JPH01211312A - Thin-film magnetic head - Google Patents
Thin-film magnetic headInfo
- Publication number
- JPH01211312A JPH01211312A JP3522888A JP3522888A JPH01211312A JP H01211312 A JPH01211312 A JP H01211312A JP 3522888 A JP3522888 A JP 3522888A JP 3522888 A JP3522888 A JP 3522888A JP H01211312 A JPH01211312 A JP H01211312A
- Authority
- JP
- Japan
- Prior art keywords
- track width
- gap
- magnetic
- insulating film
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims description 18
- 239000010408 film Substances 0.000 claims description 33
- 239000004020 conductor Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims 1
- 238000005530 etching Methods 0.000 abstract description 17
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000000992 sputter etching Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000003079 width control Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は記録媒体lこ摺動する型の薄膜磁気ヘッドに係
り、特にトラック幅制御の高精度化lこ関する0
〔従来の技術〕
VTRなどの記録媒体にヘッドが接触走行Tるシステム
では摩耗寿命確保という重大な課題があり、薄膜磁気ヘ
ッドを適用するには1つの方法としてギャップ深さの大
きいものを開発する必要がある。そのためには、ギャッ
プ先端まで磁束を誘導するため、途中で磁気コアが飽和
しないようにコア厚を厚くしなければならない0
本発明者の検討結果によれば、摩耗寿命確保するのにギ
ャップ深さは10〜15μmは必要で、そのためζこは
上部・下部磁気コア厚さして20μm程度を必要とする
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a type of thin film magnetic head that slides over a recording medium, and particularly relates to highly accurate track width control. [Prior Art] VTR In systems where the head runs in contact with a recording medium such as the above, there is a serious issue of ensuring wear life, and one way to apply a thin film magnetic head is to develop one with a large gap depth. To this end, in order to guide the magnetic flux to the tip of the gap, the core thickness must be increased so that the magnetic core does not become saturated on the way.According to the study results of the present inventors, it is necessary to increase the gap depth to ensure wear life. 10 to 15 .mu.m is required, and therefore the upper and lower magnetic cores need to have a thickness of about 20 .mu.m.
しかし、このような厚いN膜を高精度Eこパターニング
により形成することは容易でなく、また薄膜磁気ヘッド
ではバターニング部には傾斜部に形成される磁性膜を加
工する部分があり、この傾斜部と平坦部上では磁性膜の
エツチング速度lこ大きな差があるため、いわゆる湿式
エツチングは採用できず、イオンミリングというドライ
エツチングで加工するが、この方法には選択性がないさ
いつ欠点があり、加工時に用いるマスク材は磁性膜と同
程度の厚膜を必要とする。However, it is not easy to form such a thick N film by high-precision patterning, and in a thin film magnetic head, there is a part in the patterning part where the magnetic film formed on the slope part is processed. Because there is a large difference in the etching speed of the magnetic film between the top and flat parts, so-called wet etching cannot be used, and a dry etching process called ion milling is used, but this method has drawbacks such as lack of selectivity. The mask material used during processing needs to be as thick as the magnetic film.
このように20μmという厚膜を高精度でエツチングす
ることは非常に難しい。すなわち、トラック幅精度がで
ない。そこで、従来提案されている方法として、例えば
、特開昭61−255514号に記載されているように
、コイル絶縁層のヘッドギャップ形成部にスルーホール
を設け、このスルーホール幅でトランク幅を制御するも
のがある。It is extremely difficult to etch a film as thick as 20 μm with high precision. In other words, the track width accuracy is poor. Therefore, as a conventionally proposed method, for example, as described in JP-A No. 61-255514, a through hole is provided in the head gap forming part of the coil insulating layer, and the trunk width is controlled by the width of this through hole. There is something to do.
〔発明が解決しようとする緑1題〕
上記従来技術によれば、高精度なパターニングをする対
象が20μmの磁性膜から約10μm程度の絶縁膜に代
わり、膜厚半減できただけ確かにエツチング精度は上が
る。[Green Problem 1 to be Solved by the Invention] According to the above-mentioned conventional technology, the target for highly accurate patterning is changed from a 20 μm magnetic film to an approximately 10 μm insulating film, and the film thickness can be halved and the etching precision can be improved. goes up.
