[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0122633Y2 - - Google Patents

Info

Publication number
JPH0122633Y2
JPH0122633Y2 JP1987036475U JP3647587U JPH0122633Y2 JP H0122633 Y2 JPH0122633 Y2 JP H0122633Y2 JP 1987036475 U JP1987036475 U JP 1987036475U JP 3647587 U JP3647587 U JP 3647587U JP H0122633 Y2 JPH0122633 Y2 JP H0122633Y2
Authority
JP
Japan
Prior art keywords
solvent
recovery device
duct
water
cooled condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987036475U
Other languages
Japanese (ja)
Other versions
JPS62148295U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987036475U priority Critical patent/JPH0122633Y2/ja
Publication of JPS62148295U publication Critical patent/JPS62148295U/ja
Application granted granted Critical
Publication of JPH0122633Y2 publication Critical patent/JPH0122633Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] 本考案は、ドライクリーニング装置に用いるパ
ークロルエチレン、トリクロルエチレン、1,
1,1、トリクロルエタンなどのドライクリーニ
ング用溶剤の回収装置に関する。 [従来の技術と課題] 従来、例えばパークロルエチレンを溶剤として
衣類等をドライクリーニングする方法では、クリ
ーニング終了後衣類に残存するパークロルエチレ
ンの大部分は、ドラム、水冷コンデンサ、ヒータ
を備えた循環回路に、空気を循環させて回収し、
この後衣類に残存して臭気を放つ少量のパークロ
ルエチレンを除去する脱臭処理を行つていた。 従来の脱臭処理は、ドライクリーニングドラム
の扉を僅かに開くか、または外気取入口を開いて
回収に用いる送風機を作動することにより、臭気
を排気ダクトに導いて大気中に放出していた。こ
の方法は新鮮な空気をドラム内に流し、ドラム内
の溶剤を含んだ空気と置換し、衣類中の溶剤を含
んだ空気も置換する方法である。しかし、この方
法は排気ダクトを通じて大気に逃れる溶剤の損失
を生じる不利な点があり、また溶剤を大気中に放
出するのは衛生上の公害面から好ましくない。 この対策として該排気を活性炭回収装置に導き
溶剤を吸着させ、随時蒸気を活性炭回収装置に供
給して溶剤を回収する方法が提案された。 しかし、この活性炭回収装置ではそのランニン
グコストは溶剤の吸着量にほぼ比例し、一定のド
ライクリーナ側の溶剤ガス負荷に対してランニン
グコストが必要となる。そこで前記した問題点を
解消するために第2図に示す溶剤の回収方法が提
案された。この装置はパークロルエチレンまたは
トリクロルエチレンのみではなく他の溶剤、特に
1,1,1、トリクロルエタンなどの低沸点溶剤
にも用いることができるドライクリーニング装置
で、洗浄工程等の前工程が終了すると、乾燥工程
においてドライクリーニング機械(以下、ドライ
クリーナという)1内の空気は第1送風機2によ
り水冷コンデンサ3、ヒータ4を通過してドラム
5と循環することにより溶剤を凝縮回収する。こ
の時ダンバ6,7は閉じている。(2点鎖線の位
置)。 次いで、脱臭工程ではダンバ6,7は開き(実
線の位置)、ダンバ7の開口部から系内に流入し
た新鮮空気は第2送風機8と冷凍コイル9を内蔵
する室10を経由して大気へ放出される。ここ
で、冷凍コイル9は冷凍装置11に接続し、冷凍
コイル9の表面を均−20゜に維持しており、ドラ
イクリーナ1から送られてきた溶剤ガスを含む空
気流のうち溶剤を冷凍コイル9の表面に凝縮する
ことによつて脱臭を行う。なお、図中の12は塵
埃フイルタ、13は溶剤タンクである。 ところが、冷凍コイル入口ガス温度が20℃、同
出口温度が0℃の場合を例にとると、第3図に示
すように、冷凍コイル入口ガス濃度は破線aで示
すように時間の経過とともに漸次減少し、又冷凍
コイル出口ガス濃度は実線bで示すように漸次減
少するが、回収分cは斜線部分のみで時間がたつ
と冷凍コイル9での再蒸発分d(点々で示す範囲)
が生じ、実線bより下の部分は未回収分eとな
る。従つて、溶剤の回収率は冷凍装置を採用しな
いで系外に排出する場合に比し、高々0.7%の増
加に過ぎない。これは新鮮空気を系内に取入れる
ことから、溶剤ガス濃度が希釈されて冷凍コイル
9での補集効率が著しく低下することと共に一旦
凝縮した溶剤も新鮮空気によつて再度蒸発し、系
外へ排出されることが原因である。このことは特
に低沸点溶剤である1,1,1、トリクロルエタ
ンを溶剤として使用した場合に著しい。この結
果、依然として高濃度の溶剤が大気中へ放出され
ることとなり、大気汚染上問題となるとともに溶
剤損失が大きくなりコストアツプとなつていた。 本考案は上記事情に鑑みてなされたもので、溶
剤の回収率を向上して溶剤損失を低減するととも
に、大気汚染を防止しえるドライクリーニング用
溶剤の回収装置を提供することを目的とする。 [課題を解決するための手段] 本考案は、ドライクリーナ内部に設けた洗濯ド
ラム内に洗濯物を入れ、該ドラムを回転させなが
ら洗浄、すすぎ、脱液を行い、使用済溶剤を排出
した後、更にドラム及び洗濯物中に残留する溶剤
を回収するドライクリーニング用溶剤の回収装置
において、送風機、水冷コンデンサ、ヒータを
夫々配設した循環路と、溶剤ガスを溶剤液とガス
分とに凝縮分離する冷凍回収装置と、前記循環路
の水冷コンデンサ下流側に設けた洗濯ドラムの排
出口と冷凍回収装置との入口部とを制御弁を介し
て接続する排気口を有する第1ダクトと、前記洗
濯ドラム内と上記冷凍回収装置の出口部とを制御
弁を介して接続する新鮮空気取入口を有する第2
ダクトとを具備し、上記水冷コンデンサにより溶
剤を凝縮回収し、更に水冷コンデンサと前記冷凍
回収装置との併用により溶媒を凝縮回収した後、
上記冷凍回収装置をバイパスして前記第1・第2
ダクトを介して洗濯ドラム内へ新鮮空気の供給排
出を行うことを特徴とするドライクリーニング用
溶剤の回収装置である。 [作用] 本考案によれば、冷凍回収装置で溶剤ガスを充
分に凝縮回収した後該装置をバイパスして新鮮空
気を循環させるようにしたので溶剤の再蒸発を防
ぎ、溶剤損失を低減するとともに大気汚染を防止
することができる顕著な効果を奏する。 以下、本考案の実施例を図面を参照して説明す
る。 [実施例 1] 第1図はドライクリーニング用溶剤の回収装置
を示し、この装置は第2図に示す従来のものと同
様ドライクリーナ1、送風機2、水冷コンデンサ
3、ヒータ4、洗濯ドラム5、ダンバ6,塵埃フ
イルタ12、溶剤タンク13等を設けている。更
に、加えてこの装置は、洗濯ドラム5の排出口5
aと冷凍回収装置21の入口部21aを第1ダク
ト22を介して接続し、更に冷凍回収装置21の
出口部21bと洗濯ドラム5内と第2ダクト24
を介して接続している。 上記冷凍回収装置21は蓄冷式クーラ25を内
蔵し、この蓄冷式クーラ25は冷凍機26と冷凍
回路27で連結されて蓄冷体を−20℃程度に冷却
している。また、上記冷凍回収装置21の上部室
21cには上記入口部21aが形成され、ここに
取付けた第1ダクト22は制御弁28,29を挿
着している。一方の制御弁28は上記入口部21
aを開閉制御するもので、他方の制御弁29は排
気口29aを開閉して機外と第1ダクト22内と
を連通、遮塞するものである。上記上部室21c
は、バルブ30を有する配管31を経て洗濯ドラ
ム5に連絡している。冷凍回収装置21の下部室
21dには上記出口部21bが形成され、ここに
取付けた第2ダクト24は制御弁33,34を装
