[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01213472A - Production of fiber molded product - Google Patents

Production of fiber molded product

Info

Publication number
JPH01213472A
JPH01213472A JP3604088A JP3604088A JPH01213472A JP H01213472 A JPH01213472 A JP H01213472A JP 3604088 A JP3604088 A JP 3604088A JP 3604088 A JP3604088 A JP 3604088A JP H01213472 A JPH01213472 A JP H01213472A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
carbon
metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3604088A
Other languages
Japanese (ja)
Other versions
JP2586083B2 (en
Inventor
Hisashi Sakurai
桜井 久之
Takushi Kondo
近藤 拓士
Yasuhiro Nakao
靖宏 中尾
Akira Hayashida
章 林田
Hiromi Osaki
浩美 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Honda Motor Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63036040A priority Critical patent/JP2586083B2/en
Publication of JPH01213472A publication Critical patent/JPH01213472A/en
Application granted granted Critical
Publication of JP2586083B2 publication Critical patent/JP2586083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a fiber molded product having excellent adhesivity to a matrix metal, by immersing carbon fiber bundles in an organic solvent containing an organic silicon polymer and the fine powder of the metal, etc., preliminarily molding the immersed carbon fiber bundles and subsequently calcining the pre-molded product to combine the carbon fibers with each other with the resultant silicon carbide ceramic. CONSTITUTION:Carbon fiber bundles are immersed in an organic solvent solution which is prepared by dissolving an organic silicon polymeric compound, e.g., cyclic polysilane or chain polysilane, containing silicon and carbon atoms. as main structural components and dispersing the fine powder of a metal or ceramic in the resultant solution, thereby impregnating the carbon fiber bundles with the polymeric compound, followed by preliminarily molding the impregnated carbon fiber bundles. The pre- molded product is thermally calcined to pyrolyze the organic silicon polymer impregnated in the bundles into silicon carbide ceramic, thereby providing a rigid fiber bundle molded product wherein the carbon fibers are combined with each other and coated with the silicon carbide ceramic through the fine powder of the metal or ceramic. The molded product is again immersed in an organic solvent containing the organic silicon polymer and thermally calcined once or more to provide a fiber-reinforced metal composite material retaining a high tensile strength, high rigidity and heat resistance.

Description

【発明の詳細な説明】 羨皇上座村1分更 本発明は炭素繊維の連続繊維を用いて加圧鋳造法、真空
鋳造法などにより繊維強化金属複合材料(FRM)を得
る際に好適に使用される繊維成型体を製造する方法に関
する。
[Detailed description of the invention] The present invention is suitably used when obtaining fiber reinforced metal composite materials (FRM) by pressure casting, vacuum casting, etc. using continuous carbon fibers. The present invention relates to a method of manufacturing a fiber molded article.

従来の 術 び 日が ゛しようとする皆繊維強化金属
複合材料(FRM)は、軽量で且つ高温領域まで高強度
・高剛性・高耐熱性を保持することができる優れた特性
を備えており、近年盛んに研究されている材料である。
Fiber-reinforced metal composite materials (FRM), which are currently being developed using conventional technology, have excellent properties such as being lightweight and maintaining high strength, high rigidity, and high heat resistance up to high temperature ranges. It is a material that has been actively researched in recent years.

その製造方法には、 ■熔融金属中に繊維を浸漬し、鋳造する方法。Its manufacturing method includes ■A method in which fibers are immersed in molten metal and cast.

■繊維表面にマトリックス金属を溶射、電着。■Matrix metal is thermally sprayed and electrodeposited on the fiber surface.

蒸着などにより付けておき、この繊維を熱間プレスなど
により拡散接合させる方法。
A method of attaching fibers by vapor deposition, etc., and then diffusion bonding the fibers by hot pressing, etc.

■繊維とマトリックス金属の粉末とを混合し。■Mix fibers and matrix metal powder.

圧延・押出しなどにより焼結させる方法、■マトリック
ス金属の箔と箔との間に繊維を配列させ、加熱、加圧し
て成型する方法、などが知られている。
Known methods include sintering by rolling or extrusion, and (2) arranging fibers between matrix metal foils and molding by heating and pressurizing.

上記■の方法は直接所望の形状の繊維成型体及び鋳造金
型を作製し、熔融金属を流し込んで製造するもので、短
い工程並びに極めて高い生産性で複雑な形状の複合材料
の製造が可能である。しかしながら、金属をマトリック
スとする複合材料では、強化繊維と金属とを複合化する
際に高温下で行う必要があり、このため強化繊維がマト
リックスと反応して劣化し、複合材料の強度が複合剤で
期待される値を大きく下回る結果となる。例えば、代表
的な強化繊維である炭素繊維は、工業的に大量に且つ安
価に製造されていると共に、他のセラミック繊維に比べ
て密度が小さく且つ比強度・比弾性率が大きいのでより
軽い材料として使用し得、頻繁に用いられているところ
であるが、この炭素繊維はアルミニウムなどの軽金属と
は濡れ難い上、高温下で反応して脆いアルミニウムカー
バイドなどがその界面に生成されて、複合化による強化
機構の発現が損なわれるという重大な欠点を有する。
The above method (■) involves directly creating fiber moldings and casting molds of the desired shape, and pouring molten metal into them, making it possible to manufacture composite materials with complex shapes in a short process and with extremely high productivity. be. However, in composite materials with a metal matrix, the reinforcing fibers and metal must be combined at high temperatures, which causes the reinforcing fibers to react with the matrix and deteriorate, resulting in the strength of the composite material being lower than that of the composite material. The result is much lower than the expected value. For example, carbon fiber, which is a typical reinforcing fiber, is manufactured industrially in large quantities at low cost, and has a lower density and higher specific strength and specific modulus than other ceramic fibers, making it a lighter material. However, this carbon fiber is difficult to wet with light metals such as aluminum, and when it reacts at high temperatures, brittle aluminum carbide and other substances are formed at the interface. It has the serious drawback that the expression of the reinforcing mechanism is impaired.

そこで、複合化に際して強化繊維の劣化やアルミニウム
カーバイドなどの生成を抑制する方法として、強化繊維
表面に予め低温でマトリックス金属を付着させておく■
Ω方法や、金属が熔融しない温度で複合化する■、■の
方法等が種々試みられている。しかしながら、これらの
方法は繊維の表面処理、繊維の配設などに煩雑な操作を
必要とし、熱間での加圧製造装置は複雑であり且つ生産
性に劣るといった不利がある。加えて、これら方法では
複雑な形状の複合材が製造できないため、いったん極め
て細いワイヤー状あるいは極めて薄い板状の複合化した
中間材料を得、その後更にマトリックス金属が熔融しな
い程度の低い温度にて加熱、加圧して所望の形状に成型
する手法が採用されており、結果として長い工程が不可
避となってコストの高いものとなってしまい、未だに上
記■、■、■の方法を利用した工業生産は行われていな
いのが現状である。
Therefore, as a method to suppress the deterioration of reinforcing fibers and the formation of aluminum carbide during composite formation, a matrix metal is attached to the reinforcing fiber surfaces at low temperatures in advance.
Various attempts have been made, including the Ω method and the methods (1) and (2) in which the metal is composited at a temperature that does not melt the metal. However, these methods require complicated operations for surface treatment of fibers, arrangement of fibers, etc., and have the disadvantage that hot pressure production equipment is complicated and productivity is poor. In addition, these methods cannot produce composite materials with complex shapes, so it is necessary to first obtain a composite intermediate material in the form of an extremely thin wire or extremely thin plate, and then further heat it at a low temperature that does not melt the matrix metal. , a method of pressurizing and molding into the desired shape has been adopted, resulting in an unavoidable long process and high cost, and industrial production using the above methods The current situation is that this is not being done.

一方、このような点に鑑み、工業的製法として有利な前
記■の方法において1強化繊維とマトリックス金属とを
濡れ易く、且つ強化繊維が反応劣化しないように強化繊
維表面に薄い皮膜を形成させる方法が試みられている。
On the other hand, in view of these points, in method (1), which is advantageous as an industrial manufacturing method, a thin film is formed on the surface of the reinforcing fibers so that the reinforcing fibers and the matrix metal are easily wetted and the reinforcing fibers are not deteriorated by reaction. is being attempted.

この皮膜材料としては炭化珪素が最適であり、炭化珪素
皮膜を形成すると濡れ性及び接着性の向上とマトリック
ス金属あるいは空気との反応を抑制することが可能であ
る。
Silicon carbide is the most suitable material for this film, and by forming a silicon carbide film, it is possible to improve wettability and adhesion and to suppress reactions with matrix metal or air.

強化繊維表面に皮膜を形成する方法としては、炭素質物
質の表面に炭化珪素質物質を被覆する従来の技法、例え
ば A、有機珪素ハロゲン化物又は珪素化合物と炭化水素と
による化学蒸着法(CV D法)、B、有機珪素高分子
化合物を炭素質物質の表面に被覆し、これを加熱、焼成
して炭化珪素質の皮膜を形成させる方法、 などの方法が知られている。
Methods for forming a film on the surface of the reinforcing fibers include conventional techniques for coating the surface of a carbonaceous material with a silicon carbide material, such as A, a chemical vapor deposition method (CVD) using an organic silicon halide or a silicon compound, and a hydrocarbon. The following methods are known: method B), method B, method of coating the surface of a carbonaceous material with an organosilicon polymer compound, and heating and firing it to form a silicon carbide film.