しかし、本技術では、ギャップ深さ方向のトラック幅精
度について配慮されておらず、ギャップ深さが零(寿命
がなくなる位置)に近づくにつれてトランク幅が狭くな
るという問題があった。However, in this technique, no consideration is given to the track width accuracy in the gap depth direction, and there is a problem in that the trunk width becomes narrower as the gap depth approaches zero (the position where the life ends).
その様子を第5図に示す。(a)は斜視図で、(b)は
絶縁層に設けたスルーホールの平面図を示している。W
がトラック幅1gdがギャップ深さである。The situation is shown in FIG. (a) is a perspective view, and (b) shows a plan view of a through hole provided in an insulating layer. W
The track width 1gd is the gap depth.
スルーホールの角部はRがついてしまい、ギャップ深さ
零付近ではトラック幅が減少する。したがって、互換性
、性能の安定性等を考えた場合実際に使えるギャップ深
さはgd′となってしまう。すなわち、走行寿命を確保
した時ヘッド性能は本来布している性能以下で使わざる
を得なかった。The corners of the through hole are rounded, and the track width decreases near zero gap depth. Therefore, when considering compatibility, performance stability, etc., the gap depth that can actually be used is gd'. In other words, when ensuring the running life, the head performance had to be used at a level lower than its original performance.
本発明の目的は、キャップ深さgdがそのまま実使用に
耐える−1すなわちギャップ深さ方向でトラック幅変化
のない薄膜磁気ヘッドを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film magnetic head whose cap depth gd is -1 which can be used in actual use as it is, that is, the track width does not change in the gap depth direction.
上記目的は、互いの溝の稜線が直線領域において直交し
てコイル絶縁膜に設けた、トラック幅方向の幅がトラッ
ク幅に等しい長方形の溝と幅がトラック幅より大きい長
方形の溝の少なく亡も2つの溝の重複部で形成されるコ
イル絶縁膜のスルーホールをギャップ形成面とすること
によって達成される。The above object is to eliminate at least two rectangular grooves whose width in the track width direction is equal to the track width and a rectangular groove whose width is larger than the track width, which are provided in the coil insulating film so that the ridge lines of the grooves are perpendicular to each other in the linear region. This is achieved by using the through hole of the coil insulating film formed at the overlapping portion of the two grooves as the gap forming surface.
トラック幅は1つの長方形の溝によって決められ、他の
1つの長方形の溝によってギャップ深さ零が決められる
。しかも、2つのスルーホールの交わる2辺は直葱部で
直交している。以上により、ギャップ深さ零までトラッ
ク幅変化はない。The track width is determined by one rectangular groove and the zero gap depth is determined by another rectangular groove. Moreover, the two sides where the two through-holes intersect are orthogonal to each other at the straight edge. As a result of the above, there is no change in track width until the gap depth is zero.
以下、本発明の一実施例を第1図、第2図1ζより説明
する。第1図(a)は本発明の薄膜磁気ヘッドの斜視図
、(b)はその断面図で、W!、2図は上部コア形成前
のギャップ形成部の斜視図であって、1は基板、2は下
部磁気コア、3はギャップ材、4はコイル導体の絶縁膜
、5はコイル導体(1ターンのみを示す)、6は上部磁
気コア、71.72はコイル絶縁膜4に設けた第1.第
2のエツチング溝。An embodiment of the present invention will be described below with reference to FIG. 1 and FIG. 2 1ζ. FIG. 1(a) is a perspective view of a thin film magnetic head of the present invention, and FIG. 1(b) is a cross-sectional view thereof. , 2 is a perspective view of the gap forming part before the formation of the upper core, in which 1 is the substrate, 2 is the lower magnetic core, 3 is the gap material, 4 is the insulating film of the coil conductor, and 5 is the coil conductor (one turn only). ), 6 is the upper magnetic core, 71.72 is the first . Second etched groove.
7は第1.$2のエツチング溝形成で作られたスルーホ
ールでヘッドギャップ形成面、8は下部磁気コア2と上
部磁気コア6の接続用のスルーホールである。7 is the first. A through hole made by etching grooves $2 is the head gap forming surface, and 8 is a through hole for connecting the lower magnetic core 2 and the upper magnetic core 6.