着している。ここで、一方の制御弁33は上記出
口部21bを開閉制御するもので、又他方の制御
弁34は新鮮空気取入口34aを開閉して機外と
第2ダクト25内とを連通、遮塞するものであ
る。上記下部室21dには凝縮液集合装置35が
設けられ、水分離器36に接続している。 次に、上記回収装置を用い、溶剤として1,
1,1、トリクロルエタンを用いた溶剤の回収方
法の一例につき説明する。 まず、溶剤の回収工程の前段工程である洗浄及
び脱液工程について説明する。 この工程ではダンパ6は閉じ(2点鎖線)、制
御弁28,29,33,34は閉じ、バルブ30
は開の状態となり、この状態で洗浄、脱液、すす
ぎ等の前段工程が実施される。ここで、ドラム5
内の空気膨張、溶剤の蒸気圧上昇に伴つてドラム
5内の内圧が上昇することがあるが、溶剤ガスは
配管31を経て蓄冷式クーラ25へ送られ凝縮回
収されることとなり、溶剤ガスが系外へ漏洩する
ことはなくドラム5内の内圧はほぼ大気圧に等し
く保たれる。これは以下の乾燥工程でも同様であ
る。 次いで、乾燥工程を行い溶剤を回収するが、こ
の工程は2段の工程に分けて行う。 第1段の工程では、ダンバ6及び制御弁28,
29,33,34を閉じ、バルブ30を開き、水
冷コンデンサ3、ヒータ4及び送風機2を作動
し、この状態で水冷コンデンサ3による溶剤の凝
縮回収がおこなわれる。この場合、水冷コンデン
サ3に図示せぬチラーを接続して、水冷コンデン
サ3への冷却水入口温度を10℃程度に下げたとき
でも水冷コンデンサ3を通過後の空気の出口温度
は精々20〜22℃程度で安定する。従つて、この時
の1,1,1、レリクロルエタンの蒸気圧100mm
Hgに相当するドラム5内の溶剤ガス及びこれと
平衡状態にある衣料中の未蒸発分は本工程では回
収されないこととなる。この工程では、風量によ
るが一般にドラム5の出口温度制御(50℃設定)
で5〜6分で終了する。 この工程の終了後、第2段の溶剤回収工程が行
われる。 この工程では、ダンパ6が開き(実線の位置)、
制御弁28,33及びバルブ30が開き、制御弁
29,34を閉じ(新鮮空気取入口34a及び排
気口29aを閉じている)、水冷コンデンサ3及
び送風機2を作動し、ヒータ4を停止し、この状
態で蓄冷式クーラ25による凝縮回収を行う。こ
の場合、蓄冷式25で凝縮した凝縮液は、凝縮液
集合装置35を経て水分離器36に流入後、溶剤
は回収される。蓄冷式クーラ25の入口における
空気温度が20℃、同出口温度が0〜−2℃になる
ように冷凍能力及び風量を設定することにより、
1,1,1、トリクロルエタンの蒸気圧32〜36mm
Hgに相当する濃度にまで溶剤ガス濃度を低下さ
せることになる。本工程の所要時間は前記した冷
凍能力と風量により決定されるが、通常約6分間
である。なお、この工程では通常洗濯ドラム5、
蓄冷式クーラ25系の全容積の10〜30倍の循環風
量が必要で、必要に応じて第1ダクト22に送風
機を追設してもよい。 この工程の後、脱臭工程を行う。この工程では
ダンパ6を開き、制御弁28,33を閉じ、制御
弁29,34を開き(新鮮空気取入口34a及び
排気口29aを開いている)、バルブ30を閉じ、
水冷コンデンサ3、ヒータ4を停止し、送風機2
を作動させ、この状態で新鮮空気を蓄冷式クーラ
25をバイパスして第2ダクト24から上記洗濯
ドラム5内に供給して、それを第1ダクト22を
経て機外に排気させる。 上記実施例1によれば、水冷コンデンサ3と蓄
冷式クーラ25の併用により、溶剤の回収率が著
しく向上する。即ち、水冷コンデンサ3による回
収と水冷コンデンサ3、蓄冷式クーラ25の併用
による回収で溶剤ガスを十分に凝縮回収した後、
蓄冷式クーラ25をバイパスして新鮮空気を循環
させることができる。従つて、蓄冷式クーラ25
に凝縮した溶剤は再蒸発することがなくなり、溶
剤の回収率が著しく向上する。 更に、回収効率が向上することにより系外へ放
出する溶剤ガス濃度も32〜36mmHg以下に低減で
きる。又、制御弁33の出口の空気温度、即ち蓄
冷式クーラ25出口の空気温度から、容易に溶剤
の損失量を計算できることから、精度の高い溶剤
損失防止が可能となる。 [実施例 2] 本実施例2は、前記蓄冷式クーラ25の能力が
小さいとき、チラーを併用したものである。即
ち、このチラーの併用により、水冷コンデンサ3
の冷却水入口温度を1〜2℃まで低下させて、第
1段回収工程における溶剤回収率を上げ、この後
第2段の回収工程を水冷コンデンサ3を停止して
行うものである。この場合、水冷コンデンサ3を
停止させても衣料温度が急激に下がり、衣料から
の溶剤の蒸発が抑制されて、最終的に回収率が実
施例1より低下するが従来に比べて向上する。 [実施例 3] 本実施例3は、第2ダクト24から洗濯ドラム
5への空気流入口を、ヒータ4の前段部(図示す
るイ部)に接続したものである。これにより、第
2段乾燥工程に於いてヒータ4の予熱により循環
空気は加温されて、衣料に供給されるから衣料か
ら溶剤は追い出されて蓄冷式クーラ25で凝縮回
収される。従つて、実施例3によれば、第1表に
示すように実施例2は勿論の事、実施例1よりも
溶剤損失率が低減される。尚、ヒータ4を作動さ
せてもよいことは勿論である。 なお、蓄冷式クーラ25の容量が十分に大きい
とき(即ち、水冷コンデンサ3による回収に相当
する能力を有するとき)は、配管31を廃止又は
不動状態にし、制御弁33を脱臭工程以外は開に
することによりドラム内の内圧変動を速やかに吸
収するとともに、乾燥工程の溶剤の凝縮回収を蓄
冷式クーラ25のみにより行うような手段を用い
てもよい。これにより、上記実施例と同様の回収
効率が得られるとともに、装置全体が単純化され
る。蓄冷式クーラに変えて冷凍装置のみを使用し
てもよい事は勿論である。また、蓄冷式クーラ2
5を有する冷凍回収装置21をドライクリーナ1
に一体に組込んでも同様の効果が得られることは
勿論の事である。 次に、上述した実施例1〜3を別紙の第1表に
示す条件で行い、溶剤の回収量、溶剤損失を測定
した。その結果も第1表に示す。 また、第2図に示す従来方法についても溶剤の
回収量、溶剤損失を測定し、その結果を第1表に
併記する。
[Industrial Application Field] The present invention is based on perchlorethylene, trichlorethylene, 1,
1,1, relates to a recovery device for dry cleaning solvents such as trichloroethane. [Prior Art and Issues] Conventionally, for example, in the dry cleaning method of clothing, etc. using perchlorethylene as a solvent, most of the perchlorethylene remaining on the clothing after cleaning is removed by a circulating system equipped with a drum, a water-cooled condenser, and a heater. Circulate and collect air through the circuit,
