[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01227360A - Manufacture of fuel cell catalyst - Google Patents

Manufacture of fuel cell catalyst

Info

Publication number
JPH01227360A
JPH01227360A JP63053091A JP5309188A JPH01227360A JP H01227360 A JPH01227360 A JP H01227360A JP 63053091 A JP63053091 A JP 63053091A JP 5309188 A JP5309188 A JP 5309188A JP H01227360 A JPH01227360 A JP H01227360A
Authority
JP
Japan
Prior art keywords
catalyst
chloroplatinic acid
acid
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053091A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
裕介 伊藤
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63053091A priority Critical patent/JPH01227360A/en
Publication of JPH01227360A publication Critical patent/JPH01227360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase the long term reliability of a cell and to decrease time dependent output drop by applying an ultrasonic wave to a mixture of water, catalyst carriers, and chloroplatinic acid to disperse them, and by supporting fine platinum particles on the carriers with a reducing agent. CONSTITUTION:Carbon black treated with acid to increase dispersion capability is used as a catalyst carrier 22. An ultrasonic wave is applied to a mixture of the carbon carrier 22, water, and chloroplatinic acid to disperse them. By adding alkaline solution such as sodium carbonate solution and a reducing agent such as formic acid to the dispersion, the chloroplatinic acid is reduced and fine platinum particles 21 are deposited on the carriers 22. An electrode catalyst layer 25 is prepared with the catalyst particles 21, and a cell is assembled. Since the fine platinum particles are sufficiently dispersed, the long term reliability of a cell is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリン酸型の燃料電池電極触媒の製造方法に係
り、特に触媒上に微細な白金微粒子を均一に担持させる
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a phosphoric acid type fuel cell electrode catalyst, and particularly to a method for uniformly supporting fine platinum particles on a catalyst.

〔従来の技術〕[Conventional technology]

燃料電池は燃料のもつ化学エネルギを直接電気エネルギ
に変換する装置であり、その構成は電解液層 (図示せ
ず)をはさんで第2図に示すようなカーボンからなる電
極基材24の上に電極触媒層25を付着させた電極26
を対向して配置し、外部のガス供給系より前記各t8i
へ燃料ガスおよび酸化剤ガスを供給し、各電極の触媒微
粒子27の上で酸化剤ガスと燃料ガスを個別に電気化学
的に反応させ、その結果として系外に電気エネルギをと
り出す発電装置である。
A fuel cell is a device that directly converts the chemical energy of fuel into electrical energy, and its structure consists of an electrode base material 24 made of carbon, as shown in Figure 2, with an electrolyte layer (not shown) in between. An electrode 26 to which an electrode catalyst layer 25 is attached
are arranged facing each other, and each t8i is supplied from an external gas supply system.
A power generation device that supplies fuel gas and oxidizing gas to the catalytic converter, causes the oxidizing gas and fuel gas to react electrochemically on the catalyst fine particles 27 of each electrode, and extracts electrical energy from the system as a result. be.

触媒微粒子27としてはカーボンブラックなどの触媒単
体22の上に白金などの貴金属微粒子21を担持したも
のが用いられ、この触媒微粒子27がポリテトラフロロ
エチレン (PTFE)からなるフッ素樹脂の微粒子2
3によって結着されて電極触媒層25が形成される。
The fine catalyst particles 27 are made by supporting fine metal particles 21 such as platinum on a single catalyst 22 such as carbon black, and these fine catalyst particles 27 are fine particles 2 of a fluororesin made of polytetrafluoroethylene (PTFE).
3 to form an electrode catalyst layer 25.

電極触媒層25の内部においては触媒微粒子27の表面
において電解液であるリン酸と反応ガスが接触して3相
界面が形成され、燃料ガスの酸化または酸化剤ガスの還
元といった電気化学的反応がおこる。この電気化学的反
応が効率良く進むためには、3相界面が多く存在するこ
とが必要で、そのためには触媒微粒子27は良く分散し
てその表面積が大きくなければならないし、さらに触媒
微粒子27において触媒担体22上の青金m徽粒子21
の結晶子径が小さくかつ均一に担持されていることが必
要である。
Inside the electrode catalyst layer 25, phosphoric acid, which is an electrolytic solution, and the reactive gas contact each other on the surface of the catalyst fine particles 27 to form a three-phase interface, and an electrochemical reaction such as oxidation of the fuel gas or reduction of the oxidant gas occurs. It happens. In order for this electrochemical reaction to proceed efficiently, it is necessary that many three-phase interfaces exist, and for this purpose, the catalyst fine particles 27 must be well dispersed and have a large surface area. Blue gold particles 21 on catalyst carrier 22
It is necessary that the crystallite size of the crystallites is small and that the crystallites are uniformly supported.