第1図において、薄膜磁気ヘッドは基板1の中に埋め込
まれた下部磁気コア2と上部磁気コア6とでギャップ材
3を介して形成した磁気回路内に信号コイル5を配して
なり、磁気ギャップ部はコイル絶縁膜4に設けた2つの
エツチング溝71,72によって、それぞれキャップ深
さgd、 トラック幅Twを規定されている。本実施
例では、磁気コア厚2.6は20μm、コイル絶縁膜4
は12μm、第1・第2エツチング溝深さはそれぞれ6
μmとした。In FIG. 1, the thin film magnetic head has a signal coil 5 disposed within a magnetic circuit formed by a lower magnetic core 2 and an upper magnetic core 6 embedded in a substrate 1 via a gap material 3. The gap portion has a cap depth gd and a track width Tw defined by two etched grooves 71 and 72 provided in the coil insulating film 4, respectively. In this example, the magnetic core thickness 2.6 is 20 μm, and the coil insulating film 4
is 12 μm, and the depth of the first and second etching grooves is 6 each.
It was set as μm.
この磁気ギャップ部をWc2図により詳しく説明する0
磁気ギャップ部は幅(Wりが、トラック幅(Tw)より
広く、磁路長方向の長さがgdの長方形の第1エツチン
グm 71と、幅がトラック幅(Tw)で磁路長方向の
長さ(it ) ps、gdより長い長方形の第2のエ
ツチング溝72を互いに溝の稜線が直線である領域で直
交して形成することζこよって、コイル絶縁層4Iこで
きるスルーホール7で作られている。従って、磁気ギャ
ップ部は長方形となり、ギャップ深さによってトラック
幅の変化はない。This magnetic gap portion will be explained in detail with reference to Figure Wc2.0 The magnetic gap portion has a rectangular first etching m71 whose width (W) is wider than the track width (Tw) and whose length in the magnetic path direction is gd, and the width The rectangular second etched grooves 72, which are longer than the track width (Tw) and the length in the magnetic path direction (it) ps, gd, are formed so as to be perpendicular to each other in areas where the groove ridge lines are straight lines. , a through hole 7 formed through the coil insulating layer 4I.Therefore, the magnetic gap portion is rectangular, and the track width does not change depending on the gap depth.
次に本ヘッドの製法について簡単に説明Tる。Next, we will briefly explain the manufacturing method of this head.
(1)基板に下部磁気コア用Sをダイシングソーやイオ
ンミリング等で形成後、Co−Nb 系、Fe−Al
−8i系等の磁性膜をスパッタにより20μm形成し、
研摩(こより基板lこ埋込まれた下部磁気コア2を作る
。(1) After forming S for the lower magnetic core on the substrate using a dicing saw or ion milling,
- 20 μm of magnetic film such as 8i system is formed by sputtering,
Polishing (making the lower magnetic core 2 embedded in the substrate).
(2) キャップ材として、Aノ!03等の絶縁膜や
Cr等の金属膜を0.3μm程度にスパッタで形成する
。(2) As a cap material, Ano! An insulating film such as 0.03 or a metal film such as Cr is formed to a thickness of about 0.3 μm by sputtering.
(3) soo X程度のCrを接着層として、Cu
を5fim厚に蒸清し、イオンミリングでパターニング
し、コイル導体58作る(ただし、ギャップ材として金
属膜を用いた場合はSiO!等の絶縁膜を一睡介してか
らコイル導体5を形成する)0(4) ギャップ材と
選択エツチングが容易なSiO+5iOz等を12μm
に形成し、コイル導体5を絶縁するとともに、これによ
って上・下コア間隔を離す。(3) Using Cr of about soo X as an adhesive layer, Cu
is steamed to a thickness of 5 fim and patterned by ion milling to form a coil conductor 58 (however, if a metal film is used as the gap material, the coil conductor 5 is formed after passing through an insulating film such as SiO!)0 (4) SiO+5iOz etc. with a thickness of 12 μm that can be easily selectively etched as a gap material
In addition to insulating the coil conductor 5, the upper and lower cores are spaced apart from each other.
(5)第1エツチング溝71をイオンミリングや反応性
イオンエツチング等により6μm深さに作り、その後第
2エツチング溝72ソ第1エツチング溝と直交する位置
に形成し、両方の溝の交差部においてコイル絶縁膜4に
スルーホール7を形成する0
(6) コア接続部8のコイル絶縁膜4をエツチング
する(なお、第1.第2エツチング溝形成時Iこ同時に
作ってもよい)0
(7)磁性膜ヲ20μm成膜後、イオンミリングにより
コア形状にパターニングする。(5) The first etched groove 71 is made to a depth of 6 μm by ion milling, reactive ion etching, etc., and then the second etched groove 72 is formed at a position perpendicular to the first etched groove, and at the intersection of both grooves. Form a through hole 7 in the coil insulating film 40 (6) Etch the coil insulating film 4 of the core connection portion 8 (note that these may be formed at the same time when forming the first and second etching grooves)0 (7) ) After forming a magnetic film with a thickness of 20 μm, it is patterned into a core shape by ion milling.