このうち、Aの方法には特公昭60−5682号、特開
昭57−111289号、特開昭57−118082号
及び特開昭58−31167号公報などに開示されてい
る方法があるが、これらの方法は前記した■の方法に類
似しており、複雑な化学蒸着用装置を必要とし、且つ生
産性が極めて低いために強化繊維が大変高価なものにな
るという欠点を有する。
Among these methods, method A includes methods disclosed in Japanese Patent Publication No. 60-5682, Japanese Patent Application Publication No. 57-111289, Japanese Patent Application Publication No. 57-118082, and Japanese Patent Application Publication No. 58-31167, etc. These methods are similar to method (1) described above, and have the disadvantage that they require complicated chemical vapor deposition equipment and have extremely low productivity, making the reinforcing fibers very expensive.

また、Bの方法としては特公昭57− 22915号、特公昭57−7115号、特公昭60−
14820号、特公昭61−17948号、特公昭61
−17.950号、特開昭52−91917号公報など
に開示された方法がある。
In addition, as method B, Tokoku No. 57-22915, Tokoku No. 7115, Tokko Sho 57, and Tokoku No. 60-
No. 14820, Special Publication No. 17948, Special Publication No. 1983
There are methods disclosed in Japanese Patent Laid-Open No. 52-91917, No. 17.950, and the like.

このうち特公昭57−22915号公報記載の方法は、
炭素材料で形成されているルツボや電極などの表面に有
機珪素高分子化合物を塗布、焼成して炭化珪素質物質の
皮膜を形成させるものであるが、空気中での耐酸化性や
耐食性を向上させることを目的としている。更に、特公
昭57−7115号公報にも複合材料用強化繊維の被覆
を目的とした方法が記載されており、この方法では本出
願における有機珪素高分子化合物とは異なる−B−0−
8L−0−なる結合から構成される樹脂を使用して被覆
を行っており、炭化珪素質とは相違する。また、特公昭
60−14820号、特公昭61−17948号、特公
昭61−17950号公報には炭素繊維表面上に有機珪
素高分子化合物を塗布、焼成することによってセラミッ
クス皮膜を形成させる方法が開示されている。
Among these, the method described in Japanese Patent Publication No. 57-22915 is
Organic silicon polymer compounds are applied to the surfaces of crucibles, electrodes, etc. made of carbon materials and fired to form a film of silicon carbide substances, which improves oxidation and corrosion resistance in the air. The purpose is to Furthermore, Japanese Patent Publication No. 57-7115 also describes a method for coating reinforcing fibers for composite materials, and this method uses -B-0- which is different from the organosilicon polymer compound used in the present application.
The coating is performed using a resin composed of 8L-0- bonds, which is different from silicon carbide. In addition, Japanese Patent Publications No. 60-14820, Japanese Patent Publication No. 61-17948, and Japanese Patent Publication No. 61-17950 disclose a method of forming a ceramic film by coating and firing an organic silicon polymer compound on the surface of carbon fibers. has been done.

しかしながら、これらの方法では。However, these methods.

(イ)珪素と酸素及びほう素とを主な骨格成分とする有
機珪素高分子化合物を用いており、焼成後の皮膜の酸素
含量が大変多く、炭化珪素皮膜の有する前記各種の有利
性が十分に発揮されない。
(a) An organic silicon polymer compound whose main skeleton components are silicon, oxygen, and boron is used, and the film after firing has a very high oxygen content, and the various advantages mentioned above of the silicon carbide film are fully realized. It is not demonstrated.

(ロ)繊維表面の被覆方法において、酸化珪素質中間層
を設けたり、有機珪素高分子化合物を溶解しない溶剤で
抽出操作を行うため、繊維皮膜の構造が複雑になり、し
かも工程が長くなるという不利がある。
(b) In the method of coating the fiber surface, a silicon oxide intermediate layer is provided and an extraction operation is performed using a solvent that does not dissolve the organosilicon polymer compound, which makes the structure of the fiber coating complex and lengthens the process. There is a disadvantage.

(ハ)繊維同志が接着し合ってマトリックス金属の侵入
する間隙がなく、十分複合強化されない。
(c) The fibers adhere to each other and there is no gap for the matrix metal to penetrate, and the composite is not reinforced sufficiently.

(ニ)数千本程度の繊維を束ねた極めて細いワイヤー状
などの中間材料としての単純な形状の成型体を得る方法
としては適しているが、複雑な各種部品形状とするには
これら中間材料を所望の形状の金型中に配設した後、加
圧下に加熱する方法が必要とされ、結果として工程が長
くなり、コスト上昇を免れない。
(d) Although it is suitable as a method to obtain a molded object with a simple shape as an intermediate material such as an extremely thin wire shape made of several thousand fibers bundled together, these intermediate materials cannot be used to make various complex parts shapes. A method is required in which the material is placed in a mold having a desired shape and then heated under pressure, resulting in a longer process and an unavoidable increase in cost.

更に、特開昭52−91917号公報では珪素と炭素と
を主な骨格成分とする有機珪素高分子化合物を炭素繊維
表面上に被覆、焼成する方法が開示されているが、この
方法においても繊維同志が接着し合ってマトリックス金
属の侵入する間隙がないという不利がある上、極めて細
いワイヤー状又は極めて薄い板状など比較的単純な形状
の成型体を得るには好適であるが、複雑な各種部品形状
とするためにはこれら中間材料を所望の形状の型中に配
設してからマトリックスと再度複合化するという手法を
とっており、上記と同様に長い工程が必要である。
Furthermore, JP-A-52-91917 discloses a method in which the surface of carbon fibers is coated with an organosilicon polymer compound whose main skeleton components are silicon and carbon and fired. It has the disadvantage that the comrades are bonded to each other and there is no gap for the matrix metal to penetrate, and it is suitable for obtaining molded bodies with relatively simple shapes such as extremely thin wires or extremely thin plates; In order to form a part, these intermediate materials are placed in a mold of the desired shape and then composited with a matrix again, which requires a long process similar to the above.

以上述べたように、従来技術では百万本から一千万本も
の連続繊維を束ねて且つ所望形状に成型することは容易
ではない上に、マトリックス金属が侵入し得る間隙を保
持して繊維同志が密着し合わない構造とすることも困難
であり、しかも複合材料を製造する際に高圧下で鋳造し
ても所望の形状を保持し続は得る保形性の高い繊維成型
体を得ることは極めて困難であり1強化繊維として優れ
た繊維成型体を工業的に有利に製造できる満足すべき方
法は未だ提案されていないのが現状である。
As mentioned above, with the conventional technology, it is not easy to bundle 10 million to 10 million continuous fibers and mold them into a desired shape. It is also difficult to create a structure in which the fibers do not stick together, and it is also difficult to obtain a fiber molded product that maintains the desired shape and maintains its shape even when cast under high pressure when manufacturing composite materials. This is extremely difficult, and at present no satisfactory method has yet been proposed for industrially advantageously producing a fiber molded product that is excellent as a single reinforcing fiber.

を  するための   び・ 本発明者らは炭素繊維を用いて鋳造法により繊維強化金
属複合材料を製造するに当たって、強化繊維表面上に炭
化珪素皮膜を形成することにより、強化繊維とマトリッ
クス金属との濡れ性並びに反応性を改良し得ると共に、
大量の強化繊維を簡単に束ねて成型し得、かっこの繊維
成型体のR椎間にマトリックス金属が容易に侵入して強
度の高い複合材料を得ることのできる繊維成型体の製造
方法について鋭意検討した結果、下記方法により極めて
簡単に、かつ極めて短い工程で上記条件を満足する繊維
成型体が得られることを見い出した。
In manufacturing a fiber-reinforced metal composite material using a casting method using carbon fibers, the present inventors formed a silicon carbide film on the surface of the reinforcing fibers to improve the bond between the reinforcing fibers and the matrix metal. It can improve wettability and reactivity, and
We are actively investigating a manufacturing method for a fiber molded body that can easily bundle and mold a large amount of reinforcing fibers, and that allows the matrix metal to easily penetrate between the R vertebrae of the fiber molded body of the parentheses to obtain a high-strength composite material. As a result, it has been found that a fiber molded article that satisfies the above conditions can be obtained in an extremely simple and extremely short process using the method described below.