従来貴金属微粒子21を触媒担体22上に担持させる方
法として酸などにより前処理した触媒担体22を水に分
散させてから塩化白金酸を添加しアルカリを添加撹拌し
その後還元剤を用いて塩化白金酸を還元し貴金属微粒子
21を担持していた。
Conventionally, as a method for supporting noble metal fine particles 21 on a catalyst carrier 22, the catalyst carrier 22 pretreated with an acid or the like is dispersed in water, chloroplatinic acid is added thereto, an alkali is added and stirred, and then chloroplatinic acid is added using a reducing agent. was reduced to support noble metal fine particles 21.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこのような方法では貴金属微粒子21を高分散化
することができず、白金合金の微粒子を得るために合金
成分を添加して合金化させたとき白金合金からなる貴金
属微粒子の結晶子径が40〜70人となり合金化前の結
晶子径の25〜30人に比して大きくなる。また触媒担
体22に担持される白金合金の貴金属微粒子に偏在が観
測され、高電位下において長時間電池を運転したとき触
媒微粒子の溶出とかシンタリングがおこり、電池の寿命
が短いという問題点があった。
However, with this method, it is not possible to highly disperse the noble metal fine particles 21, and when alloying components are added to obtain platinum alloy fine particles, the crystallite diameter of the noble metal fine particles made of platinum alloy is 40. The crystallite diameter is ~70, which is larger than the crystallite diameter of 25 to 30 before alloying. In addition, maldistribution of precious metal fine particles of platinum alloy supported on the catalyst carrier 22 has been observed, and when the battery is operated for a long time under high potential, elution and sintering of the catalyst fine particles occur, resulting in a short battery life. Ta.

この発明は上述の点に鑑みてなされその目的は触媒担体
と塩化白金酸とが相互によく混合分散するようにして、
触媒担体上に高分散化した貴金属微粒子が均一に担持さ
れた燃料電池用触媒の製造方法を提供することにある。
This invention was made in view of the above points, and its purpose is to mix and disperse the catalyst carrier and chloroplatinic acid well with each other.
An object of the present invention is to provide a method for producing a fuel cell catalyst in which highly dispersed noble metal fine particles are uniformly supported on a catalyst carrier.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的はこの発明によれば、水と触媒担体22と塩
化白金酸の混合物に超音波を印加して触媒担体と塩化白
金酸をよく混合分散させたのち還元剤を用いて触媒担体
22上に白金微粒子21を担持させることによって達成
される。
According to the present invention, the above object is achieved by applying ultrasonic waves to a mixture of water, catalyst carrier 22 and chloroplatinic acid to thoroughly mix and disperse the catalyst carrier and chloroplatinic acid, and then applying a reducing agent to the catalyst carrier 22. This is achieved by supporting platinum fine particles 21 on the metal.

触媒担体としてはカーボンブラック等が用いられる。こ
のカーボンブラックは酸処理をして分散性を高めておく
ことができる。還元剤により塩化白金酸が還元され、白
金の微粒子が触媒担体上に担持される。
Carbon black or the like is used as the catalyst carrier. This carbon black can be treated with an acid to improve its dispersibility. The chloroplatinic acid is reduced by the reducing agent, and fine particles of platinum are supported on the catalyst carrier.

〔作用〕[Effect]

超音波を水と触媒担体と塩化白金酸の混合体に印加する
と触媒担体と塩化白金酸のそれぞれがよ(分散する。混
合の均一性も向上する。
When ultrasonic waves are applied to a mixture of water, catalyst carrier, and chloroplatinic acid, the catalyst carrier and chloroplatinic acid are each dispersed. The uniformity of the mixture is also improved.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基づいて説明する。アセ
チレンブラック900gに10重量%の硝酸水溶液40
1を添加し、これを攪拌しながら約55℃まで昇温し、
約2時間攪拌を続けた0次にこれを濾過しケーキのpH
が7になるまで充分に水洗した。
Next, embodiments of the present invention will be described based on the drawings. Acetylene black 900g and 10% by weight nitric acid aqueous solution 40g
1 was added, and the temperature was raised to about 55°C while stirring,
After stirring for about 2 hours, the cake was filtered and the pH of the cake was determined.
It was thoroughly washed with water until the temperature reached 7.

