JPH01212551A - Artificial bone - Google Patents
Artificial boneInfo
- Publication number
- JPH01212551A JPH01212551A JP3788788A JP3788788A JPH01212551A JP H01212551 A JPH01212551 A JP H01212551A JP 3788788 A JP3788788 A JP 3788788A JP 3788788 A JP3788788 A JP 3788788A JP H01212551 A JPH01212551 A JP H01212551A
- Authority
- JP
- Japan
- Prior art keywords
- bone
- inorganic material
- porous layer
- artificial bone
- substitute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 61
- 230000000975 bioactive effect Effects 0.000 claims abstract description 20
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 20
- 239000011147 inorganic material Substances 0.000 claims abstract description 20
- 239000000316 bone substitute Substances 0.000 claims description 13
- 230000007547 defect Effects 0.000 claims description 8
- 239000002184 metal Substances 0.000 abstract description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000000919 ceramic Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 229910001069 Ti alloy Inorganic materials 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 239000005312 bioglass Substances 0.000 abstract description 2
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 15
- 239000000835 fiber Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 210000004394 hip joint Anatomy 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 210000000963 osteoblast Anatomy 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 3
- 229910052586 apatite Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- -1 stainless steel Chemical class 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000001981 hip bone Anatomy 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は生体の骨欠損部を補填する為の代替骨に関する
ものであって、残存自家骨に対して早期に強力な結合を
形成し、しかも長期に亘ってしっかりと固定される様な
代替骨に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a substitute bone for filling bone defects in a living body, which forms a strong bond to the remaining autologous bone at an early stage, Moreover, it relates to a substitute bone that can be firmly fixed over a long period of time.
[従来の技術]
事故や疾病あるいは抜歯等により骨損傷を来した場合、
骨欠損部あるいは空隙部への充填が必要となる。 −
このような場合、別個体由来の生体骨を移植すると免疫
の拒否反応を起こすので、患者本人の肋骨や腰骨から海
綿状自家骨を採取して欠損部に充填する方法がとられて
きた。しかしこの方法では損傷個所以外の骨組織を切除
することになるので手術個所が増加して患者の苦痛も大
きく、医師側にとっても多大の労力を必要としていた。[Conventional technology] When bone damage occurs due to an accident, illness, tooth extraction, etc.
Filling of bone defects or voids is required. - In such cases, transplanting living bone from another individual causes immune rejection, so methods have been used to harvest cancellous autologous bone from the patient's own ribs or hip bones and fill the defect. However, this method requires removal of bone tissue other than the damaged area, which increases the number of surgical sites, causes great pain for the patient, and requires a great deal of labor on the part of the doctor.
しかも採取できる個所や量に制限があるので、必ずしも
十分に欠損部を補填し得る量を採取できるわけではなく
、代替骨の必要が生じていた。Moreover, since there are restrictions on the location and amount that can be harvested, it is not always possible to harvest enough bone to compensate for the defect, creating the need for substitute bone.
このような代替骨は補填箇所に応じた強度を有すると共
に生体に対して無害であることはいうまでもなく、自家
骨に早期に且つしっかり固定され長期使用に亘フてゆる
みなどが生じてはならない。It goes without saying that such bone substitutes have strength commensurate with the replacement location and are harmless to living organisms, and are quickly and firmly fixed to the autologous bone and will not loosen over long-term use. It won't happen.
たとえば人工股関節ステムは長期間に亘る安定した強度
を確保するためステンレス鋼、Co−Cr合金あるいは
チタン合金等の耐食性金属で製造されているが、この様
な金属製股関節ステムを生体骨に固定するに当たっては
、たとえば次のような手段がとられ、ている。For example, artificial hip joint stems are manufactured from corrosion-resistant metals such as stainless steel, Co-Cr alloys, or titanium alloys to ensure stable strength over long periods of time. For example, the following measures have been taken:
(1)セメント固定:第2図(a)に示すように自家骨
2の骨髄腔内に代替骨(股関節ステム)1の支え部1a
を挿入し、骨髄腔と代替骨1の支え部laの隙間ミポリ
メチルメタクリレート等よりなる骨セメント7を充填し
て固定させる。(1) Cement fixation: As shown in Fig. 2(a), the supporting part 1a of the substitute bone (hip stem) 1 is placed in the medullary cavity of the autologous bone 2.
is inserted, and the gap between the bone marrow cavity and the supporting portion la of the substitute bone 1 is filled with bone cement 7 made of polymethyl methacrylate or the like and fixed.