即ち、炭素繊維強化金JiIIP11合材料用繊維成型
体を製造するに際し、珪素と炭素とを主要骨格成分とす
る有機珪素高分子化合物、特に一般式(1)(但し、R
’、 R”はそれぞれ水素原子、アルキル基、フェニル
基、トリアルキルシリル基を示し。
That is, when producing a fiber molded body for carbon fiber reinforced gold JiIIIP11 composite material, an organosilicon polymer compound having silicon and carbon as main skeleton components, especially general formula (1) (however, R
' and R'' represent a hydrogen atom, an alkyl group, a phenyl group, and a trialkylsilyl group, respectively.

nは4以上の整数を示す。) で示される環状ポリシラン、または一般式(II)(但
し、R1,R2はそれぞれ水素原子、アルキル基、フェ
ニル基、トリアルキルシリル基を、R3゜R4はそれぞ
れ水素原子、アルキル基、フェニル基、トリアルキルシ
リル基、水酸基、アルコキシ基を示し、nは30以上の
整数を示す。)で示される原状ポリシランから選ばれる
ポリシラン骨格を有する有機珪素化合物を不活性ガス中
及び水素ガス中並びに真空中から選ばれる雰囲気中で3
00℃以上2000℃以下の範囲に加熱して熱分解重縮
反応を行うことにより得られる珪素と炭素とを主な骨格
成分とする有機珪素高分子化合物を有機溶媒に溶解し、
更にこれに金属またはセラミックスの微粉末を添加、分
散して調製した溶液中に炭素繊維束を浸漬して該溶液を
炭素繊維束に含浸させ、次いで該炭素繊維束を所用形状
に予備成型した後、加熱、焼成して該炭素繊維束中に含
浸する上記有機珪素高分子化合物を炭化珪素質セラミッ
クスに熱分解し、上記金属又はセラミックスの微粉末を
介して該炭化珪素質セラミックスで炭素繊維間を結合す
ることにより、アルミニウム、マグネシウム又はその合
金をマトリックスとする繊維強化金属複合材料、特に高
圧鋳造法で複合材料を製造しようとする場合の繊維成型
体として極めて有効な炭素繊維表面を被覆した炭素繊維
束成型体が得られることを知見した。
n represents an integer of 4 or more. ), or a cyclic polysilane represented by the general formula (II) (wherein R1 and R2 each represent a hydrogen atom, an alkyl group, a phenyl group, or a trialkylsilyl group, and R3゜R4 each represent a hydrogen atom, an alkyl group, a phenyl group, A trialkylsilyl group, a hydroxyl group, an alkoxy group, and n is an integer of 30 or more. 3 in an atmosphere of being chosen
An organosilicon polymer compound whose main skeleton components are silicon and carbon obtained by heating to a temperature in the range of 00°C or more and 2000°C or less is dissolved in an organic solvent,
Further, a carbon fiber bundle is immersed in a solution prepared by adding and dispersing fine powder of metal or ceramics to impregnate the carbon fiber bundle with the solution, and then the carbon fiber bundle is preformed into a desired shape. The organosilicon polymer compound impregnated into the carbon fiber bundle by heating and firing is thermally decomposed into a silicon carbide ceramic, and the silicon carbide ceramic is bonded between the carbon fibers via the fine powder of the metal or ceramic. By bonding, carbon fibers coated with carbon fiber surfaces are extremely effective as fiber-reinforced metal composite materials with aluminum, magnesium, or their alloys as a matrix, especially as fiber moldings when manufacturing composite materials using high-pressure casting methods. It was found that a bundle molded body can be obtained.

更に、このようにして得られた繊維成型体を同じ有機珪
素高分子化合物を有機溶剤に溶解させた溶液に再度浸漬
し、乾燥、焼成を少なくとも一同以上繰り返すことによ
り、鋳造法で製造した場合に強度が非常に高く、かつバ
ラツキの少ない信頼性の高い複合材料とし得る繊維成型
体が得られることを見い出し、本発明に至ったものであ
る。
Furthermore, when the fiber molded body obtained in this way is immersed again in a solution of the same organosilicon polymer compound dissolved in an organic solvent, and the process of drying and firing is repeated at least once, the molded fiber body is produced by a casting method. The inventors have discovered that it is possible to obtain a fiber molded body that can be used as a highly reliable composite material that has very high strength and little variation, and has led to the present invention.

本発明によれば、有機珪素高分子化合物と金属又はセラ
ミックス微粉末とを有機溶媒にそれぞれ溶解2分散した
溶液中に炭素繊維束を浸漬した後、適宜所望の形状に成
型して乾燥、焼成するだけで。
According to the present invention, a carbon fiber bundle is immersed in a solution in which an organosilicon polymer compound and a fine metal or ceramic powder are dissolved and dispersed in an organic solvent, and then formed into a desired shape, dried, and fired. Just by itself.

金属又はセラミックス微粉末が繊維間に介在して繊維同
志の密着を防止し、繊維間にマトリックス金属が侵入し
得る間隙ができると共に、有機珪素高分子化合物から転
化した炭化珪素質セラミックスで金属またはセラミック
ス微粉末を介して繊維間が強固に結合し、繊維束を製造
中の取り扱いや鋳造過程における圧力下にも変形するこ
とのない保形性の高い繊維成型体を得ることができる。
The metal or ceramic fine powder is interposed between the fibers to prevent the fibers from adhering to each other, creating a gap between the fibers in which the matrix metal can enter. The fibers are strongly bonded through the fine powder, and it is possible to obtain a fiber molded body with high shape retention that does not deform even when the fiber bundle is handled during manufacturing or under pressure during the casting process.

更に、炭素繊維表面には有機珪素高分子化合物から転化
された炭化珪素質セラミックスが被覆されるので、炭素
繊維の金属との濡れ性が向上し、且つ熔融金属と炭素繊
維との反応も抑制することが可能となり、この炭素繊維
をマトリックス金属と鋳造して複合化すると極めて強度
の高い複合材料が得られる。加えて5本発明によれば、
前記繊維成型体を再度有機珪素高分子化合物の溶液中に
浸漬し、乾燥、焼成を行うことで、更に強度の高い、即
ち複合側によって期待される理論強度に極めて近い複合
材料を得ることのできる繊維成型体を製造し得、しかも
この繊維成型体は所望の形状に成型されており、これを
金属の溶盪中で圧力下に鋳造するだけで所望の部品形状
の複合材料を容易に得ることができる。
Furthermore, since the surface of the carbon fiber is coated with silicon carbide ceramics converted from an organic silicon polymer compound, the wettability of the carbon fiber with metal is improved, and the reaction between the molten metal and the carbon fiber is also suppressed. When this carbon fiber is cast and composited with a matrix metal, an extremely strong composite material can be obtained. In addition, according to the present invention,
By immersing the fiber molded body again in a solution of an organosilicon polymer compound, drying, and firing, it is possible to obtain a composite material with even higher strength, that is, extremely close to the theoretical strength expected from the composite side. To easily obtain a composite material having a desired part shape by manufacturing a fiber molded body, which is molded into a desired shape, and simply by casting the fiber molded body under pressure in melting metal. Can be done.

従って1本発明は、珪素と炭素とを主要骨格成分とする
有機珪素高分子化合物を有機溶媒に溶解し、更にこれに
金属またはセラミックスの微粉末を添加、分散して調製
した溶液中に炭素繊維束を浸漬して該溶液を炭素繊維束
に含浸させ、次いで該炭素繊維束を所用形状に予備成型
した後、加熱。
Accordingly, the present invention provides carbon fibers in a solution prepared by dissolving an organosilicon polymer compound whose main skeleton components are silicon and carbon in an organic solvent, and further adding and dispersing fine powder of metal or ceramics thereto. The carbon fiber bundle is impregnated with the solution by dipping the bundle, and then the carbon fiber bundle is preformed into the desired shape and then heated.

焼成して該炭素繊維束中に含浸する該有機珪素高分子化
合物を炭化珪素質セラミックスに熱分解して、金属又は
セラミックスの微粉末を介して該炭化珪素質セラミック
スで炭素繊維間を結合すると共に、炭素繊維表面を被覆
することを特徴とする繊維成型体の製造方法、及び上記
方法で繊維成型体を製造した後、有機溶媒に珪素と炭素
とを主要骨格成分とする有機珪素高分子化合物を溶解し
た溶液に該繊維成型体を浸漬し、乾燥、加熱、焼成する
工程を少なくとも一回以上繰り返して行うことを特徴と
する繊維成型体の製造方法を提供する。
The organosilicon polymer compound impregnated into the carbon fiber bundle by firing is thermally decomposed into a silicon carbide ceramic, and the carbon fibers are bonded with the silicon carbide ceramic through a fine metal or ceramic powder. , a method for manufacturing a fiber molded body characterized by coating the surface of carbon fibers, and after manufacturing the fiber molded body by the above method, an organic silicon polymer compound having silicon and carbon as main skeleton components is added to an organic solvent. Provided is a method for producing a fiber molded body, which comprises repeating the steps of immersing the fiber molded body in a dissolved solution, drying, heating, and firing the fiber molded body at least once or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用される珪素と炭素とを主要骨格成分とする
有機珪素高分子化合物としては種々選定され、特に制限
されるものではないが、上記[r]式で示される環状ポ
リシラン及び上記(II)式で示される鎖状ポリシラン
から選ばれるポリシラン骨格を有する有機珪素化合物を
不活性ガス中及び水素ガス中並びに真空中から選ばれる
雰囲気中で300℃以上2000℃以下の範囲に加熱し
て熱分解重縮合反応を行うことにより得られるポリカル
ボシラン重合体及びポリシルフェニレン重合体並びにこ
れらの混合物から選ばれる1種又は2種以上の化合物が
好適に用いられる。
The organosilicon polymer compound having silicon and carbon as main skeleton components used in the present invention is variously selected, and is not particularly limited. ) An organosilicon compound having a polysilane skeleton selected from chain polysilanes represented by the formula is thermally decomposed by heating to a temperature of 300°C to 2000°C in an atmosphere selected from inert gas, hydrogen gas, and vacuum. One or more compounds selected from polycarbosilane polymers, polysilphenylene polymers, and mixtures thereof obtained by performing a polycondensation reaction are preferably used.