After this, a deodorizing treatment was carried out to remove the small amount of perchlorethylene that remained in the clothing and emitted an odor. Conventional deodorizing treatment involves slightly opening the door of the dry cleaning drum or opening the outside air intake and activating the blower used for collection, leading the odor to the exhaust duct and releasing it into the atmosphere. This method involves flowing fresh air into the drum to replace the solvent-containing air in the drum and also replacing the solvent-containing air in the clothes. However, this method has the disadvantage of causing a loss of solvent escaping into the atmosphere through the exhaust duct, and discharging the solvent into the atmosphere is undesirable from a sanitary and pollution standpoint. As a countermeasure to this problem, a method has been proposed in which the exhaust gas is led to an activated carbon recovery device to adsorb the solvent, and steam is supplied to the activated carbon recovery device as needed to recover the solvent. However, in this activated carbon recovery device, the running cost is approximately proportional to the amount of solvent adsorbed, and the running cost is required for a constant solvent gas load on the dry cleaner side. Therefore, in order to solve the above-mentioned problems, a solvent recovery method as shown in FIG. 2 was proposed. This device is a dry cleaning device that can be used not only for perchlorethylene or trichlorethylene but also for other solvents, especially low boiling point solvents such as 1,1,1, trichloroethane. In the drying process, air in a dry cleaning machine (hereinafter referred to as dry cleaner) 1 is circulated by a first blower 2 through a water-cooled condenser 3 and a heater 4 to a drum 5, thereby condensing and recovering the solvent. At this time, the dampers 6 and 7 are closed. (Position of the two-dot chain line). Next, in the deodorizing process, the dampers 6 and 7 are opened (solid line position), and the fresh air flowing into the system from the opening of the damper 7 passes through the chamber 10 containing the second blower 8 and the refrigeration coil 9 to the atmosphere. released. Here, the refrigeration coil 9 is connected to a refrigeration device 11, and the surface of the refrigeration coil 9 is maintained at an even angle of -20°. Deodorization is performed by condensation on the surface of 9. In addition, 12 in the figure is a dust filter, and 13 is a solvent tank. However, if we take the case where the inlet gas temperature of the refrigeration coil is 20℃ and the outlet temperature of the same is 0℃, as shown in Figure 3, the refrigeration coil inlet gas concentration gradually changes over time as shown by the broken line a. The gas concentration at the outlet of the refrigeration coil gradually decreases as shown by the solid line b, but the recovered portion c is only the shaded area, and as time passes, the reevaporation portion d in the refrigeration coil 9 (range shown by dots)
occurs, and the portion below the solid line b becomes the uncollected portion e. Therefore, the recovery rate of the solvent increases by only 0.7% at most compared to the case where the solvent is discharged outside the system without employing a refrigeration system. This is because fresh air is taken into the system, which dilutes the solvent gas concentration and significantly reduces the collection efficiency in the refrigeration coil 9. At the same time, the once condensed solvent evaporates again due to the fresh air, leaving the system outside the system. This is due to the fact that it is discharged into the body. This is particularly noticeable when 1,1,1, trichloroethane, which is a low boiling point solvent, is used as the solvent. As a result, a high concentration of solvent is still released into the atmosphere, which poses an air pollution problem and increases solvent loss and costs. The present invention has been made in view of the above circumstances, and aims to provide a dry cleaning solvent recovery device that can improve the solvent recovery rate, reduce solvent