(2) セメントレス固定:第2図(b) に示すよう
に代替骨1の支え部1aを自家骨2の骨髄腔に密嵌合す
るような太さに形成し両者を密嵌合させて機械的に固定
させる。(2) Cementless fixation: As shown in Fig. 2(b), the supporting portion 1a of the substitute bone 1 is formed to a thickness that fits tightly into the medullary cavity of the autologous bone 2, and the two are tightly fitted. Fix mechanically.
ところが前記(1)の方法は言うに及ばず(2)の方法
においても、代替骨1と自家骨2の間に金属−自家骨の
直接結合が形成される訳ではないので、長時間経過する
とゆるみが生じてくるほか、(1)の方法ではセメント
の重合熱や成分溶出を原因とする生体への悪影響を生ず
るといった問題を有していた。However, in method (2) as well as in method (1) above, a direct bond between metal and autologous bone is not formed between substitute bone 1 and autologous bone 2, and therefore, after a long period of time, In addition to loosening, method (1) has the problem of adverse effects on living organisms due to polymerization heat of cement and component elution.
これらの問題を解決するためにまずセメント固定法を排
除すると共にセメントレス固定法の上記欠点を改善する
ことが研究されている。この様な改善方法として例えば
第3図(a) 、 (b)およびその表層部の断面図(
c) 、 (d)に示すように、代替骨1の自家骨2と
の接触側表層部に金属製の粒体3または金属製の繊維4
を巻縮するように配置するかあるいは金属製の繊維4の
編物、織物、不織布を配置して代替骨1の表面にポーラ
ス層5を形成するという方法が行なわれており、この方
法によれば残存自家骨から成長してくる骨芽細胞が該ポ
ーラス層5の微細空隙内に侵入し、新生骨によるアンカ
ー効果によって自家骨2と代替骨1の固定を達成する。In order to solve these problems, research has been conducted to eliminate the cement fixation method and to improve the above-mentioned drawbacks of the cementless fixation method. Examples of such improvement methods include Figures 3(a) and 3(b) and a cross-sectional view of the surface layer (
c) As shown in (d), metal granules 3 or metal fibers 4 are placed on the surface layer of the substitute bone 1 on the side that is in contact with the autologous bone 2.
According to this method, a porous layer 5 is formed on the surface of the substitute bone 1 by arranging the metal fibers 4 so as to be crimped or by arranging knitted, woven, or nonwoven fabrics of metal fibers 4. Osteoblasts growing from the remaining autologous bone invade into the microscopic voids of the porous layer 5, and fixation of the autologous bone 2 and substitute bone 1 is achieved by the anchoring effect of the new bone.
しかしこの方法では新生骨が代替骨のポーラス層の深奥
部へ侵入生成するまでに時間がかかり、代替骨が自家骨
に固定されるまでに長時間を要し 、た。However, with this method, it takes time for new bone to penetrate deep into the porous layer of the substitute bone, and it takes a long time for the substitute bone to be fixed to the autologous bone.
[発明が解決しようとする課題]
そこで本発明においては代替骨を自家骨欠損部の補填に
適用する場合において自家骨との結合が速やかに進行し
、しかも時間経過とともに強固な固着に成長し、長期使
用に亘ってもゆるみなどの生じてこない代替骨について
検討した。[Problems to be Solved by the Invention] Accordingly, in the present invention, when a substitute bone is applied to compensate for an autologous bone defect, the bone substitute rapidly integrates with the autologous bone, and grows into a strong fixation over time. We investigated bone substitutes that do not loosen even after long-term use.