本発明製造方法においては、まず上記有機珪素高分子化
合物を有機溶媒中に溶解、希釈するが、この場合、有機
溶剤としては、例えばヘキサンなどの脂肪族炭化水素、
トルエン、キシレンなどの芳香族炭化水素、エチルエー
テル、テトラヒドロフランなどのエーテル類、メチルク
ロロホルムなどのハロゲン化炭化水素などの溶剤が好適
に使用し得る。また、これら有機溶媒に有機珪素高分子
化合物を溶解する場合、特に制限されないが、有機珪素
高分子化合物の濃度が0.5〜50%(重量%、以下同
じ)、特に1〜30%となるように溶解することが好ま
しい。有機珪素高分子化合物の濃度が0.5%より低い
と、繊維束を成型し、更に加熱、焼成した際に金属また
はセラミックスの微粉末と繊維との接着力が弱くなり、
繊維の弾性に負けて繊維がバラバラとなって成型体とな
らない場合があり、50%より高いと溶液の粘度が高く
なって繊維束間に溶液が良く含浸されなくなり。
In the production method of the present invention, the organosilicon polymer compound is first dissolved and diluted in an organic solvent. In this case, the organic solvent may be an aliphatic hydrocarbon such as hexane,
Solvents such as aromatic hydrocarbons such as toluene and xylene, ethers such as ethyl ether and tetrahydrofuran, and halogenated hydrocarbons such as methyl chloroform can be suitably used. In addition, when dissolving the organosilicon polymer compound in these organic solvents, the concentration of the organosilicon polymer compound will be 0.5 to 50% (wt%, the same hereinafter), particularly 1 to 30%, although it is not particularly limited. It is preferable to dissolve it in such a manner. If the concentration of the organosilicon polymer compound is lower than 0.5%, the adhesion between the metal or ceramic fine powder and the fibers will be weak when the fiber bundle is molded and further heated and fired.
The fibers may fall apart due to the elasticity of the fibers and cannot be formed into a molded product.If the content is higher than 50%, the viscosity of the solution will become high and the solution will not be well impregnated between the fiber bundles.

繊維間に介在させた微粉末により形成される間隙が少な
くなって鋳造の際にマトリックスが侵入し難くなる場合
がある。なお、本発明では強化繊維の径や希望する繊維
体積含有率Vfに応じて適宜な粒径のチタン、窒化はう
素等の金属またはセラミックスの微粉末を使用すること
が好ましく、例えば径7.mの炭素繊維を用いて繊維体
積含有率を40%とする場合は平均粒径が10pm程度
の微粒子が望ましく、繊維体積含有率が30%以下と低
い場合は、平均粒径の大きな微粒子を使用することが良
い。
The gaps formed by the fine powder interposed between the fibers may become smaller, making it difficult for the matrix to penetrate during casting. In the present invention, it is preferable to use fine powder of metals or ceramics such as titanium, boron nitride, etc., with an appropriate particle size depending on the diameter of the reinforcing fibers and the desired fiber volume content Vf. When the fiber volume content is 40% using m carbon fiber, it is desirable to use fine particles with an average particle size of about 10 pm, and when the fiber volume content is as low as 30% or less, use fine particles with a large average particle size. It's good to do.

更に、金属またはセラミックスの微粉末の添加量は、希
望する繊維体積含有率Vfなどに応じ。
Furthermore, the amount of metal or ceramic fine powder added depends on the desired fiber volume content Vf, etc.

適宜選定されるが、有機珪素高分子化合物を溶解した有
機溶媒に対して1〜20g/!の範囲が好ましい。
It is selected as appropriate, but 1 to 20 g/! for the organic solvent in which the organosilicon polymer compound is dissolved! A range of is preferred.

本発明の製造方法においては、このようにして得られた
有機珪素高分子化合物と金属またはセラミックスの微粉
末を含有する溶液中に炭素繊維束を浸漬し、繊維間に有
機珪素高分子化合物と金属またはセラミックス微粉末を
含浸させた後、取り出して所用の形状に予備成型する。
In the production method of the present invention, a carbon fiber bundle is immersed in a solution containing the organosilicon polymer compound obtained in this way and fine powder of metal or ceramics, and the organic silicon polymer compound and metal are immersed between the fibers. Alternatively, after being impregnated with fine ceramic powder, it is taken out and preformed into a desired shape.

ここで、炭素繊維束はポリアクリロニトリルやピッチか
ら工業的に生産される炭素質または黒鉛質の連続繊維で
形成されたものが好適に採用され、この炭素繊維にサイ
ジングが施されている場合は予め有機溶剤で洗浄した後
に使用することが好ましい。
Here, the carbon fiber bundle is preferably made of carbonaceous or graphite continuous fibers industrially produced from polyacrylonitrile or pitch, and if the carbon fibers are sized in advance. It is preferable to use it after washing with an organic solvent.

なお、上記溶液中に炭素繊維束を浸漬する方法や時間に
制約はないが、溶液に超音波をかけながら浸漬すると、
溶液中に金属またはセラミックス微粉末が均一に分散す
る上に、炭素繊維が一本一本バラバラにほぐれてこの繊
維間に微粉末が均一に取り込まれるので極めて有効であ
る。浸漬時間は、繊維間に対する含浸程度により決めら
れ、1秒〜60分程度とすることができるが、上述した
超音波下においては10〜120秒程度で十分である。
There are no restrictions on the method or time of immersing the carbon fiber bundle in the above solution, but if the carbon fiber bundle is immersed in the solution while applying ultrasonic waves,
This method is extremely effective because not only the metal or ceramic fine powder is uniformly dispersed in the solution, but also the carbon fibers are loosened one by one and the fine powder is evenly incorporated between the fibers. The immersion time is determined by the degree of impregnation between the fibers and can be about 1 second to 60 minutes, but about 10 to 120 seconds is sufficient under the above-mentioned ultrasonic waves.

更に、成型方法も限定はなく1例示すると上記溶液に浸
漬した炭素繊維をガラス或いはフッ素樹脂などの管の中
に引き込む方法や繊維束の周囲を紐やテープ或いは同材
質の炭素繊維で巻き付けるなどの方法で成型する方法が
挙げられる。この場合、繊維束からは余剰の溶液を排除
することが好ましく、かように成型した後、減圧下で加
熱するなどして溶媒を蒸発させると、有機珪素高分子化
合物により繊維が金属またはセラミックス微粉末を介し
て間隙を保持しつつ互に接着した炭素繊維束の予備成型
体を得ることができる。
Furthermore, there are no limitations on the molding method, and examples include a method in which carbon fibers immersed in the above solution are drawn into a tube made of glass or fluororesin, and a fiber bundle is wrapped around the fiber bundle with string, tape, or carbon fibers made of the same material. One example is a method of molding. In this case, it is preferable to remove excess solution from the fiber bundle, and if the solvent is evaporated by heating under reduced pressure after forming the fiber bundle, the organic silicon polymer compound will cause the fiber to become a metal or ceramic fine material. It is possible to obtain a preformed body of carbon fiber bundles that are bonded to each other while maintaining a gap through the powder.

次に、本発明製造方法では、上述のようにして得られた
炭素繊維束の予備成型体を加熱、焼成して繊維成型体を
得る。
Next, in the manufacturing method of the present invention, the preformed carbon fiber bundle obtained as described above is heated and fired to obtain a fiber molded body.

この場合、加熱、焼成条件は別に限定されず、炭素繊維
束に含浸する有機珪素高分子化合物が熱分解して炭化珪
素質セラミックスに変化し得る条件であればよく、一般
には不活性ガス、アンモニアガス、水素ガスやこれらの
混合ガスの雰囲気中又は真空中で700〜1000℃、
特に700〜950℃の範囲に加熱して焼成する方法が
採用できる。
In this case, the heating and firing conditions are not particularly limited, and may be any conditions that allow the organosilicon polymer compound impregnated into the carbon fiber bundle to thermally decompose and transform into silicon carbide ceramics, and generally include inert gas, ammonia, etc. 700 to 1000°C in an atmosphere of gas, hydrogen gas, or a mixture of these gases or in vacuum,
In particular, a method of firing by heating to a temperature in the range of 700 to 950°C can be adopted.

なお、上記一連の成型体製造過程では特開昭52−91
917号公報に示されたような不融化処理、即ち空気酸
化などの処理は全く不要であり、従って本発明によれば
成型体の保形性を損なうことはない。また、上記加熱、
焼成工程で上記(1)又は〔■〕式のポリシランより得
られる有機珪素高分子化合物から転化される炭化珪素質
セラミックスは約80重量%にも達し、従って繊維と微
粉末の結合並びに繊維表面の被覆に要する有機珪素高分
子化合物の必要量は極めて少量とすることができる。
In addition, in the above-mentioned series of molded body manufacturing processes,
There is no need for infusibility treatment, ie, treatment such as air oxidation, as shown in Japanese Patent No. 917, and therefore, according to the present invention, the shape retention of the molded product is not impaired. In addition, the above heating,
The amount of silicon carbide ceramics converted from the organosilicon polymer compound obtained from the polysilane of the formula (1) or [■] in the firing process reaches approximately 80% by weight, and therefore the bond between the fibers and the fine powder and the surface of the fibers are reduced. The amount of organosilicon polymer compound required for coating can be extremely small.