このケーキを超音波を用いた407の水に充分分散させ
た。その後金属として100gの白金を含存する塩化白
金酸の水溶液IO1を添加して白金塩とアセチレンプラ
ッタが充分に接触するように約30分間攪拌を続けた。
This cake was thoroughly dispersed in 407 water using ultrasound. Thereafter, an aqueous solution IO1 of chloroplatinic acid containing 100 g of platinum as a metal was added, and stirring was continued for about 30 minutes so that the platinum salt and the acetylene platter were brought into sufficient contact.

さらにこのあと超音波を30分印加する。このあとに0
.1M炭酸ナトリウム水溶液19.5 ffiを加えさ
らに30分間攪拌を続けた。
Furthermore, after this, ultrasonic waves are applied for 30 minutes. After this 0
.. 19.5 ffi of a 1M aqueous sodium carbonate solution was added, and stirring was continued for an additional 30 minutes.

以上の工程が終わってから、系の温度を約2時間かげて
55℃に上昇させた。昇温後30重量%の過酸化水素水
1.07Nを加え5分間攪拌した0次に0.1M蟻酸水
溶液20.5 jlを約5時間かけて攪拌しながら添加
する。この際塩化白金酸が蟻酸により還元されて白金の
超微粒子がアセチレンブラックの表面に析出する0反応
が完了してからケーキを濾別し、塩素イオンが検出され
なくなるまで充分に洗浄した。得られたケーキを粉砕し
温度50℃において真空乾燥して触媒を得た。得られた
触媒を分析した結果、白金担持量は10.2%、平均結
晶子径は25〜30人、白金の比表面積は約172 m
 ”/g−ptであった。この触媒の熱的安定性を評価
するためこの触媒を窒素雰囲気中で約2時間部度900
℃で熱処理した。熱処理後の平均結晶子径は約40人で
あり白金担持触媒としても、白金と第2あるいは第3成
分の合金担持触媒の出発物質としても充分な物性を有し
ていることがわかった0例えば鉄を合金化させたあとの
資金IE!粒子の結晶子径は35人となる。
After the above steps were completed, the temperature of the system was raised to 55° C. for about 2 hours. After raising the temperature, 1.07N of 30% by weight hydrogen peroxide solution was added and stirred for 5 minutes. Next, 20.5 liters of 0.1M formic acid aqueous solution was added over about 5 hours with stirring. At this time, after the zero reaction in which chloroplatinic acid was reduced by formic acid and ultrafine platinum particles were precipitated on the surface of acetylene black was completed, the cake was filtered and thoroughly washed until no chlorine ions were detected. The resulting cake was crushed and dried under vacuum at a temperature of 50°C to obtain a catalyst. As a result of analyzing the obtained catalyst, the amount of supported platinum was 10.2%, the average crystallite diameter was 25 to 30 crystallites, and the specific surface area of platinum was approximately 172 m
”/g-pt. To evaluate the thermal stability of this catalyst, it was heated at 900° C. for about 2 hours in a nitrogen atmosphere.
Heat treated at ℃. The average crystallite diameter after heat treatment was approximately 40, and it was found that it has sufficient physical properties as a platinum-supported catalyst and as a starting material for an alloy-supported catalyst of platinum and a second or third component. Fund IE after alloying iron! The crystallite size of the particles is 35 particles.

このようにして調製された触媒微粒子を用いて電極触媒
層を作製して電池の寿命特性を調べた。
An electrode catalyst layer was prepared using the catalyst fine particles thus prepared, and the life characteristics of the battery were investigated.

電池の運転条件は温度200℃、電流密度200請^/
−9動作圧力4kg/−である。結果が第1図に示され
る。第1図において曲線11は超音波分散をしない従来
法の触媒の寿命特性で曲線12がこの発明の実施例に係
る触媒の寿命特性である。この発明に係る触媒を用いた
電池は長期信頬性にすぐれている。
The battery operating conditions are a temperature of 200℃ and a current density of 200℃.
-9 operating pressure is 4 kg/-. The results are shown in FIG. In FIG. 1, curve 11 is the life characteristic of the conventional catalyst without ultrasonic dispersion, and curve 12 is the life characteristic of the catalyst according to the embodiment of the present invention. A battery using the catalyst according to the present invention has excellent long-term reliability.