loss, and prevent air pollution. [Means for Solving the Problems] The present invention involves putting laundry into a washing drum installed inside a dry cleaner, washing, rinsing, and removing liquid while rotating the drum, and discharging the used solvent. Furthermore, in a dry cleaning solvent recovery device that recovers the solvent remaining in drums and laundry, there is a circulation path each equipped with a blower, a water-cooled condenser, and a heater, and a system that condenses and separates the solvent gas into a solvent liquid and a gas component. a first duct having an exhaust port that connects an outlet of the washing drum provided downstream of the water-cooled condenser in the circulation path and an inlet of the freezing recovery device via a control valve; A second air intake port connecting the inside of the drum and the outlet of the cryo-recovery device via a control valve.
duct, the solvent is condensed and recovered by the water-cooled condenser, and the solvent is further condensed and recovered by a combination of the water-cooled condenser and the frozen recovery device, and then
Bypassing the frozen recovery device, the first and second
This is a dry cleaning solvent recovery device characterized by supplying and discharging fresh air into a washing drum through a duct. [Function] According to the present invention, after the solvent gas is sufficiently condensed and recovered in the freezing recovery device, the device is bypassed and fresh air is circulated, thereby preventing re-evaporation of the solvent and reducing solvent loss. It has a remarkable effect in preventing air pollution. Embodiments of the present invention will be described below with reference to the drawings. [Example 1] FIG. 1 shows a dry cleaning solvent recovery device, which is similar to the conventional device shown in FIG. A damper 6, a dust filter 12, a solvent tank 13, etc. are provided. Furthermore, this device additionally has an outlet 5 of the washing drum 5.
a and the inlet part 21a of the frozen recovery device 21 are connected via the first duct 22, and the outlet part 21b of the frozen recovery device 21 is connected to the inside of the washing drum 5 and the second duct 24.
are connected via. The refrigerant recovery device 21 has a built-in regenerator cooler 25, which is connected to a refrigerator 26 through a refrigerating circuit 27 to cool the regenerator to about -20°C. Further, the upper chamber 21c of the frozen recovery device 21 is formed with the inlet portion 21a, and the first duct 22 attached thereto has control valves 28 and 29 inserted therein. One control valve 28 is connected to the inlet section 21.
The other control valve 29 opens and closes the exhaust port 29a to communicate and block the outside of the machine and the inside of the first duct 22. The upper chamber 21c
is connected to the washing drum 5 via a pipe 31 having a valve 30. The outlet section 21b is formed in the lower chamber 21d of the frozen recovery device 21, and the second duct 24 attached thereto is equipped with control valves 33 and 34. Here, one control valve 33 controls opening and closing of the outlet section 21b, and the other control valve 34 opens and closes the fresh air intake port 34a to communicate and block the outside of the machine and the inside of the second duct 25. It is something to do. A condensate collection device 35 is provided in the lower chamber 21d, and is connected to a water separator 36. Next, using the above recovery device, 1,