更に本発明においては、このようにして得られた繊維成
型体を再度有機珪素高分子化合物を有機溶媒に溶解した
溶液に浸漬し、乾燥、加熱、焼成する工程を少なくとも
1回以上繰り返す再被覆工程を行うと、複合材料とした
場合にその引張強度がより高く、複合側によって期待さ
れる理論強度に極めて近い値となり得る繊維成型体を得
ることができる。
Furthermore, in the present invention, a re-coating step is performed in which the fiber molding thus obtained is immersed again in a solution in which an organosilicon polymer compound is dissolved in an organic solvent, and the steps of drying, heating, and baking are repeated at least once or more. By doing so, it is possible to obtain a fiber molded article whose tensile strength is higher when made into a composite material, and which can have a value extremely close to the theoretical strength expected from the composite side.

この場合、繊維成型体を再浸漬する溶液には、上記(1
)式又は〔■〕式の有機珪素化合物から得られる有機珪
素高分子化合物を有機溶媒に溶解したものが好適に使用
されるが、この再被覆に使用する溶液に添加する有機珪
素高分子化合物は前述の炭素繊維束を浸漬する溶液に添
加した有機珪素高分子化合物と同一でも、また異なるも
のを使用してもよい。更に、有機珪素高分子化合物の添
加量は別に制限されないが、溶液中の濃度が0.5〜3
0%、特に1〜25%となるように添加することが好ま
しい。濃度が0.5%より低いと再被覆の実効が上がら
ない場合があり、30%より多いと経済的に不利である
。なお、再被覆に用いる有機珪素高分子化合物溶液には
、金属またはセラミックスの微粉末を添加する必要はな
い。
In this case, the solution for re-immersing the fiber molded product includes the above (1)
) or [■] formula dissolved in an organic solvent is preferably used, but the organosilicon polymer compound added to the solution used for this recoating is The organic silicon polymer compound may be the same as the above-mentioned organic silicon polymer compound added to the solution in which the carbon fiber bundle is immersed, or a different one may be used. Further, the amount of the organic silicon polymer compound added is not particularly limited, but the concentration in the solution is 0.5 to 3.
It is preferable to add 0%, especially 1 to 25%. If the concentration is lower than 0.5%, the effectiveness of recoating may not be improved, and if it is higher than 30%, it is economically disadvantageous. Note that it is not necessary to add fine metal or ceramic powder to the organosilicon polymer compound solution used for recoating.

有機珪素高分子化合物を再含浸した繊維成型体は、上記
と同様の方法及び条件で乾燥し、加熱。
The fiber molded body re-impregnated with the organosilicon polymer compound was dried and heated using the same method and conditions as above.

焼成を行うことができる。Can be fired.

このようにして得られた繊維束成型体は、鋳型内にセッ
トして窒素雰囲気下に余熱後、マトリックスとしてアル
ミニウム、マグネシウムまたはその合金などの溶量を注
入して圧力をかけるなど、通常の成型方法により容易に
複合材料を得ることができる。
The fiber bundle molded body obtained in this way is set in a mold and preheated in a nitrogen atmosphere, and then subjected to normal molding, such as injecting a molten amount of aluminum, magnesium, or an alloy thereof as a matrix and applying pressure. Composite materials can be easily obtained by this method.

見訓夏夏釆 以上説明したように、本発明の繊維成型体の製造方法に
よれば、炭素繊維の連続繊維を所望形状の繊維成型体と
することができる上に、炭素繊維が金属またはセラミッ
クスの微粉末を介して炭化珪素質セラミックスで間隙を
保持して強固に接着するので、複合化の際に繊維間にマ
トリックス金属が侵入し易く、かつ製造時の取り扱いや
鋳造時の高圧処理においても所望の形状を保持し得る保
形強度の高い繊維成型体が得られ、しがも繊維が接着す
るのと同時に繊維表面が炭化珪素質セラミックスで被覆
されるので、この繊維成型体はマトリックス金属との濡
れ性が良好であると共に、マトリックス金属と反応し難
く、繊維とマトリックス金属との密着性に優れている。
As explained above, according to the method for manufacturing a fiber molded body of the present invention, continuous fibers of carbon fiber can be made into a fiber molded body having a desired shape. Because the silicon carbide ceramic maintains the gap and firmly adheres through the fine powder of A fiber molded body with high shape-retaining strength that can maintain a desired shape is obtained, and since the fiber surface is coated with silicon carbide ceramics at the same time as the fibers are bonded, this fiber molded body can be bonded to the matrix metal. In addition to having good wettability, it is difficult to react with the matrix metal and has excellent adhesion between the fiber and the matrix metal.

更に、本発明によれば、得られた繊維成型体に再被覆を
施すと、より保形性が高く、信頼性に優れた繊維成型体
を得ることができる。
Furthermore, according to the present invention, by re-coating the obtained fiber molded body, a fiber molded body with higher shape retention and excellent reliability can be obtained.

従って1本発明の製造方法は、最終部品に近い種々の形
状を有し、7トリツクス金属で複合化して炭素繊維強化
金属複合材として幅広く利用し得る繊維成型体を簡単且
つ極めて短い工程で、非常に生産性良く製造するもので
ある。
Therefore, the manufacturing method of the present invention has various shapes similar to final parts, and can be composited with 7 trix metals and used widely as carbon fiber reinforced metal composites, in a simple and extremely short process. It can be manufactured with high productivity.

以下に実施例及び比較例を示して本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 (ポリカルボシランの調fR) 内容積100Qのグラスライニング製反応器にキシレン
40Qを仕込み、金属ナトリウム10kg(435モル
)を投入してから反応器を110’Cまで昇温して金属
ナトリウムを融解させ、攪拌しながらここにジメチルジ
クロロシラン28 kgを定量ポンプを用いて5時間で
注入した。140℃で10時間反応させた後、反応液を
濾過して水洗し、食塩を除去し乾燥したところ、ポリジ
メチルシラン12kg(収率95%)が得られた。次に
、内容積500mQのステンレススチール製反応器に得
られたポリジメチルシラン350gを充填し、器内の雰
囲気を窒素ガスで置換徐昇温し、圧力120kg/lI
n2G、温度430℃で重合させた。重合は20時間で
終了し、ポリカルボシラン210g(収率60%)を得
た。
[Example 1] (Preparation of polycarbosilane fR) Xylene 40Q was charged into a glass-lined reactor with an internal volume of 100Q, 10 kg (435 mol) of metallic sodium was added, and the temperature of the reactor was raised to 110'C. The sodium metal was melted, and 28 kg of dimethyldichlorosilane was injected into the solution over 5 hours using a metering pump while stirring. After reacting at 140° C. for 10 hours, the reaction solution was filtered, washed with water, salt was removed, and dried to obtain 12 kg of polydimethylsilane (yield: 95%). Next, a stainless steel reactor with an internal volume of 500 mQ was filled with 350 g of the obtained polydimethylsilane, the atmosphere inside the vessel was replaced with nitrogen gas, and the temperature was gradually raised to a pressure of 120 kg/lI.
Polymerization was carried out at n2G and a temperature of 430°C. The polymerization was completed in 20 hours, and 210 g (yield: 60%) of polycarbosilane was obtained.

(a維の調製と浸漬) 第1図に示した巻取機1を用いて、あらかじめサイジン
グ剤を溶剤で除去した炭素繊維2(トレ力M−40/6
000フイラメント)を巻取って長さ140 haにな
るように切断し、束ねて約6g(約606,000フイ
ラメント)の繊維束3を10本得た。一方、ポリカルボ
シラン200gをキシレン800gに溶解させ、ポリカ
ルボシランの20重量%の溶液を調製し、更に9.6g
の粒径10Imの窒化はう素粉末(信越化学工業(株)
製KBN(h)−10)を添加して分散溶液を得た0次
に、第2図のように超音波洗浄機4(島津製作所製ウル
トラソニッククリーナー)内に上記分散溶液5を入れる
と共に、この分散溶液5中に前記繊維束3を浸漬させ、
超音波洗浄機にて3分間分散溶液5を含浸させた。次い
で、繊維束を溶液中から引出し、第3図に示すように内
径8mmのパイレックス製ガラス管6に挿入して余分な
溶液を排除した。なお、このガラス管内の繊維体積含有
率Vfは40%である。
(Preparation and soaking of a-fiber) Using the winder 1 shown in Fig. 1, carbon fiber 2 (Train Force M-40/6
000 filaments) was wound up, cut to a length of 140 ha, and bundled to obtain 10 fiber bundles 3 weighing approximately 6 g (approximately 606,000 filaments). Meanwhile, 200 g of polycarbosilane was dissolved in 800 g of xylene to prepare a 20% by weight solution of polycarbosilane, and an additional 9.6 g
Boron nitride powder with a particle size of 10Im (Shin-Etsu Chemical Co., Ltd.)
Next, as shown in FIG. 2, the above dispersion solution 5 was put into an ultrasonic cleaner 4 (Ultrasonic cleaner manufactured by Shimadzu Corporation), and The fiber bundle 3 is immersed in this dispersion solution 5,
It was impregnated with dispersion solution 5 for 3 minutes using an ultrasonic cleaner. Next, the fiber bundle was pulled out of the solution and inserted into a Pyrex glass tube 6 with an inner diameter of 8 mm, as shown in FIG. 3, to remove excess solution. Note that the fiber volume content Vf in this glass tube was 40%.

