[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01222531A - Optical branching device - Google Patents

Optical branching device

Info

Publication number
JPH01222531A
JPH01222531A JP63048112A JP4811288A JPH01222531A JP H01222531 A JPH01222531 A JP H01222531A JP 63048112 A JP63048112 A JP 63048112A JP 4811288 A JP4811288 A JP 4811288A JP H01222531 A JPH01222531 A JP H01222531A
Authority
JP
Japan
Prior art keywords
optical
output
light emitting
optical signal
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048112A
Other languages
Japanese (ja)
Inventor
Masaru Sugita
勝 杉田
Toyohiro Kobayashi
豊博 小林
Shoji Mukohara
向原 彰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63048112A priority Critical patent/JPH01222531A/en
Publication of JPH01222531A publication Critical patent/JPH01222531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate the need for a mechanical drive device, to improve the reliability, to miniaturize and to reduce the cost by reflecting an optical signal radiated from a light emitting element in a half mirror, and sending it to a radiation side waveguide path. CONSTITUTION:An optical signal radiated from an incident waveguide path 2 is subject to photoelectric conversion by a transmission light emitting element 1, part of its is transmitted as it is, and sent to a radiation side waveguide path 3. The output signal subject to photoelectric conversion is amplified by an amplifier means 4 and sent to light emitting element 7, which stimulates a signal to a half mirror 1M adhered to the rear face of the transmission light emitting element 1 and the optical signal is sent to the radiation side waveguide 3 while being reflected in the half mirror 1M. Thus, no mechanical driver is required, the reliability is improved, the size is made small and low cost is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、先導波路における光信号の分岐装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical signal branching device in a leading waveguide.

〔従来の技術〕[Conventional technology]

第5図及び第6図は例えば、特開昭62−73225号
「光スィッチ」に示された従来の光分岐装置である。
FIGS. 5 and 6 show, for example, a conventional optical branching device disclosed in Japanese Patent Application Laid-Open No. 62-73225 entitled "Optical Switch".

第5図(a)は光スィッチの分岐装置を示しており、透
過プリズム51は上の光入力端52からの光を下の光出
力端53から出し、これが例えば第6図の8局61を通
って下の光入力端54を通りプリズム51を通過、上の
光出力端55を通り、の光スィッチ63に光伝送する様
構成している。
FIG. 5(a) shows a branching device of an optical switch, in which a transmission prism 51 outputs light from an upper optical input end 52 to a lower optical output end 53, which connects, for example, the 8th station 61 in FIG. The light is transmitted through the lower optical input end 54, through the prism 51, through the upper optical output end 55, and to the optical switch 63.

このようにしてA局64からの光信号が、光ファイバー
65を通して、0局66へと伝送される。
In this way, the optical signal from the A station 64 is transmitted to the 0 station 66 through the optical fiber 65.

そして正常時、各局B、C,D局では光信号を増幅して
、光路での減衰を補償している。もし、これらの局で故
障が生じた時は、第5図(b)に示すように、プリズム
51を光スィッチ63の上の光路より取り除き、光を分
岐及び増幅することなく、次の局へ伝送するように構成
されている。
During normal operation, each of the stations B, C, and D amplifies the optical signal to compensate for attenuation in the optical path. If a failure occurs in one of these stations, the prism 51 is removed from the optical path above the optical switch 63, as shown in FIG. 5(b), and the light is routed to the next station without being split or amplified. configured to transmit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光スィッチ(光分岐装置)は以上のように構成さ
れているので、光分岐のために高価で量産できにくい光
学的透過プリズムを使用すること、また、それぞれの通
信局の光増幅部が故障時、第5図(b)に示すように機
械的に透過プリズム51をメインの光路より取り除くた
めの駆動機構を要するため、装置が高価で大型になる問
題点があった。
Conventional optical switches (optical branching devices) are configured as described above, so it is necessary to use optical transmission prisms that are expensive and difficult to mass-produce for optical branching, and the optical amplification section of each communication station is In the event of a failure, a drive mechanism is required to mechanically remove the transmitting prism 51 from the main optical path as shown in FIG. 5(b), resulting in a problem that the device becomes expensive and large.