1. An example of a method for recovering a solvent using trichloroethane will be explained. First, the cleaning and deliquification process, which is the previous process of the solvent recovery process, will be explained. In this step, the damper 6 is closed (double-dashed line), the control valves 28, 29, 33, and 34 are closed, and the valve 30 is closed.
is in an open state, and in this state pre-processes such as washing, dewatering, and rinsing are performed. Here, drum 5
The internal pressure within the drum 5 may increase as the air expands inside the drum and the vapor pressure of the solvent increases. However, the solvent gas is sent to the regenerator cooler 25 via the piping 31 and condensed and recovered. There is no leakage to the outside of the system, and the internal pressure within the drum 5 is maintained approximately equal to atmospheric pressure. This also applies to the following drying process. Next, a drying step is performed to recover the solvent, but this step is performed in two stages. In the first stage process, the damper 6 and the control valve 28,
29, 33, and 34 are closed, the valve 30 is opened, and the water-cooled condenser 3, heater 4, and blower 2 are operated, and in this state, the solvent is condensed and recovered by the water-cooled condenser 3. In this case, even when a chiller (not shown) is connected to the water-cooled condenser 3 and the temperature of the cooling water inlet to the water-cooled condenser 3 is lowered to about 10°C, the outlet temperature of the air after passing through the water-cooled condenser 3 is at most 20 to 22°C. Stable at around ℃. Therefore, the vapor pressure of 1,1,1, relichloroethane at this time is 100 mm
The solvent gas in the drum 5 corresponding to Hg and the unevaporated content in the clothing that is in equilibrium with this are not recovered in this step. In this process, the temperature at the outlet of drum 5 is generally controlled (set at 50℃), although it depends on the air volume.
It will finish in 5-6 minutes. After this step is completed, a second stage solvent recovery step is performed. In this process, the damper 6 opens (solid line position),
Control valves 28, 33 and valve 30 are opened, control valves 29, 34 are closed (fresh air intake port 34a and exhaust port 29a are closed), water-cooled condenser 3 and blower 2 are operated, heater 4 is stopped, In this state, condensation and recovery by the regenerator cooler 25 is performed. In this case, the condensate condensed in the regenerator 25 passes through the condensate collection device 35 and flows into the water separator 36, after which the solvent is recovered. By setting the refrigeration capacity and air volume so that the air temperature at the inlet of the regenerator cooler 25 is 20°C and the outlet temperature is 0 to -2°C,
1,1,1, vapor pressure of trichloroethane 32-36mm
This will reduce the solvent gas concentration to a concentration equivalent to Hg. The time required for this step is determined by the above-mentioned refrigeration capacity and air volume, but is usually about 6 minutes. In addition, in this process, the washing drum 5,
A circulating air volume that is 10 to 30 times the total volume of the regenerator cooler 25 system is required, and a blower may be additionally installed in the first duct 22 if necessary. After this step, a deodorizing step is performed. In this step, the damper 6 is opened, the control valves 28 and 33 are closed, the control valves 29 and 34 are opened (the fresh air intake port 34a and the exhaust port 29a are open), the valve 30 is closed,
Stop water cooling condenser 3 and heater 4, and blower 2