(予備焼成) この繊維束をガラス管に入れたまま一昼夜室温で放置し
て乾燥させ、更にそのまま電気炉内に入れて減圧下(1
0〜20Torr)、300℃にて1時間キシレンの蒸
発を行わしめた後、アルゴンガスを封入して大気圧に戻
した。次いでアルゴンガス気流中において、2.5℃/
winの昇温速度で500℃まで加熱し、500℃にて
1時間保持した。冷却後、ガラス管から繊維束を引出し
たところ、この予備焼成で繊維束は完全に硬化して管内
の形状を保っており、これにより繊維束予備成型体(直
径8mmX 140 Q)10本が得られた。
(Preliminary firing) The fiber bundle was placed in a glass tube and left at room temperature overnight to dry, then placed in an electric furnace as it was and under reduced pressure (1
After xylene was evaporated at 300° C. for 1 hour at a temperature of 0 to 20 Torr, the pressure was returned to atmospheric pressure by filling with argon gas. Then, in an argon gas flow, the temperature was increased to 2.5°C/
The sample was heated to 500° C. at a temperature increase rate of 100° C. and held at 500° C. for 1 hour. When the fiber bundle was pulled out from the glass tube after cooling, it was found that the pre-baking had completely hardened the fiber bundle and maintained the shape inside the tube, resulting in 10 preformed fiber bundles (diameter 8 mm x 140 Q). It was done.

(本焼成) 第4図に示すように、この予備成型体7を再度電気炉8
内に入れてアルゴンガス9雰囲気下に2.5℃7’+i
nの昇温速度で800℃まで加熱し。
(Final firing) As shown in FIG.
and heated to 2.5℃7'+i under argon gas 9 atmosphere.
Heating to 800°C at a heating rate of n.

800℃で1時間本焼成を行った。この本焼成によりポ
リカルボシランは分解して炭化珪素質セラミックスとな
り、非常に強固な繊維束成型体10本が得られた。成型
体の重量増加は炭素繊維の重量に対し13%の増加とな
っていた。
Main firing was performed at 800°C for 1 hour. By this main firing, the polycarbosilane was decomposed into silicon carbide ceramics, and 10 very strong fiber bundle molded bodies were obtained. The weight of the molded body increased by 13% relative to the weight of the carbon fiber.

(鋳造) 成型体をN2雰囲気下、500℃に数分間予熱した後、
加圧鋳造用金型内にセットし、直ちに熔融温度800℃
のアルミニウム合金(AQ−7%Si)を注入し、l 
OOOkgf/aJの圧力を60秒間作用させた。
(Casting) After preheating the molded body to 500°C for several minutes in an N2 atmosphere,
Place it in a pressure casting mold and immediately bring it to a melting temperature of 800°C.
of aluminum alloy (AQ-7%Si) is injected, l
A pressure of OOOkgf/aJ was applied for 60 seconds.

得られた複合体は、断面l1Ii察結果から繊維の凝集
成いは繊維同志の接着が参考写真1かられかるように殆
ど見られず、均一に分散された状態となっており、注量
・加°圧時における繊維束成型体の変形もなかった。ま
た、複合体の引張試験を行ったところ、平均値で引張強
度70kg/wm2、弾性率19ton/、m”という
高い数値が得られた。
The obtained composite was found to be in a uniformly dispersed state with almost no fiber aggregation or adhesion between fibers as seen in Reference Photo 1 from the cross-section l1Ii observation results. There was no deformation of the fiber bundle molded body during pressurization. Further, when the composite was subjected to a tensile test, high values of average tensile strength of 70 kg/wm2 and elastic modulus of 19 ton/m'' were obtained.

〔比較例1〕 窒化はう素粉末を使用しないで、実施例1と同一条件で
繊維束成型体を作り、次いで鋳造した。
[Comparative Example 1] A fiber bundle molded body was produced under the same conditions as in Example 1 without using boron nitride powder, and then cast.

得られた複合体は、参考写真2でわかるように繊維束が
複合体の中央に凝集しており、アルミニウム合金が繊維
束の中に浸透していなかった。引張強度は32 kg 
/ m”、弾性率は12 ton/ m”であった。
As can be seen from Reference Photo 2, in the obtained composite, the fiber bundles were aggregated in the center of the composite, and the aluminum alloy did not penetrate into the fiber bundles. Tensile strength is 32 kg
/ m", and the elastic modulus was 12 ton/m".

〔実施例2〕 (繊維成型体の調製) サイジング剤を施していない炭素繊維(トレカM−40
−99/6000フィラメント)を用い、実施例1と同
様に操作して、約6g(約606,000フイラメント
)の繊維束10本を得た。一方、ポリカルボシラン20
0gをキシレン800gに溶解させ、ポリカルボシラン
の20重量%の溶液を調製し、更に11.3gの粒径1
0−のチタン粉末を添加して分散溶液を得た。超音波洗
浄機にこの分散溶液を入れ、実施例1と同様に浸漬、成
型、乾燥、予備焼成2本焼成の各処理を行い、Vf40
%の繊維束成型体10本を得た。成型体の重量増加は炭
素繊維の重量に対し、12%の増加となっていた。
[Example 2] (Preparation of fiber molded product) Carbon fiber without sizing agent (Trading Card M-40)
-99/6000 filament) and operated in the same manner as in Example 1 to obtain 10 fiber bundles weighing about 6 g (about 606,000 filaments). On the other hand, polycarbosilane 20
0g of polycarbosilane was dissolved in 800g of xylene to prepare a 20% by weight solution of polycarbosilane, and further 11.3g of particle size 1
0- titanium powder was added to obtain a dispersion solution. This dispersion solution was placed in an ultrasonic cleaner, and subjected to the same processes as in Example 1, including dipping, molding, drying, and pre-baking and 2-piece firing, to obtain a Vf40
% fiber bundle molded bodies were obtained. The weight of the molded body increased by 12% relative to the weight of the carbon fiber.

(再被覆) ポリカルボシラン50gをキシレン950gに溶解させ
、ポリカルボシラン5重量%の溶液を得た。前記繊維束
成型体をこの溶液中に浸漬し、超音波洗浄機にて2分間
溶液を含浸させた後、室温にて一昼夜乾燥し、更に電気
炉内に入れて減圧下(10〜20 Torr)、300
℃にて1時間キシレンの蒸発を行わしめた後、アルゴン
ガスを封入して大気圧に戻した。次いでアルゴンガス気
流下2.5℃/n+inの昇温速度で800℃まで加熱
し、800℃にて1時間保持した。冷却後、10本の繊
維束成型体を得た。
(Recoating) 50 g of polycarbosilane was dissolved in 950 g of xylene to obtain a 5% by weight solution of polycarbosilane. The fiber bundle molded body was immersed in this solution, impregnated with the solution for 2 minutes using an ultrasonic cleaner, dried overnight at room temperature, and then placed in an electric furnace under reduced pressure (10 to 20 Torr). , 300
After evaporating xylene at ℃ for 1 hour, argon gas was filled in and the pressure was returned to atmospheric pressure. Next, the mixture was heated to 800°C at a temperature increase rate of 2.5°C/n+in under an argon gas flow, and maintained at 800°C for 1 hour. After cooling, 10 fiber bundle molded bodies were obtained.

(鋳造) 得られた繊維束成型体を用い、実施例1と同一条件でア
ルミニウム合金を鋳造した。
(Casting) Using the obtained fiber bundle molded body, an aluminum alloy was cast under the same conditions as in Example 1.

得られた複合体は実施例1と同様に繊維の凝集や変形は
みられなかった。また、複合体の引張強度は95 kg
 / mm2、弾性率21 ton/ nl112と極
めて高く、複合則から期待される値とほぼ一致した。
As in Example 1, no fiber aggregation or deformation was observed in the obtained composite. Also, the tensile strength of the composite is 95 kg
/ mm2 and elastic modulus of 21 ton/nl112, which were extremely high and almost matched the values expected from the compound law.