以上のように作ることによって、ギャップ深さ零付近で
のトラック幅変化を解決できる。このようにスルー承−
ルの角部のRをなくすことができるということは、その
分磁路縮小によりヘッド効率向上、あるいはコイル巻き
スペースを増やしコイルの低抵化等にわりふって性能を
向上できるという効果もある。By making it as described above, it is possible to solve the change in track width near zero gap depth. Through acceptance like this
Being able to eliminate the radius at the corner of the coil also has the effect of improving head efficiency by reducing the magnetic path, or increasing the coil winding space and lowering the resistance of the coil, thereby improving performance.
また、トラック幅を決める第2エツチング溝は従来のコ
イル絶縁膜より薄い状態(本実施例では6μm)でエツ
チングするため、トラック幅精度改善の効果もある。上
述の実施例では、第1.第2エツチング縛の順であるが
、順序入れ換えてトラック幅を決める第2エツチング溝
を先に形成すれば、平坦部でのパターニングでトラック
幅が決まるため、ざらlこトラック幅精度は上がる。Furthermore, since the second etching groove that determines the track width is etched to be thinner than the conventional coil insulating film (6 μm in this embodiment), there is also the effect of improving the track width accuracy. In the above embodiment, the first. Regarding the order of the second etching, if the order is changed and the second etching grooves that determine the track width are formed first, the track width will be determined by patterning on the flat portion, and the accuracy of the rough track width will be improved.
以上の説明は単層のコイルの場合についてでありスルー
ホール形成工程が従来より1回増えるが、2層のコイル
をもつ薄膜磁気ヘッドに本発明を適用する場合には、工
程的には従来より工程数を増やすことなく作ることがで
きる。その場合の製法を第3図(a)〜(i)により説
明する。The above explanation is for the case of a single-layer coil, and the through-hole forming process is increased by one step compared to the conventional method. However, when applying the present invention to a thin-film magnetic head having a two-layer coil, the process is more than the conventional one. It can be made without increasing the number of steps. The manufacturing method in that case will be explained with reference to FIGS. 3(a) to (i).
(a) 基板に埋め込まれた下部磁気コア28作る。(a) Make the lower magnetic core 28 embedded in the substrate.
(b) ギャップ材を形成する。(b) Form the gap material.
(e) コイル導体との絶縁をとるため第1絶縁層4
1を形成する(金属膜ギャップでない時は省略可)。(e) First insulating layer 4 for insulation from the coil conductor
1 (can be omitted if it is not a metal film gap).
(d) 多巻きコイルの第1コイル導体51を形成後
、第2絶縁層42で絶縁する。(d) After forming the first coil conductor 51 of the multi-turn coil, it is insulated with the second insulating layer 42.
(e) 第1コイル導体と第2コイル導体の接続部(
図示せず)の第2絶縁層42をエツチングで除去する。(e) Connection part between the first coil conductor and the second coil conductor (
The second insulating layer 42 (not shown) is removed by etching.
この時に、第1エツチングe71(第2図)奢こ相当す
る第1スルーホール7aやコア接続部8aを同時に形成
する。また、レジストJl!、を最適化し、同時にエッ
チバック法と呼ばれる平坦化法によりコイル凹凸も平坦
にする。At this time, a first through hole 7a and a core connecting portion 8a corresponding to the first etching e71 (FIG. 2) are formed at the same time. Also, resist Jl! , and at the same time flatten the irregularities of the coil using a flattening method called an etch-back method.
(f)第2コイル導体528形成する。(f) Forming a second coil conductor 528.
(2))第5絶縁層43を形成する0第2絶縁M42同
様にエッチバック法やバイアススパッタ法等により平坦
化する。(2)) Similarly to the second insulating layer M42 forming the fifth insulating layer 43, it is planarized by an etch-back method, a bias sputtering method, or the like.