is operated, and in this state, fresh air is supplied into the washing drum 5 from the second duct 24, bypassing the regenerator cooler 25, and is exhausted outside the machine via the first duct 22. According to the first embodiment, the solvent recovery rate is significantly improved by using the water-cooled condenser 3 and the regenerator cooler 25 in combination. That is, after the solvent gas is sufficiently condensed and recovered by recovery using the water-cooled condenser 3 and recovery using the water-cooled condenser 3 and regenerator cooler 25,
Fresh air can be circulated by bypassing the regenerator cooler 25. Therefore, the regenerator cooler 25
The condensed solvent will no longer evaporate again, and the recovery rate of the solvent will be significantly improved. Furthermore, by improving the recovery efficiency, the concentration of solvent gas released outside the system can be reduced to 32 to 36 mmHg or less. Further, since the amount of solvent loss can be easily calculated from the air temperature at the outlet of the control valve 33, that is, the air temperature at the outlet of the regenerator cooler 25, it is possible to prevent solvent loss with high accuracy. [Example 2] In this example 2, when the capacity of the regenerator type cooler 25 is small, a chiller is also used. That is, by using this chiller in combination, the water-cooled condenser 3
The cooling water inlet temperature is lowered to 1 to 2°C to increase the solvent recovery rate in the first stage recovery process, and then the second stage recovery process is performed with the water-cooled condenser 3 stopped. In this case, even if the water-cooled condenser 3 is stopped, the temperature of the clothing drops rapidly, and the evaporation of the solvent from the clothing is suppressed, resulting in a final recovery rate that is lower than in Example 1 but improved compared to the conventional method. [Embodiment 3] In this embodiment 3, the air inlet from the second duct 24 to the washing drum 5 is connected to the front part of the heater 4 (the A part shown in the figure). As a result, in the second stage drying process, the circulating air is heated by preheating the heater 4 and supplied to the clothing, so that the solvent is expelled from the clothing and condensed and recovered by the regenerator cooler 25. Therefore, according to Example 3, as shown in Table 1, the solvent loss rate is lower than in Example 1 as well as in Example 2. Incidentally, it goes without saying that the heater 4 may be operated. Note that when the capacity of the regenerator cooler 25 is sufficiently large (that is, when it has a capacity equivalent to the recovery by the water-cooled condenser 3), the piping 31 is abolished or kept in a stationary state, and the control valve 33 is kept open except during the deodorizing process. By doing so, it is also possible to use a means in which internal pressure fluctuations within the drum are quickly absorbed, and the condensation and recovery of the solvent in the drying process is performed only by the regenerator cooler 25. As a result, recovery efficiency similar to that of the above embodiment can be obtained, and the entire apparatus can be simplified. Of course, a refrigeration system alone may be used instead of a regenerator cooler. In addition, regenerator cooler 2
Dry cleaner 1
Of course, the same effect can be obtained even if it is integrated into the system. Next, Examples 1 to 3 described above were conducted under the conditions shown in Table 1 of the attached sheet, and the amount of recovered solvent and solvent loss were measured. The results are also shown in Table 1. Furthermore, the amount of solvent recovered and the solvent loss were also measured for the conventional method shown in FIG. 2, and the results are also listed in Table 1.