〔実施例3〕 (繊維成型体の調!B2) サイジング剤除去した炭素繊維(トレカM−40/60
00フィラメント)を実施例1と同一条件にて操作し、
約6g(約606,000フイラメント)の繊維束を得
た。一方、ポリカルボシラン300gをキシレン700
gに溶解させ、ポリカルボシランの30重量%の溶液を
yA111!L、更に8、ogの粒径110l1の窒化
はう素粉床を添加して分散溶液を得た。超音波洗浄機に
この分子Il溶液を入れ、実施例1と同様にこの中に炭
素繊維束を浸漬し、内径8−のテフロン製チューブで成
型を行った。約10分放置後、テフロンチューブから引
き抜いたところ、形状を保持していたのでそのまま一昼
夜放置して乾燥させた。これを電気炉内に入れて減圧下
(10〜20 Torr)、300℃にて1時間キシレ
ンの蒸発を行わしめた後、アルゴンガスを封入して大気
圧に戻し、アルゴンガス気流中2.5℃/minの昇温
速度で800℃まで加熱し、800℃にて1時間保持し
てVf38%の繊維束成型体を得た。成型体の重量増加
は炭素繊維の重量に対し、18%の増加となっていた。
[Example 3] (Preparation of fiber molded body! B2) Carbon fiber from which sizing agent was removed (Trading card M-40/60
00 filament) under the same conditions as Example 1,
Approximately 6 g (approximately 606,000 filaments) of fiber bundles were obtained. On the other hand, 300 g of polycarbosilane was mixed with 700 g of xylene.
A 30% by weight solution of polycarbosilane was dissolved in yA111! Further, a bed of nitriding boron powder with a particle size of 110 liters of 8.0 og was added to obtain a dispersion solution. This molecular Il solution was placed in an ultrasonic cleaner, and a carbon fiber bundle was immersed therein in the same manner as in Example 1, and molded using a Teflon tube with an inner diameter of 8 mm. After leaving it for about 10 minutes, it was pulled out from the Teflon tube and found that it retained its shape, so it was left to dry overnight. This was placed in an electric furnace and the xylene was evaporated under reduced pressure (10 to 20 Torr) at 300°C for 1 hour, then argon gas was filled in and the pressure returned to atmospheric pressure. It was heated to 800°C at a temperature increase rate of °C/min and held at 800°C for 1 hour to obtain a fiber bundle molded body with a Vf of 38%. The weight of the molded body increased by 18% compared to the weight of the carbon fiber.

(再被覆) ポリカルボシラン100gをキシレン900gに溶解さ
せ、ポリカルボシラン10重量%の溶液を得た。前記繊
維束成型体をこの溶液中に浸漬し、超音波洗浄機にて2
分間溶液を含浸させた後、室温にて一昼夜乾燥し、更に
電気炉内に入れて減圧下(l O〜20 Torr)、
300℃にて1時間キシレンの蒸発を行わしめた後、ア
ルゴンガスを封入して大気圧に戻した。次いでアルゴン
ガス気流下2.5℃/ll1inの昇温速度で850℃
まで加熱し、850℃にて1時間保持した。冷却後、繊
維束成型体を得た。
(Recoating) 100 g of polycarbosilane was dissolved in 900 g of xylene to obtain a 10% by weight solution of polycarbosilane. The fiber bundle molded body was immersed in this solution and washed in an ultrasonic cleaner for 2 hours.
After being impregnated with the solution for a minute, it was dried at room temperature for a day and night, and then placed in an electric furnace under reduced pressure (1 O ~ 20 Torr).
After evaporating xylene at 300° C. for 1 hour, argon gas was filled in and the pressure was returned to atmospheric pressure. Then, the temperature was increased to 850°C at a heating rate of 2.5°C/11in under an argon gas flow.
and held at 850° C. for 1 hour. After cooling, a fiber bundle molded body was obtained.

(鋳造) 実施例1と同一条件で鋳造した。(casting) Casting was carried out under the same conditions as in Example 1.

得られた複合体は実施例1と同様に繊維の凝集や変形は
みられなかった。複合体の引張強度は82 kg/ t
rtn2、弾性率20 ton/ arr”であり、ま
た圧縮強度を測定したところ、64 kg / m ”
を示した。
As in Example 1, no fiber aggregation or deformation was observed in the obtained composite. The tensile strength of the composite is 82 kg/t
rtn2, elastic modulus 20 ton/arr", and measured compressive strength was 64 kg/m"
showed that.

〔実施例4〕 (繊維成型体の調製) サイジング剤除去した炭素繊維(トレカM−30076
000フィラメント)を実施例1と同一条件にて操作し
、約6g(約522,000フイラメント)の繊維束を
得た。一方、ポリカルボシラン8Qgをキシレン920
gに溶解させ、ポリカルボシランの8重量%の溶液を調
製し、更に10.ogの粒径1o−の窒化はう素粉床を
添加して分散溶液を得た。超音波洗浄機にこの分散溶液
を入れ、実施例1と同様に浸漬し、内径8声のテフロン
製チューブで成型を行った。約10分放置後、テフロン
チューブから引き抜き、−昼夜放置して乾燥させた。こ
れを電気炉内に入れて減圧下(10〜2 Q Torr
)、300’Cにて1時間キシレンの蒸発を行わしめた
後、N2ガスを封入して大気圧に戻し、次いでN2ガス
気流中2.5°C/l1ir1の昇温速度で760℃ま
で加熱し、760 ’Cにて1時間保持してVf40%
の繊維束成型体を得た。成型体の重量増加は炭素繊維の
重量に対し、11%の増加となっていた。
[Example 4] (Preparation of fiber molded product) Carbon fiber from which sizing agent was removed (Trading Card M-30076
000 filaments) was operated under the same conditions as in Example 1 to obtain a fiber bundle of approximately 6 g (approximately 522,000 filaments). On the other hand, 8Qg of polycarbosilane was mixed with 920g of xylene.
g to prepare an 8% by weight solution of polycarbosilane, and further 10. A bed of nitriding boron powder with a particle size of 10-g was added to obtain a dispersion solution. This dispersion solution was placed in an ultrasonic cleaner, immersed in the same manner as in Example 1, and molded into a Teflon tube with an inner diameter of 8 tones. After being left for about 10 minutes, it was pulled out from the Teflon tube and left to dry day and night. This was placed in an electric furnace and heated under reduced pressure (10 to 2 Q Torr).
), xylene was evaporated at 300'C for 1 hour, then returned to atmospheric pressure by filling with N2 gas, and then heated to 760°C at a heating rate of 2.5°C/l1ir1 in a N2 gas stream. Then, hold at 760'C for 1 hour to reduce Vf to 40%.
A fiber bundle molded body was obtained. The weight of the molded body increased by 11% compared to the weight of the carbon fiber.

(再被II) ポリカルボシラン100gをキシレン900gに溶解さ
せ、ポリカルボシラン10重量%の溶液を得た。前記繊
維束成型体をこの溶液中に浸漬し、超音波洗浄機にて2
分間溶液を含浸させた後、室温にて一昼夜乾燥し、更に
電気炉内に入れて減圧下(10〜20Torr)、30
0℃にて1時間キシレンの蒸発を行わしめた後、N2ガ
スを封入して大気圧に戻した。次いでN2ガス気流下2
.5℃/lll1nの昇温速度で750℃まで加熱し、
750℃にて1時間保持した。冷却後、繊維束成型体を
得た。
(Recoating II) 100 g of polycarbosilane was dissolved in 900 g of xylene to obtain a 10% by weight solution of polycarbosilane. The fiber bundle molded body was immersed in this solution and washed in an ultrasonic cleaner for 2 hours.
After impregnating with the solution for a minute, it was dried at room temperature for a day and night, and then placed in an electric furnace under reduced pressure (10 to 20 Torr) for 30 minutes.
After evaporating xylene at 0° C. for 1 hour, N2 gas was filled in and the pressure was returned to atmospheric pressure. Then under N2 gas flow 2
.. Heating to 750°C at a temperature increase rate of 5°C/lll1n,
It was held at 750°C for 1 hour. After cooling, a fiber bundle molded body was obtained.

(鋳造) 実施例1と同一条件で鋳造した。(casting) Casting was carried out under the same conditions as in Example 1.

得られた複合体は実施例1と同様に繊維の凝集や変形は
みられなかった。複合体の引張強度は63kg/us2
、弾性率12 ton/ +m2であり、また圧縮強度
は108kg/no”と極めて高い数値を示した。
As in Example 1, no fiber aggregation or deformation was observed in the obtained composite. The tensile strength of the composite is 63 kg/us2
, the elastic modulus was 12 ton/+m2, and the compressive strength was extremely high at 108 kg/no''.

〔実施例5〕 (繊維成型体の調11%) サイジング剤を施していない炭素繊維(トレカM−40
−99/6,000フィラメント)を実施例1と同様に
巻き取って、約30g(約2.800,000フイラメ
ント)の繊維束を得た。
[Example 5] (Condition of fiber molded body 11%) Carbon fiber without sizing agent (Trading Card M-40)
-99/6,000 filaments) was wound up in the same manner as in Example 1 to obtain a fiber bundle of about 30 g (about 2,800,000 filaments).

一方、ポリカルボシラン200gをキシレン800gに
溶解させ、ポリカルボシランの20重量%の溶液を調製
し、更に9.6gの粒径10.のチタン粉末を添加して
分散溶液を得た。次に実施例1と同様にこの分散溶液に
炭素繊維束を浸漬した後、内径17m+sのガラス管内
に挿入し、直ちに引き抜きながら同じ炭素繊維6,00
0フイラメントのヤーンで周囲を巻き付けて棒状に成型
した。−昼夜乾燥後、電気炉内に入れてアルゴンガス雰
囲気下に2.5℃/winの昇温速度で800℃まで加
熱し、800℃で1時間保持してVf40%で直径17
mm+の繊維束成型体を得た。成型体の重量増加は炭素
繊維の重量に対し13%の増加となっていた。
On the other hand, 200 g of polycarbosilane was dissolved in 800 g of xylene to prepare a 20% by weight solution of polycarbosilane, and 9.6 g of particle size 10. titanium powder was added to obtain a dispersion solution. Next, a carbon fiber bundle was immersed in this dispersion solution in the same manner as in Example 1, and then inserted into a glass tube with an inner diameter of 17 m+s.
The periphery was wrapped with zero filament yarn and molded into a rod shape. - After drying day and night, place in an electric furnace and heat to 800°C at a temperature increase rate of 2.5°C/win in an argon gas atmosphere, hold at 800°C for 1 hour, and set a diameter of 17 cm at a Vf of 40%.
A fiber bundle molded body of mm+ was obtained. The weight of the molded body increased by 13% relative to the weight of the carbon fiber.