この発明は上記のような問題点を解消するために成され
たもので、機械的駆動機構が要らず、信頼性の高い小型
で安価な光分岐装置を得ることを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide a highly reliable, compact, and inexpensive optical branching device that does not require a mechanical drive mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の光分岐装置は、入射側と出射側の導波路の間
に、入射側導波路からの光信号を光電変換し、かつ光信
号の一部を透過して出射側導波路に送出する透過型光電
素子を、上記各導波路に対して一定角度傾斜させて配置
するとともに、上記透過型光電素子の出力信号を増幅す
る増幅手段と、この増幅手段からの出力に基づき発光し
て上記透過型光電素子に対して光信号を出射する発光素
子と、上記透過型光電素子における出射側導波路側に対
向する裏面側に貼付されたハーフミラ−とを備え、上記
発光素子から出射された光信号がこのハーフミラ−で屈
曲されて出射側導波路に送出されるようにした。
The optical branching device of the present invention photoelectrically converts the optical signal from the input side waveguide between the input side and output side waveguides, and transmits a part of the optical signal to the output side waveguide. A transmission type photoelectric element is arranged to be inclined at a certain angle with respect to each of the waveguides, and an amplification means for amplifying the output signal of the transmission type photoelectric element, and an amplification means for amplifying the output signal of the transmission type photoelectric element, and an amplification means for emitting light based on the output from the amplification means to emit light to transmit the light to the transmission type. A light emitting element that emits an optical signal to the light emitting element, and a half mirror attached to the back surface of the transmissive photoelectric element opposite to the output waveguide side, the light emitting element emits an optical signal to the light emitting element. is bent by this half mirror and sent to the output side waveguide.

〔作用〕[Effect]

透過型光電素子により、入射側導波路より出射された光
信号を光電変換し、かつその一部をそのまま透過させて
出射側導波路に送出する。光電変換された出力信嵜は増
幅手段で増幅されて発光素子に送られ、この発光素子は
透過型光電素子の裏面に貼付されたハーフミラ−に対し
て光信号を発光し、この光信号はハーフミラ−で屈曲さ
れて出射側導波路に送出される。
The transmission type photoelectric element photoelectrically converts the optical signal emitted from the input side waveguide, and transmits a part of the signal as it is to the output side waveguide. The photoelectrically converted output signal is amplified by an amplifying means and sent to a light emitting element, and this light emitting element emits an optical signal to a half mirror attached to the back side of the transmissive photoelectric element. It is bent at - and sent to the output waveguide.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図乃至第4図(a)、
  (b)に基づいて説明する。
Hereinafter, one embodiment of the present invention will be described in FIGS. 1 to 4(a),
The explanation will be based on (b).

各図において、1は透過型光電素子としての多孔質光電
素子で、これは導波路としての入射測光ファイバー2と
出射側光ファイバー3との間に、これら光ファイバー2
.3に対して一定角度、すなわち45度傾斜させて配置
されている。この多孔質光電素子1には第4図(a)、
  (b)に示すように、基板の上に透明電極10aを
設け、PN層を介して裏面に裏面電極10bを設けたも
ので、入射側光ファイバー2から出射される光信号の一
部を透過する無数の透過孔10sが形成されている。上
記出射側光フアイバー3側に対向する多孔質光電素子1
の裏面電極10bにはハーフミラ−IMが貼付されてい
る。この多孔質光電素子1は、電子増幅回路4.定電圧
電源5.出カドランジスタロに接続されており、受光し
た光信号を電気信号に変換し、この電気信号を電子増幅
回路4で増幅して出カドランジスタロよりデジータルパ
ルス出力Pとに送出されるよう構成されている。7は発
光素子で、そのカソード側は電流制御抵抗8を介してデ
ジタルパルス出力側に接続され、アノード測は定電圧電
源5を共有している。上記ハーフミラ−IMを貼付した
多孔質光電素子1.電子増幅回路4.出カドランジスタ
ロ、発光素子7等により本発明の光分岐装置9を構成し
ている。この光分岐装置9は第2図に示すように、各局
B、 C。
In each figure, 1 is a porous photoelectric element as a transmission type photoelectric element, and this optical fiber 2 is connected between an input photometric fiber 2 as a waveguide and an output side optical fiber 3
.. 3, at a constant angle, that is, at an angle of 45 degrees. In this porous photoelectric element 1, as shown in FIG. 4(a),
As shown in (b), a transparent electrode 10a is provided on the substrate, and a back electrode 10b is provided on the back surface via a PN layer, and a part of the optical signal emitted from the input optical fiber 2 is transmitted. Innumerable transmission holes 10s are formed. Porous photoelectric element 1 facing the output side optical fiber 3 side
A half mirror IM is attached to the back electrode 10b. This porous photoelectric element 1 includes an electronic amplifier circuit 4. Constant voltage power supply 5. It is connected to the output transistor and is configured to convert the received optical signal into an electrical signal, amplify this electrical signal with the electronic amplifier circuit 4, and send it out from the output transistor as a digital pulse output P. has been done. 7 is a light emitting element whose cathode side is connected to the digital pulse output side via a current control resistor 8, and the constant voltage power supply 5 is shared in anode measurement. Porous photoelectric element with the above half mirror IM attached 1. Electronic amplifier circuit 4. The output transistor, the light emitting element 7, and the like constitute the optical branching device 9 of the present invention. As shown in FIG. 2, this optical branching device 9 is connected to each station B and C.