【表】【table】

【表】 「次に第1段乾燥」を6分から8分に、「第2
段乾燥」を6分から4分に、「脱臭」を2分から
1分に、従来方法の「乾燥時間」を6分から8分
に、更に「冷凍コイル及び蓄冷式クーラの出口の
空気温度」を0〜−2℃から−10〜−20℃に変更
した場合の測定結果を第2表に示す。
[Table] "Next, the first stage drying" was changed to 6 to 8 minutes, and the "second stage drying" was changed to 6 to 8 minutes.
"Stage drying" was reduced from 6 minutes to 4 minutes, "deodorization" was reduced from 2 minutes to 1 minute, "drying time" of the conventional method was reduced from 6 minutes to 8 minutes, and "air temperature at the outlet of the refrigeration coil and regenerator cooler" was reduced to 0. Table 2 shows the measurement results when the temperature was changed from -2°C to -10 to -20°C.

【表】 [考案の効果] 以上の如く本考案によれば、冷凍回収装置で溶
剤ガスを十分に凝縮回収した後該装置をバイパス
して新鮮空気を循環させるようにしたので溶剤の
再蒸発を防止し、溶剤損失を低減するとともに大
気汚染を防止しえるドライクリーニング用溶剤の
回収装置を提供できる。
[Table] [Effects of the invention] As described above, according to the invention, after the solvent gas is sufficiently condensed and recovered in the freezing recovery device, the device is bypassed and fresh air is circulated, thereby preventing re-evaporation of the solvent. It is possible to provide a dry cleaning solvent recovery device that can reduce solvent loss and prevent air pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すドライクリー
ニング用溶剤の回収装置の説明図、第2図は従来
のドライクリーニング用溶剤の回収装置の説明
図、第3図は同回収装置における脱臭時間とガス
濃度との関係を示す特性図である。 1……ドライクリーナ、2……第1送風機、3
……水冷コンデンサ、4……ヒータ、5……ドラ
ム、5a……排出口、6,7……ダンパ、8……
第2送風機、9……冷凍コイル、10……室、1
1……冷凍装置、12……塵フイルタ、13……
溶剤タンク、21……冷凍回収装置、21a……
入口部、21b……出口部、21c……上部室、
21d……下部室、22……第1ダクト、24…
…第2ダクト、25……蓄冷式クーラ、26……
冷凍機、27……冷凍回路、28,29,33,
34……制御弁、34a……新鮮空気取入口、3
5……凝縮液集合装置、36……水分離器。
Fig. 1 is an explanatory diagram of a dry cleaning solvent recovery device showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of a conventional dry cleaning solvent recovery device, and Fig. 3 is an explanatory diagram of the dry cleaning solvent recovery device. FIG. 3 is a characteristic diagram showing the relationship between the gas concentration and the gas concentration. 1... Dry cleaner, 2... First blower, 3
... Water-cooled condenser, 4 ... Heater, 5 ... Drum, 5a ... Discharge port, 6, 7 ... Damper, 8 ...
2nd blower, 9... Refrigeration coil, 10... Room, 1
1... Refrigeration device, 12... Dust filter, 13...
Solvent tank, 21... Refrigeration recovery device, 21a...
Inlet part, 21b... Outlet part, 21c... Upper chamber,
21d...lower chamber, 22...first duct, 24...
...Second duct, 25...Regenerator cooler, 26...
Refrigerator, 27... Refrigeration circuit, 28, 29, 33,
34...Control valve, 34a...Fresh air intake, 3
5... Condensate collection device, 36... Water separator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ドライクリーナ内部に設けた洗濯ドラム内に洗
濯物を入れ、該ドラムを回転させながら洗浄、す
すぎ、脱液を行い、使用済溶剤を排出した後、更
にドラム及び洗濯物中に残留する溶剤を回収する
ドライクリーニング用溶剤の回収装置において、
送風機、水冷コンデンサ、ヒータを夫々配設した
循環路と、溶剤ガスと溶剤液とガス分とに凝縮分
離する冷凍回収装置と、前記循環路の水冷コンデ
ンサ下流側に設けた洗濯ドラムの排出口と冷凍回
収装置との入口部とを制御弁を介して接続する排
気口を有する第1ダクトと、前記洗濯ドラム内と
上記冷凍回収装置の出口部とを制御弁を介して接
続する新鮮空気取入口を有する第2ダクトとを具
備し、上記水冷コンデンサにより溶剤を凝縮回収
し、更に水冷コンデンサと前記冷凍回収装置との
併用により溶媒を凝縮回収した後、上記冷凍回収
装置をバイパスして前記第1・第2ダクトを介し
て洗濯ドラム内へ新鮮空気の供給排出を行うこと
を特徴とするドライクリーニング用溶剤の回収装
置。
Laundry is placed in a washing drum installed inside the dry cleaner, and the drum is rotated to wash, rinse, and remove liquid. After discharging the used solvent, the solvent remaining in the drum and laundry is recovered. In dry cleaning solvent recovery equipment,
A circulation path provided with a blower, a water-cooled condenser, and a heater, a refrigeration recovery device for condensing and separating solvent gas, solvent liquid, and gas components, and a washing drum discharge port provided downstream of the water-cooled condenser in the circulation path. a first duct having an exhaust port that connects an inlet to a frozen recovery device via a control valve; and a fresh air intake that connects the inside of the washing drum and an outlet of the frozen recovery device via a control valve. and a second duct having a second duct, the water-cooled condenser condenses and recovers the solvent, and the water-cooled condenser and the frozen recovery device are used together to condense and recover the solvent, and then the first duct bypasses the frozen recovery device. - A dry cleaning solvent recovery device characterized by supplying and discharging fresh air into the washing drum through a second duct.
JP1987036475U 1987-03-12 1987-03-12 Expired JPH0122633Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987036475U JPH0122633Y2 (en) 1987-03-12 1987-03-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987036475U JPH0122633Y2 (en) 1987-03-12 1987-03-12