[課題を解決するための手段]
上記課題を解決することので台た本発明とは、残存自家
骨接触側表面の少なくとも一部に、生体活性無機材料に
よって被覆されているポーラス層が設けられていること
を構成要旨とするものである。[Means for Solving the Problems] The present invention was developed to solve the above problems, and the present invention includes a porous layer coated with a bioactive inorganic material on at least a part of the surface in contact with the remaining autologous bone. The main point of the structure is that
[作用]
本発明の代替骨1は第1図(1,、@)”、(b)、(
c)およびその表層部の断面図(d) 、 (e)、(
f)、軸)に示すように、表面の少なくとも一部に生体
活性無機材料6で被覆したポーラス層5が設・・けられ
ているもので、生体骨欠損部゛を本発明の代替骨1で補
填すると、生体活性無機材料6と自家骨2との間の化学
的結合が速やか、に進行し、さらに時間の経過とともに
たとえば第1図(d) 、 (e)ではポーラス層5の
微細空隙内に骨芽細胞が侵入しでゆき、そこで形成され
た新生骨がアンカーのように作用して代替骨1と自家骨
2をしっかり固定する。また第1図(f) 、 (g)
のように生体活性無機材料6よりなる層が厚く形成され
ているときは生体活性無機材料6が自家骨2と化学結合
しつつ新生骨が深く侵入していき、最終的に新生骨が粒
体3や繊維4の背面にまで侵入するので、アンカー作用
を発揮する。[Function] The bone substitute 1 of the present invention is shown in FIG.
c) and cross-sectional views of its surface layer (d), (e), (
As shown in f) and axis), at least a part of the surface is provided with a porous layer 5 coated with a bioactive inorganic material 6, and the biological bone defect part is replaced with the bone substitute 1 of the present invention. When the bioactive inorganic material 6 and the autogenous bone 2 are supplemented with Osteoblasts invade into the bone, and the newly formed bone acts like an anchor to firmly fix the substitute bone 1 and the autologous bone 2. Also, Figure 1 (f) and (g)
When a thick layer of bioactive inorganic material 6 is formed as shown in FIG. Since it penetrates into the back surface of fibers 3 and 4, it exerts an anchoring effect.
本発明に係る代替骨1の主体となる素材としては金や銀
等の貴金属、5US318等のステンレX鋼、Ti−6
AI−4V等のチタン合金等の耐食性金属あるいはアル
ミナ、ジルコニア、窒化珪素等の高強度セラミックス等
を用いることができ、骨欠損部の形態に嵌合するように
成形して適用する。The main materials of the bone substitute 1 according to the present invention include precious metals such as gold and silver, stainless steel such as 5US318, and Ti-6
Corrosion-resistant metals such as titanium alloys such as AI-4V, high-strength ceramics such as alumina, zirconia, silicon nitride, etc. can be used, and are formed and applied so as to fit into the shape of the bone defect.