この理由は超音波のエネルギにより触媒担体と塩化白金
酸とが良く混合分散するため、還元により発生する白金
微粒子の分散性が向上するためである。
The reason for this is that the catalyst carrier and chloroplatinic acid are mixed and dispersed well by the ultrasonic energy, so that the dispersibility of the platinum fine particles generated by reduction is improved.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、水と触媒担体と塩化白金酸の混合物
に超音波を印加して触媒担体と塩化白金酸をよく混合分
散させたのち還元剤を用いて触媒担体上に白金微粒子を
担持させるので触媒担体上に担持される白金微粒子の結
晶子径は小さいうえ、その分布も均一でありそのために
電池の電極として使用される際に貴金属微粒子のシンタ
リングが少な(電池の長期信鯨性が増す、また白金微粒
子の高分散性のためにこれを合金化する際に合金微粒子
の結晶子径を小さくかつ均一に分布させることができ、
電池運転における経時的な出力電圧減少が低減される。
According to this invention, ultrasonic waves are applied to a mixture of water, a catalyst carrier, and chloroplatinic acid to thoroughly mix and disperse the catalyst carrier and chloroplatinic acid, and then platinum fine particles are supported on the catalyst carrier using a reducing agent. Therefore, the crystallite size of the platinum fine particles supported on the catalyst carrier is small and their distribution is uniform, so when used as a battery electrode, there is little sintering of the precious metal fine particles (the long-term stability of the battery is reduced). In addition, due to the high dispersibility of platinum fine particles, when alloying them, the crystallite size of the alloy fine particles can be small and uniformly distributed.
Decrease in output voltage over time during battery operation is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る触媒の寿命特性を従来
の触媒と対比した線図、第2図は電池の電極を示す模式
断面図である。
FIG. 1 is a diagram comparing the life characteristics of a catalyst according to an embodiment of the present invention with that of a conventional catalyst, and FIG. 2 is a schematic cross-sectional view showing an electrode of a battery.

Claims (1)

【特許請求の範囲】[Claims] 1)水と触媒担体と塩化白金酸の混合物に超音波を印加
して触媒担体と塩化白金酸をよく混合分散させたのち還
元剤を用いて触媒担体上に白金微粒子を担持させること
を特徴とする燃料電池用触媒の製造方法。
1) The method is characterized by applying ultrasonic waves to a mixture of water, catalyst carrier, and chloroplatinic acid to mix and disperse the catalyst carrier and chloroplatinic acid well, and then using a reducing agent to support platinum fine particles on the catalyst carrier. A method for producing a fuel cell catalyst.
JP63053091A 1988-03-07 1988-03-07 Manufacture of fuel cell catalyst Pending JPH01227360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053091A JPH01227360A (en) 1988-03-07 1988-03-07 Manufacture of fuel cell catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053091A JPH01227360A (en) 1988-03-07 1988-03-07 Manufacture of fuel cell catalyst

Publications (1)

Publication Number Publication Date
JPH01227360A true JPH01227360A (en) 1989-09-11

Family

ID=12933113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053091A Pending JPH01227360A (en) 1988-03-07 1988-03-07 Manufacture of fuel cell catalyst

Country Status (1)

Country Link
JP (1) JPH01227360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162133A (en) * 1994-12-05 1996-06-21 Agency Of Ind Science & Technol Manufacture of platinum catalyst
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162133A (en) * 1994-12-05 1996-06-21 Agency Of Ind Science & Technol Manufacture of platinum catalyst
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JPWO2015020079A1 (en) * 2013-08-09 2017-03-02 日産自動車株式会社 Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
US10014532B2 (en) 2013-08-09 2018-07-03 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
US10847811B2 (en) 2013-08-09 2020-11-24 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same

Similar Documents

Publication Publication Date Title
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
Atwan et al. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
KR20010071152A (en) Improved composition of a selective oxidation catalyst for use in fuel cells
Cameron et al. Direct methanol fuel cells
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JPS618851A (en) Fuel battery and electrolyte catalyst therefor
JPH01227361A (en) Manufacture of anode for fuel cell
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
CN110277564B (en) Direct liquid fuel cell anode catalyst and preparation method thereof
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
CN114892197B (en) Electrocatalysis synthesis of H2O2Catalyst, preparation method and application thereof
CN110931804A (en) CeO carried by Pt-Ni-Cu ternary alloy2Preparation of composite material and research on formic acid catalytic performance of composite material
JPH01227360A (en) Manufacture of fuel cell catalyst
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
CN114606532A (en) Solid electrolyte water electrolysis membrane electrode and preparation method thereof
EP2202831A1 (en) Supported catalyst for fuel cell and fuel cells
JP2977199B2 (en) Electrode catalyst
JP2012000612A (en) Platinum colloid-carrying carbon
CN114899422B (en) Supported bimetallic catalyst and preparation method and application thereof
CN109569682B (en) Preparation method of nitrogen-doped graphene-loaded Ir-Ru catalyst for SPE electrolytic cell
CN111063899A (en) Method for improving CO resistance of formic acid fuel cell electrooxidation
JPS6344945A (en) Method for dispersing catalyst