Publications (2)

Publication Number Publication Date
JPS62148295U JPS62148295U (en) 1987-09-19
JPH0122633Y2 true JPH0122633Y2 (en) 1989-07-06

Family

ID=30846909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987036475U Expired JPH0122633Y2 (en) 1987-03-12 1987-03-12

Country Status (1)

Country Link
JP (1) JPH0122633Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630154Y2 (en) * 1989-06-15 1994-08-17 三洋電機株式会社 Solvent recovery type clothes dryer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127577A (en) * 1975-04-28 1976-11-06 Itsuo Ooka Deodorizing device in a solvent type dry cleaning machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127577A (en) * 1975-04-28 1976-11-06 Itsuo Ooka Deodorizing device in a solvent type dry cleaning machine

Also Published As

Publication number Publication date
JPS62148295U (en) 1987-09-19

Similar Documents

Publication Publication Date Title
US4520577A (en) Cleaning apparatus
JPH0122633Y2 (en)
FI79864C (en) FOERFARANDE FOER AOTERVINNING AV LOESNINGSMEDEL VID BEHANDLING AV TEXTILIER.
JP2749991B2 (en) Dry cleaning method
JP2792705B2 (en) Solvent recovery equipment for dry cleaning equipment
JP2515329Y2 (en) Solvent recovery device
JP2960989B2 (en) Dry cleaning machine and method
JP2552284Y2 (en) Dry cleaner
JP3082787B2 (en) Dry cleaning machine
JPH0422811Y2 (en)
JPH0422810Y2 (en)
JP2994806B2 (en) Dry cleaner solvent cooling method
JP2587075Y2 (en) Dry cleaner solvent cooling system
JPS6321289Y2 (en)
JP2590729Y2 (en) Activated carbon solvent recovery equipment with hot air desorption
JPH0747109Y2 (en) Solvent recovery device for dry cleaner
JP3086586B2 (en) Dry cleaner solvent recovery method
JPH0141428Y2 (en)
JP3021022B2 (en) Dry cleaning method
JPS5835200Y2 (en) dry cleaner
JPH0639670Y2 (en) Solvent recovery device
JP2862421B2 (en) Dry cleaner solvent recovery method
JPH0141429Y2 (en)
JPH0722225Y2 (en) Dry cleaner
JPS6216676B2 (en)