生体活性無機材料6を被覆したポーラス層5とは、粒径
30G〜800μmの金属やセラミックス等よりなる粒
体3を代替骨1の表面の一部に多数拡散接合するか、直
径100〜800umの繊維を屈曲させて前記表面の一
部にランダム配位し拡散接合したり、或は繊維よりなる
綱・織物や不織布を前記表面の一部に配位して拡散接合
する等の手段によっであるいはベース部材表面の一部を
粗面化することによって孔径250〜500μmの孔を
多数内在するポーラス層を形成し、さらにその上へ生体
活性無機材料6を被覆して厚さ1〜100μmの層を形
成させたものである。孔径が250μm未満では骨芽細
胞の侵入が不十分であり、500μmを超えると骨芽細
胞の侵入によフて生成される新生骨の形成に時間がかか
るとともにアンカー作用が不十分となる。孔径250〜
500umの孔を有するポーラス層を形成する手段につ
いては特別の制限を受けないが、前記した粒径300〜
800μmの粒体3あるいは直径100〜800μmの
繊維4を前述のように拡散接合させる方法はもつとも有
利な方法と言える。The porous layer 5 coated with the bioactive inorganic material 6 is formed by diffusion bonding a large number of particles 3 made of metal, ceramics, etc. with a particle size of 30G to 800 μm to a part of the surface of the bone substitute 1, or by diffusion bonding a large number of particles 3 made of metal, ceramics, etc. By bending the fibers and arranging them randomly on a part of the surface and performing diffusion bonding, or by arranging a rope, woven fabric, or nonwoven fabric made of fibers on a part of the surface and performing diffusion bonding. Alternatively, a porous layer containing many pores with a pore diameter of 250 to 500 μm is formed by roughening a part of the surface of the base member, and the bioactive inorganic material 6 is further coated thereon to form a layer with a thickness of 1 to 100 μm. is formed. If the pore diameter is less than 250 μm, the invasion of osteoblasts will be insufficient, and if it exceeds 500 μm, it will take time to form new bone generated by the infiltration of osteoblasts, and the anchoring effect will be insufficient. Pore diameter 250~
There is no particular restriction on the means for forming a porous layer having pores of 500 um, but the above-mentioned particle size of 300-um.
The method of diffusion bonding particles 3 of 800 .mu.m or fibers 4 of 100 to 800 .mu.m in diameter as described above can be said to be an advantageous method.
尚これらの粒体あるいは繊維の素材としては前述の代替
骨の素材と同様のものを用いることができ、代替骨と同
一あるいは異なっているものを用いても良い。The material for these particles or fibers may be the same as the material for the bone substitute described above, or may be the same as or different from the bone substitute.
生体活性無機材料とは、生体内で周囲の骨組織と反応し
、自家骨との間に強い化学結合を形成する特性を有する
ものであり、例えばアパタイト類特に水酸化アパタイト
[Cato (PO2) a (QH) 2] 、アパ
タイトを含むアルミナあるいはジルコニアセラミックス
、β−3CaO−P20s 、Na2G−CaO−5i
02−P205系ガラス(バイオガラス)、第1表に示
す様な系のアパタイト含有結晶化ガラス等が例示される
。Bioactive inorganic materials have the property of reacting with surrounding bone tissue in vivo and forming strong chemical bonds with autologous bone, such as apatites, especially hydroxyapatite [Cato (PO2) a (QH) 2], apatite-containing alumina or zirconia ceramics, β-3CaO-P20s, Na2G-CaO-5i
Examples include 02-P205 glass (bioglass), apatite-containing crystallized glass as shown in Table 1, and the like.
アパタイト含有結晶化ガラスは結晶とガラスの複合体で
あり、結晶の大きさや量あるいは組成を連続的に変化さ
せることができてその性質を広い範囲で変化させること
ができる。また生体活性無機材料のうちCaあるいは燐
酸を溶出しやすいものは新生骨の生成を助長し、より早
く固定化されるので有利である。生体活性無機材料より
なる層は前記ポーラス層上に汎用されている溶射法、蒸
着法あるいはスプレーパイロリシス法等により形成させ
る手段の他、ゾル−ゲル法を採用し、成分調整したゾル
をポーラス層に塗布した後ゲル(固体)層を形成させる
こともできる。しかし生体活性無機材料層の形成方法は
何ら制限されない。Apatite-containing crystallized glass is a composite of crystals and glass, and the size, amount, or composition of the crystals can be changed continuously, and its properties can be changed over a wide range. Further, among bioactive inorganic materials, those that easily elute Ca or phosphoric acid are advantageous because they promote the formation of new bone and are fixed more quickly. The layer made of bioactive inorganic material can be formed on the porous layer by the commonly used thermal spraying method, vapor deposition method, spray pyrolysis method, etc., or by using a sol-gel method to form a sol with adjusted components on the porous layer. It is also possible to form a gel (solid) layer after application. However, the method of forming the bioactive inorganic material layer is not limited at all.