(再被覆) ポリカルボシラン100gをキシレン900gに溶解さ
せ、ポリカルボシラン10重量%の溶液を得た。前記繊
維束成型体をこの溶液中に浸漬し、超音波洗浄機にて2
分間溶液を含浸させた後、室温にて一昼夜乾燥し、更に
電気炉内に入れて減圧下(10〜20 Torr)、3
00℃にて1時間キシレンの蒸発を行わしめた後、アル
ゴンガスを封入して大気圧に戻した。次いでアルゴンガ
ス気流下2.5℃/ff1inの昇温速度で800℃ま
で加熱し、800℃にて1時間保持した。冷却後、繊維
束成型体を得た。
(Recoating) 100 g of polycarbosilane was dissolved in 900 g of xylene to obtain a 10% by weight solution of polycarbosilane. The fiber bundle molded body was immersed in this solution and washed in an ultrasonic cleaner for 2 hours.
After being impregnated with the solution for a minute, it was dried at room temperature for a day and night, and then placed in an electric furnace under reduced pressure (10 to 20 Torr) for 3
After evaporating xylene at 00° C. for 1 hour, argon gas was filled in and the pressure was returned to atmospheric pressure. Next, it was heated to 800° C. at a temperature increase rate of 2.5° C./ff1 inch under an argon gas flow and held at 800° C. for 1 hour. After cooling, a fiber bundle molded body was obtained.

(鋳造) 実施例1と同一条件で鋳造した。(casting) Casting was carried out under the same conditions as in Example 1.

得られた複合体は実施例1と同様に繊維の凝集や変形は
みられなかった。複合体の引張強度は93kg/lll
112、弾性率は20 ton/ mm2であった。
As in Example 1, no fiber aggregation or deformation was observed in the obtained composite. The tensile strength of the composite is 93kg/lll
112, and the elastic modulus was 20 ton/mm2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、連続繊維を束ねる際に使用する巻取機の斜視
図、第2図は超音波洗浄機中の溶液中に繊維束を浸漬し
た状態を示す斜視図、第3図は第2図のように浸漬処理
した繊維束をパイレックスガラス管に挿入して繊維束か
ら溶液を排除した状態を示す断面図、第4図は繊維束を
焼成する際に使用する電気炉の概略断面図である。 1・・・巻取機、2・・・炭素繊維、3・・・炭素繊維
束、4・・・超音波洗浄機、 5・・・有機珪素高分子化合物及び金属またはセラミッ
クスの微粉末含有溶液 6・・・パイレックス製ガラス管、7・・・予備成型体
、8・・・電気炉、9・・・アルゴンガス。 出願人  本田技研工業 株式会社 信越化学工業 株式会社 代理人  弁理士  小 島 隆 司 第3図 第4図
Figure 1 is a perspective view of a winder used to bundle continuous fibers, Figure 2 is a perspective view of a fiber bundle immersed in a solution in an ultrasonic cleaner, and Figure 3 is a perspective view of a winder used to bundle continuous fibers. As shown in the figure, a cross-sectional view shows a state in which a soaked fiber bundle is inserted into a Pyrex glass tube and the solution is removed from the fiber bundle. Figure 4 is a schematic cross-sectional view of an electric furnace used when firing the fiber bundle. be. 1... Winder, 2... Carbon fiber, 3... Carbon fiber bundle, 4... Ultrasonic cleaner, 5... Solution containing fine powder of organosilicon polymer compound and metal or ceramics. 6... Pyrex glass tube, 7... Preformed body, 8... Electric furnace, 9... Argon gas. Applicant Honda Motor Co., Ltd. Shin-Etsu Chemical Co., Ltd. Agent Patent Attorney Takashi Kojima Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、珪素と炭素とを主要骨格成分とする有機珪素高分子
化合物を有機溶媒に溶解し、更にこれに金属又はセラミ
ックスの微粉末を添加、分散して調製した溶液中に炭素
繊維束を浸漬して該溶液を炭素繊維束に含浸させ、次い
で該炭素繊維束を所用形状に予備成型した後、加熱、焼
成して該炭素繊維束中に含浸する該有機珪素高分子化合
物を炭化珪素質セラミックスに熱分解して、金属又はセ
ラミックスの微粉末を介して該炭化珪素質セラミックス
で炭素繊維間を結合すると共に、炭素繊維表面を被覆す
ることを特徴とする繊維成型体の製造方法。 2、請求項1記載の方法で繊維成型体を製造した後、有
機溶媒に珪素と炭素とを主要骨格成分とする有機珪素高
分子化合物を溶解した溶液に該繊維成型体を浸漬し、次
いで乾燥、加熱、焼成する工程を少なくとも1回以上繰
り返して行うことを特徴とする繊維成型体の製造方法。
[Claims] 1. In a solution prepared by dissolving an organosilicon polymer compound whose main skeleton components are silicon and carbon in an organic solvent, and further adding and dispersing a fine metal or ceramic powder thereto. The carbon fiber bundle is impregnated with the solution by dipping the carbon fiber bundle, and then the carbon fiber bundle is preformed into a desired shape, and then heated and fired to impregnate the organic silicon polymer compound into the carbon fiber bundle. production of a fiber molded body, characterized in that carbon fibers are bonded to each other by the silicon carbide ceramic through fine metal or ceramic powder, and the surface of the carbon fiber is coated. Method. 2. After producing a fiber molded body by the method according to claim 1, the fiber molded body is immersed in a solution of an organic silicon polymer compound having silicon and carbon as main skeleton components dissolved in an organic solvent, and then dried. , heating and firing steps are repeated at least once or more.
JP63036040A 1988-02-18 1988-02-18 Manufacturing method of fiber molding Expired - Lifetime JP2586083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036040A JP2586083B2 (en) 1988-02-18 1988-02-18 Manufacturing method of fiber molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036040A JP2586083B2 (en) 1988-02-18 1988-02-18 Manufacturing method of fiber molding

Publications (2)

Publication Number Publication Date
JPH01213472A true JPH01213472A (en) 1989-08-28
JP2586083B2 JP2586083B2 (en) 1997-02-26

Family

ID=12458596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036040A Expired - Lifetime JP2586083B2 (en) 1988-02-18 1988-02-18 Manufacturing method of fiber molding

Country Status (1)

Country Link
JP (1) JP2586083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747602A (en) * 2012-04-05 2012-10-24 龚䶮 Formaldehyde removing reagent for treating formaldehyde-containing fabric, and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919128A (en) * 1972-06-09 1974-02-20
JPS4963606A (en) * 1972-10-21 1974-06-20
JPS59125909A (en) * 1982-12-27 1984-07-20 Shin Etsu Chem Co Ltd Manufacture of fiber having multi-layered structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919128A (en) * 1972-06-09 1974-02-20
JPS4963606A (en) * 1972-10-21 1974-06-20
JPS59125909A (en) * 1982-12-27 1984-07-20 Shin Etsu Chem Co Ltd Manufacture of fiber having multi-layered structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747602A (en) * 2012-04-05 2012-10-24 龚䶮 Formaldehyde removing reagent for treating formaldehyde-containing fabric, and use method thereof

Also Published As

Publication number Publication date
JP2586083B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US4158687A (en) Method for producing heat-resistant composite materials reinforced with continuous silicon carbide fibers
JP4230032B2 (en) Method for forming metal matrix fiber composite
JPH0317787B2 (en)
US5725828A (en) Ceramic matrix composites using modified hydrogen silsesquioxane resin
JP2001316785A (en) Porous preform, metal composite material and production method therefor
JPH01213472A (en) Production of fiber molded product
JPH0672029B2 (en) Fiber reinforced metal
JPH0648872A (en) Production of oxidation-resistant c/c composite material
JPH0620639B2 (en) Carbon fiber reinforced magnesium alloy member
JPH04218535A (en) Fiber reinforced composite material and its manufacture
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
CA1077969A (en) Method for producing a composite consisting of continuous silicon carbide fibers and metallic silicon
JPS62133030A (en) Carbon fiber-metal composite material and its manufacture
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
JPS6225737B2 (en)
US5697421A (en) Infrared pressureless infiltration of composites
JPS60238480A (en) Manufacture of carbon fiber-reinforced metal
JPS6133701B2 (en)
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
EP0346192B1 (en) Intermediate transformation material for ceramic precursors, method of transformation, storage method and production method of precursors
JPS6262188B2 (en)
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
JPS63312926A (en) Production of fiber reinforced composite material
JPS6157108B2 (en)
JPS6323154B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12