D局に配設される。11は各局内に設けられたマイコン
であり、上記デジタルパルス出力Pがバッファー12を
介して入力される。13はドライバー(外部信号による
駆動回路)である。
It is installed at station D. Reference numeral 11 denotes a microcomputer provided in each station, to which the digital pulse output P is inputted via a buffer 12. 13 is a driver (drive circuit using an external signal).

次に光分岐装置9の動作について説明する。Next, the operation of the optical branching device 9 will be explained.

多孔質光電素子lで光電変換された電気信号は電子増幅
回路4で増幅されて発光素子7に出力され、この出力に
基づいて発光素子7が光信号を発光する。そして、この
光信号はハーフミラ−IMにより反射して出射側光ファ
イバー3に出射される。ここで、多孔質光電素子1の透
過孔10sを透過する透過光信号と、発光素子7より発
光し、ハーフミラ−IMで反射される増幅された光信号
との位相ずれが心配されるが、実験によれば例えば応答
遅れlvsとした場合でも9600bpsとかの低速の
信号伝送には何ら問題がないことがわかった。
The electrical signal photoelectrically converted by the porous photoelectric element 1 is amplified by the electronic amplifier circuit 4 and output to the light emitting element 7, and the light emitting element 7 emits an optical signal based on this output. Then, this optical signal is reflected by the half mirror IM and output to the output side optical fiber 3. Here, there is a concern about a phase shift between the transmitted light signal transmitted through the transmission hole 10s of the porous photoelectric element 1 and the amplified optical signal emitted from the light emitting element 7 and reflected by the half mirror IM. For example, it was found that there is no problem with low-speed signal transmission such as 9600 bps even when the response delay is lvs.

さらに、光分岐装置9で各局A、B、C,D局間の光フ
ァイバー2.3を連結した際の作用を第2図に基づいて
説明する。
Furthermore, the operation when the optical fibers 2.3 between the stations A, B, C, and D are connected by the optical branching device 9 will be explained based on FIG.

A局より送信される光信号は光ファイバー2を通りB局
の光分岐装置9に達する。そして前述したように、この
光分岐装置9内では多孔質光電素子1により光信号を受
信し、信号を自己増幅して出射側光ファイバー3に出射
して0局の光分岐装置9方向に十分に良質な光信号を強
力に発光送信する。また、B局では、出カドランジスタ
ロのデジタルパルス出力Pが、バッファー12を通し、
マイコン13によりRD大入力信号解読される。
The optical signal transmitted from the A station passes through the optical fiber 2 and reaches the optical branching device 9 of the B station. As described above, within this optical branching device 9, an optical signal is received by the porous photoelectric element 1, and the signal is self-amplified and outputted to the output side optical fiber 3, so that the signal is sufficiently transmitted in the direction of the optical branching device 9 of the 0 station. Powerfully transmits high-quality optical signals. In addition, at the B station, the digital pulse output P of the output range transistor passes through the buffer 12,
The microcomputer 13 decodes the RD large input signal.