生体活性無機材料層とポーラス層を構成する素材間に大
きな熱膨張率差がある場合には、これらの物質の中間の
熱膨張率を有する物質よりなる層を介在させることもで
きる。当然この物質は無害でなくてはならない、このよ
うな物質としてジルコニアを含むガラスやジルコニアを
含むセラミックス等を挙げることができる。このような
中間層を設けることによって熱膨張率の差による生体活
性無機材料層の割れやポラース層からの剥離を抑制する
ことができる。−
本発明の代替骨は股関節をはじめ膝、肘、肩。If there is a large difference in coefficient of thermal expansion between the materials constituting the bioactive inorganic material layer and the porous layer, a layer made of a material having a coefficient of thermal expansion intermediate between these materials may be interposed. Naturally, this substance must be harmless, and examples of such substances include glass containing zirconia and ceramics containing zirconia. By providing such an intermediate layer, cracking of the bioactive inorganic material layer and peeling from the porous layer due to a difference in coefficient of thermal expansion can be suppressed. - The substitute bones of the present invention include hip joints, knees, elbows, and shoulders.
指などの関節用あるいはその他の長管骨用等の代替とし
であるいは人工歯根用などにも適用できる。It can also be used as a substitute for joints such as fingers or other long bones, or for artificial tooth roots.
[実施例および比較例]
第1図(a)およびその断面図(d)に示すように代替
骨(Ti−6A1−4Vチタン合金製股関節ステム)1
の表面の一部に300〜800μm径で同組成のチタン
合金粒体3を拡散接合し、さらにその上を生体活性無機
材料(第1表2番目の結晶化ガラス)6で被覆した。こ
れを犬の大腿骨に埋入したところ14日で歩ける程の結
合を示し、しかも長期に亘ってゆるみが生じてこなかっ
た。[Example and Comparative Example] As shown in FIG. 1(a) and its cross-sectional view (d), bone substitute (Ti-6A1-4V titanium alloy hip joint stem) 1
Titanium alloy particles 3 having a diameter of 300 to 800 μm and having the same composition were diffusion bonded to a part of the surface of the sample, and the top was further coated with a bioactive inorganic material (crystallized glass listed in the second column in Table 1) 6. When this was implanted into the femur of a dog, it showed enough bonding to allow walking in 14 days, and no loosening occurred over a long period of time.
一部ポーラス層のみを有し生体活性無機材料層を有しな
いステムを埋入したものは歩ける程の結合を形成するま
でに28日を要した。It took 28 days for a stem implanted with only a partially porous layer and no bioactive inorganic material layer to form a bond that would allow walking.
[発明の効果]
本発明は以上のように構成されているので、本発明の代
替骨は自家骨に対して早期に結合し、時間とともに強固
に固定されていくので、長時間たフてもゆるみなどを生
ずることがない。[Effects of the Invention] Since the present invention is configured as described above, the substitute bone of the present invention is quickly bonded to the autologous bone and is firmly fixed over time, so that it can be used for a long period of time. No loosening occurs.
第1図(21) 、 (b)および(C)は本発明に係
る代替骨の例(股関節ステム)を示す図であり、(d)
。
(+4) 、 (f)および(g)はその表層部の断面
図、第2図(a) 、 (b)は従来の股関節ステムの
適用例を示す図、第3図(a) 、 (b)および(C
) +’ (d)は従来の代替骨の例(股関節ステム)
とその表層部の断面図である。
1・・・代替骨(股関節ステム)
2・・・自家骨 3・・・粒体4・・・繊
維 5・・・ポーラス層6・・・生体活
性無機材料 7・・・骨セメント(a)(b)(c)
(a) (b)
*3図
昭和63年 3月31日
昭和63年特許願第37887号
2、発明の名称
代替骨
3、補正をする者
事件との関係 特許出願人
4、代理人
住 所 大阪市北区堂島2丁目3番7号シシコー仁町シ
407(自発)
6 補正の対象
明細書の「発明の詳細な説明」の欄
7、補正の内容
正 誤 表Figures 1 (21), (b) and (C) are diagrams showing an example of the bone substitute (hip joint stem) according to the present invention, and (d)
. (+4), (f) and (g) are cross-sectional views of the surface layer, Figures 2 (a) and (b) are diagrams showing examples of application of conventional hip joint stems, and Figures 3 (a) and (b). ) and (C
) +' (d) is an example of a conventional bone substitute (hip stem)
FIG. 3 is a sectional view of the surface layer thereof. 1... Substitute bone (hip stem) 2... Autologous bone 3... Granules 4... Fibers 5... Porous layer 6... Bioactive inorganic material 7... Bone cement (a) (b) (c) (a) (b) *Figure 3 March 31, 1988 Patent Application No. 37887 of 1988 2 Alternative name of the invention 3 Relationship with the person making the amendment Case Patent applicant 4. Address of the agent: 407 Shishiko Nicho, 2-3-7 Dojima, Kita-ku, Osaka City (voluntary) 6. Column 7 of “Detailed Description of the Invention” of the specification to be amended, contents of the amendment are correct and incorrect.
