide is recycled to the demetalization reactor as gas stream C, and the other part is recycled as gas stream C to the desulfurization reactor after removal of the hydrogen sulfide.
The method described in section. 10. A process for catalytic conversion of metal-containing hydrocarbon oils by cracking, hydrocracking or hydrodesulfurization, in which the oil is first demetalized and then catalytically converted,
A method characterized in that the demetallization is carried out according to any one of claims 1 to 9. 11. Any one of claims 1 to 10, characterized in that the process is carried out at a temperature of 350 to 450° C , a hydrogen partial pressure of 25 to 200 bar, and a space velocity of 0.1 to 10 Kg·Kg −1 ·h −1. The method described in. 12. Process according to claim 11, characterized in that it is carried out at a temperature of 375 to 425°C, a hydrogen partial pressure of 50 to 150 bar and a space velocity of 0.5 to 5 Kg·Kg −1 ·h −1 .
JP8002077A 1976-07-08 1977-07-06 Demetalization method of hydrocarbon oil Granted JPS537705A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7607551A NL7607551A (en) 1976-07-08 1976-07-08 METHOD FOR THE METALIZATION OF HYDROCARBON OILS.

Publications (2)

Publication Number Publication Date
JPS537705A JPS537705A (en) 1978-01-24
JPH0122320B2 true JPH0122320B2 (en) 1989-04-26

Family

ID=19826555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002077A Granted JPS537705A (en) 1976-07-08 1977-07-06 Demetalization method of hydrocarbon oil

Country Status (14)

Country Link
JP (1) JPS537705A (en)
AU (1) AU506785B2 (en)
BE (1) BE856236A (en)
CA (1) CA1108085A (en)
DE (1) DE2730564A1 (en)
DK (1) DK304277A (en)
FI (1) FI64634C (en)
FR (1) FR2357634A1 (en)
GB (1) GB1560590A (en)
IT (1) IT1081515B (en)
NL (1) NL7607551A (en)
NO (1) NO151505C (en)
SE (1) SE421803B (en)
ZA (1) ZA774070B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601056B2 (en) * 1980-02-19 1985-01-11 千代田化工建設株式会社 Hydrotreatment of heavy hydrocarbon oils containing asphaltenes
CA1174629A (en) * 1980-05-29 1984-09-18 Huno Van Der Eijk Process for the demetallization of hydrocarbon oils
EP0683218B1 (en) 1994-05-19 2001-04-11 Shell Internationale Researchmaatschappij B.V. Process for the conversion of a residual hydrocarbon oil
WO2010084112A1 (en) 2009-01-20 2010-07-29 Shell Internationale Research Maatschappij B.V. Process for the hydro-demetallization of hydrocarbon feedstocks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974204A (en) * 1972-10-13 1974-07-17
JPS50130805A (en) * 1974-03-29 1975-10-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974204A (en) * 1972-10-13 1974-07-17
JPS50130805A (en) * 1974-03-29 1975-10-16

Also Published As

Publication number Publication date
NO151505C (en) 1985-04-24
SE421803B (en) 1982-02-01
FI772120A (en) 1978-01-09
DK304277A (en) 1978-01-09
BE856236A (en) 1977-12-29
NO772400L (en) 1978-01-10
IT1081515B (en) 1985-05-21
NL7607551A (en) 1978-01-10
SE7707884L (en) 1978-01-09
AU506785B2 (en) 1980-01-24
FI64634C (en) 1983-12-12
FR2357634B1 (en) 1982-07-09
NO151505B (en) 1985-01-07
FR2357634A1 (en) 1978-02-03
GB1560590A (en) 1980-02-06
JPS537705A (en) 1978-01-24
AU2679777A (en) 1979-01-11
DE2730564A1 (en) 1978-01-12
FI64634B (en) 1983-08-31
CA1108085A (en) 1981-09-01
DE2730564C2 (en) 1987-11-05
ZA774070B (en) 1978-05-30

Similar Documents

Publication Publication Date Title
US4395328A (en) Catalyst and support, their methods of preparation, and processes employing same
US5200060A (en) Hydrotreating process using carbides and nitrides of group VIB metals
US4456699A (en) Catalyst and support, and their methods of preparation
US3997473A (en) Hydrodesulfurization catalysts supported on carbon
JPH0154096B2 (en)
US3925197A (en) Hydrodesulfurization process
JPH07286184A (en) Method for hydrogenation conversion of hydrocarbon
JPH0431737B2 (en)
US4399057A (en) Catalyst and support, their methods of preparation, and processes employing same
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
US4032435A (en) Hydrodesulfurization of petroleum residuum utilizing a carbon-supported catalyst
US4495062A (en) Catalyst and support, their methods of preparation, and processes employing same
JPH0122319B2 (en)
EP0068708B1 (en) Improved catalyst and support, their methods of preparation, and processes employing same
SU645595A3 (en) Method of hydraulic treatment of heavy hydrocarbon-type oils
EP0159097B1 (en) Process for the catalytic conversion of heavy hydrocarbon oils
JPH0122320B2 (en)
US4810363A (en) Process for the catalytic conversion of hydrocarbon oils
JPH0573466B2 (en)
JP5259047B2 (en) Countercurrent gas / liquid contact treatment method
EP0041284B1 (en) A process for the demetallization of hydrocarbon oils
EP0224944B1 (en) Process for the conversion of hydrocarbon oils
FI74410B (en) CATALYST COMPOSITION FOR HYDROKRACKING INNATURE AND NICKEL COMPONENT OR FOR VOLUME COMPONENTS PAO ETT KISELDIOXID-ALUMINIUMOXIDBAERARMATERIAL SAMT FOERFARANDE FOER FRAMSTAELLNING AV DENSAMMA.
JPS6027712B2 (en) Hydrocarbon conversion method
JPS6027713B2 (en) Hydrocarbon conversion methods