さらに自局が、他の局への送信の必要が有れば、デジタ
ルパルス出力Pよりドライバー13をパルス駆動し、光
ファイバー2.3の空き時間をねらって送信すれば、発
光素子7がパルス発光し送信通信できる。ここでもし、
B局および′B局の光分岐装置9の電気的機能が故障し
た時、例えば電源Vccの接続不良2発光素子7等の部
品の故障時でも、A局からの伝送信号はB局の光分岐装
置9を透過して0局までは到達し、0局が生きていれば
次のD局以後の方向へ次々と伝送できる。
Furthermore, if the local station needs to transmit to another station, it pulse-drives the driver 13 from the digital pulse output P and sends the signal to the free time of the optical fiber 2.3, causing the light-emitting element 7 to emit pulses. and can send and communicate. Here too,
Even if the electrical function of the optical branching device 9 of the B station and the 'B station breaks down, for example, if a faulty connection of the power supply Vcc 2 or parts such as the light emitting element 7 fails, the transmission signal from the A station will be transferred to the optical branch of the B station. The signal passes through the device 9 and reaches station 0, and if station 0 is alive, it can be transmitted one after another in the direction after the next station D.

なお、本発明の光分岐装置9をさらに小型化するため、
第3図に示すように、多孔質光電素子1゜電子増幅回路
4.出カドランジスタロを一体化して受光IC14化す
ることにより、超小型の光分岐装置9を得ることができ
る。また、光ファイバー2より多孔質光電素子1に対し
て出射される出射光信号と透過孔10sを透過する透過
光信号の割合は透過孔10sの数により自由に選択可能
であり、発光素子7やファイバーの種類、伝送距離によ
り最適な受光と透過光信号の割合を設定できる。
In addition, in order to further reduce the size of the optical branching device 9 of the present invention,
As shown in FIG. 3, a porous photoelectric element 1°, an electronic amplification circuit 4. By integrating the output transistor into the light receiving IC 14, an ultra-small optical branching device 9 can be obtained. Further, the ratio of the output light signal emitted from the optical fiber 2 to the porous photoelectric element 1 and the transmitted light signal transmitted through the transmission hole 10s can be freely selected depending on the number of the transmission hole 10s, and The optimal ratio of received light and transmitted light signals can be set depending on the type of light and transmission distance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光分岐装置9によれば、
入射側と出射側の導波路の間に、入射側導波路からの光
信号を光電変換し、かつ光信号の一部を透過して出射側
導波路に送出する透過型光電素子を、上記各導波路に対
して一定角度傾斜させて配置するとともに、上記透過型
光電素子の出力信号を増幅する増幅手段と、この増幅手
段からの出力に基づき発光して上記透過型光電素子に対
して光信号を出射する発光素子と、上記透過型光電素子
における出射側導波路側に対向する裏面側に貼付された
ハーフミラ−とを備え、上記発光素子から出射された光
信号がこのハーフミラ−で屈曲されて出射側導波路に送
出されるようにしたので、電気的機能の故障時でも機械
的駆動機構を用いることなく次局に光信号を伝送するこ
とができ、信頼性の高い小型で安価な光分岐装置を得る
ことができる
As explained above, according to the optical branching device 9 of the present invention,
A transmission type photoelectric element is provided between the waveguides on the input side and the output side, which photoelectrically converts the optical signal from the input side waveguide, and transmits a part of the optical signal to the output side waveguide. an amplifying means arranged at a certain angle with respect to the waveguide and amplifying the output signal of the transmissive photoelectric element; and an amplifying means for amplifying the output signal of the transmissive photoelectric element, and emitting light based on the output from the amplifying means to transmit an optical signal to the transmissive photoelectric element. a light emitting element that emits light, and a half mirror affixed to the back side opposite to the output waveguide side of the transmission type photoelectric element, and the optical signal emitted from the light emitting element is bent by the half mirror. Since the optical signal is sent to the output waveguide, even in the event of an electrical function failure, the optical signal can be transmitted to the next station without using a mechanical drive mechanism, creating a highly reliable, compact and inexpensive optical branch. can get the equipment

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図(a)、  (b)は本発明の光分岐
装置の一実施例を示し、第1図は内部構成図の内部構成
図、第6図は動作図である。 l・・・多孔質光電素子(透過型光電素子)、2゜3・
・・光ファイバー(導波路)、4・・・電子増幅回路(
増幅手段)、7・・・発光素子、9・・・光分岐装置。 代理人 大 岩 増 雄 (はが2名)第2□□□ 0局    0局     B殉 鳩3邑 L−+++++                  
++  −」第6図 頗 61        1)21)t)
1 and 4(a) and 4(b) show an embodiment of the optical branching device of the present invention, FIG. 1 is an internal configuration diagram, and FIG. 6 is an operational diagram. l...Porous photoelectric element (transmission type photoelectric element), 2゜3.
...Optical fiber (waveguide), 4...Electronic amplification circuit (
amplifying means), 7... light emitting element, 9... optical branching device. Agent Masuo Oiwa (2 people) 2nd □□□ 0th station 0th station B Martyred Pigeon 3 L-+++++
++ -"Figure 6 61 1)21)t)