Claims (1)
の接触側表面の少なくとも一部に生体活性無機材料によ
って被覆されているポーラス層が設けられていることを
特徴とする代替骨。(1) A bone substitute for filling a bone defect, characterized in that a porous layer coated with a bioactive inorganic material is provided on at least a portion of the surface in contact with remaining autologous bone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3788788A JPH01212551A (en) | 1988-02-19 | 1988-02-19 | Artificial bone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3788788A JPH01212551A (en) | 1988-02-19 | 1988-02-19 | Artificial bone |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01212551A true JPH01212551A (en) | 1989-08-25 |
Family
ID=12510048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3788788A Pending JPH01212551A (en) | 1988-02-19 | 1988-02-19 | Artificial bone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01212551A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106149A (en) * | 1984-08-31 | 1986-05-24 | ブリストルーマイヤーズ スクイブ カンパニー | Bone tissue coagulation promoting material, bone implant member and production thereof |
-
1988
- 1988-02-19 JP JP3788788A patent/JPH01212551A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106149A (en) * | 1984-08-31 | 1986-05-24 | ブリストルーマイヤーズ スクイブ カンパニー | Bone tissue coagulation promoting material, bone implant member and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI78232C (en) | IMPLANTS, SOM ERSAETTER EN TAND ELLER EN DEL AV BENVAEVNADEN MED SYNTETISKT MATERIAL. | |
US5947893A (en) | Method of making a porous prothesis with biodegradable coatings | |
JP4091728B2 (en) | Bioimplant material and its manufacturing method | |
Cook et al. | Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. | |
US4702930A (en) | Method of producing implantable bone replacement materials | |
Wang et al. | Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo | |
JPS61106149A (en) | Bone tissue coagulation promoting material, bone implant member and production thereof | |
JPH0575428B2 (en) | ||
Jiang et al. | Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes | |
KR100655170B1 (en) | Artificial joint system | |
Heimke | Tissue interactions to bone replacement materials | |
JPH01223970A (en) | Substitute bone | |
Oonishi | Mechanical and chemical bonding of artificial joints | |
JP2883214B2 (en) | Biological implant material and its manufacturing method | |
Jubhari et al. | Implant coating materials to increase osseointegration of dental implant: A systematic review | |
Aparicio et al. | Osseointegration of grit-blasted and bioactive titanium implants: histomorphometry in minipigs | |
Maruno et al. | Micro-observation and characterization of bonding between bone and HA-glass-titanium functionally gradient composite | |
JPH01212551A (en) | Artificial bone | |
JP3064077B2 (en) | Composite implant components | |
Oonishi et al. | 29. Interfacial Reactions to Bioactive and Non-bioactive Bone Cements | |
Bokros | New material concepts in orthopedics | |
Savich | PM Applications: Powder Metallurgy Technology in Production of Medical Implants. Why? | |
JP2997809B2 (en) | Biological implant components | |
JPH01265954A (en) | Substitute bone | |
JP4549016B2 (en) | Biomaterial |