Claims (1)

【特許請求の範囲】[Claims] 入射側と出射側の導波路の間に、入射側導波路からの光
信号を光電変換し、かつ光信号の一部を透過して出射側
導波路に送出する透過型光電素子を、上記各導波路に対
して一定角度傾斜させて配置するとともに、上記透過型
光電素子の出力信号を増幅する増幅手段と、この増幅手
段からの出力に基づき発光して上記透過型光電素子に対
して光信号を出射する発光素子と、上記透過型光電素子
における出射側導波路側に対向する裏面側に貼付された
ハーフミラーとを備え、上記発光素子から出射された光
信号がこのハーフミラーで屈曲されて出射側導波路に送
出されるようにしたことを特徴とする光分岐装置。
A transmission type photoelectric element is provided between the waveguides on the input side and the output side, which photoelectrically converts the optical signal from the input side waveguide, and transmits a part of the optical signal to the output side waveguide. an amplifying means arranged at a certain angle with respect to the waveguide and amplifying the output signal of the transmissive photoelectric element; and an amplifying means for amplifying the output signal of the transmissive photoelectric element, and emitting light based on the output from the amplifying means to transmit an optical signal to the transmissive photoelectric element. a light emitting element that emits light, and a half mirror affixed to the back side of the transmissive photoelectric element opposite to the output waveguide side, and the optical signal emitted from the light emitting element is bent by the half mirror. An optical branching device characterized in that the light is transmitted to an output side waveguide.
JP63048112A 1988-03-01 1988-03-01 Optical branching device Pending JPH01222531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048112A JPH01222531A (en) 1988-03-01 1988-03-01 Optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048112A JPH01222531A (en) 1988-03-01 1988-03-01 Optical branching device

Publications (1)

Publication Number Publication Date
JPH01222531A true JPH01222531A (en) 1989-09-05

Family

ID=12794231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048112A Pending JPH01222531A (en) 1988-03-01 1988-03-01 Optical branching device

Country Status (1)

Country Link
JP (1) JPH01222531A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182827A (en) * 1984-02-29 1985-09-18 Hitachi Cable Ltd Optical loop transmission system
JPS62179777A (en) * 1986-02-03 1987-08-06 Fujitsu Ltd Optical signal demodulation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182827A (en) * 1984-02-29 1985-09-18 Hitachi Cable Ltd Optical loop transmission system
JPS62179777A (en) * 1986-02-03 1987-08-06 Fujitsu Ltd Optical signal demodulation system

Similar Documents

Publication Publication Date Title
US4071753A (en) Transducer for converting acoustic energy directly into optical energy
US8787764B2 (en) Photoelectric composite wiring component and electronic apparatus using the photoelectric composite wiring component
KR900008794A (en) Optical network
AU3876189A (en) Optical shunt device
KR100444798B1 (en) Short range data communication apparatus using diffusion array infrared antenna for receiving signals from transmission module and diffusing received signals
JPH01222531A (en) Optical branching device
JPS58153431A (en) Optical communication system for car
JPS58146152A (en) Optical transmission system
JPS6225712A (en) Optical transmitting/receiving switch
JPH0666004B2 (en) Optical branching device
JPH0553033A (en) Optical receiver
JPH09321705A (en) Optical digital communication method and its equipment
US6259839B1 (en) Optical communication connector
JPS6299717A (en) Optical transmitting device provided with optical by-passing mechanism
JPS6253032A (en) Optical fiber two-way transmission system
JPS63317735A (en) Optical power meter
KR100366044B1 (en) Laser diode module
JP2522163B2 (en) Optical transceiver circuit
JPH055322B2 (en)
JPH01238330A (en) Optical transmission equipment
JPS6154728A (en) Remote controller
JPS58222696A (en) Key controller
JPH0544003B2 (en)
JPH0357628B2 (en)
JPH04117037A (en) Node equipment for optical local area network