(h)嘉2エツチング溝72(第2図)に相当する第2
スルーホール7bをあけ、ギャップ形成面となるコイル
絶縁膜に形成したスルーホール7を作る。同時にコア接
続部8bUJ第3絶縁層43も除去する。(h) A second groove corresponding to the Ka2 etching groove 72 (Fig. 2).
A through hole 7b is opened to form a through hole 7 formed in the coil insulating film which will serve as a gap forming surface. At the same time, the third insulating layer 43 of the core connection portion 8bUJ is also removed.
この第2スルーホール形成は億)のエッチバック法にお
いて、レジスト厚を最適化すれば平坦化と同時に形成す
ることもできる。This second through hole can be formed at the same time as planarization by optimizing the resist thickness in the etch-back method described in 1999.
(1)上部磁気コア6を形成する0
以上の2層コイルを有する場合にも、上述したと同様に
、第1スルーホールがトラック@そ規定するようにすれ
ば、段差のないところでのバターニングであるため、ト
ラック幅精度が上る。(1) Even when the upper magnetic core 6 has a two-layer coil of 0 or more, if the first through hole defines the track @, as described above, patterning can be performed in a place without a step. Therefore, the track width accuracy is improved.
このように、2層コイルの場合lこは、第1.第2溝を
連続してエツチングするのではなく、コイル絶縁膜形成
と溝形成とを繰り返す、しかも溝形成は他の工程と同時
に行うことができるため、工程数を増やさず(こ全ギヤ
ラグ深さにわたって高精度なトラック幅制御ができる。In this way, in the case of a two-layer coil, the first. Rather than continuously etching the second groove, the formation of the coil insulating film and the groove formation are repeated. Moreover, the groove formation can be performed simultaneously with other processes, so the number of processes does not increase (the total gear lug depth Highly accurate track width control is possible over the entire range.
次に、他の実施例を第4図により説明する。同図は摺動
面で符号は第3図と同一部は同符号で示した。本実施例
は、下部磁気コア2がトラック幅寸法に形成され、絶縁
材9で埋込まれた構造に適用したもので、従来より薄い
絶縁膜をエツチングして下部コアにスルーホールの位置
を合わせるため、従来より合わせ精度が大幅に向上でき
る。すなわち、上部コアと下部コアのトラックずれを従
来より小さくでき、トラック幅制御が高精度にできるよ
うになる。また、第2スルーホール7bを第1スルーホ
ール7aのテーパ部にその端部がくるようtこ形成した
ことtこよって、上部、下部コア端の漏洩磁束低減し、
性能改善の効果もある。この時、第2スルーホールのテ
ーパ角が太きすぎる場合には、磁路方向のテーバ端は第
1図の実施例のようfc、第1.第2スルーホールのテ
ーパ部が分離するように形成すること擾こよって、磁性
膜特性を劣化を抑えることができる。すなわち、本実施
例1こよって、トランク幅方向ωスルーホールテーバ角
を磁路長方向のテーパ角より大きくできる。なお、本実
施例は第4図の符号から明ら乃)なように、第3図で説
明した製法で作られるものであるが、最初lこ単層コイ
ルの薄膜磁気ヘッドの実施例の製法で述べたように、最
後のコイル絶縁層まで形成した後に、第1の溝、第2の
溝と連続して形成しても、トラック°幅方向のテーパ角
を磁路方向αノテーバ角より大きくすることはできる。Next, another embodiment will be explained with reference to FIG. This figure shows the sliding surface, and the same parts as in Figure 3 are shown with the same symbols. This embodiment is applied to a structure in which the lower magnetic core 2 is formed to the track width dimension and is embedded with an insulating material 9. The insulating film, which is thinner than the conventional one, is etched to align the through holes in the lower core. Therefore, alignment accuracy can be significantly improved compared to conventional methods. That is, the track deviation between the upper core and the lower core can be made smaller than before, and the track width can be controlled with high precision. In addition, the second through hole 7b is formed so that its end is located in the tapered portion of the first through hole 7a, thereby reducing magnetic flux leakage at the upper and lower core ends.
It also has the effect of improving performance. At this time, if the taper angle of the second through hole is too large, the tapered end in the magnetic path direction is fc, as in the embodiment of FIG. By forming the tapered portions of the second through holes to be separated, deterioration of the magnetic film characteristics can be suppressed. That is, according to the first embodiment, the ω through-hole taper angle in the trunk width direction can be made larger than the taper angle in the magnetic path length direction. As is clear from the reference numerals in FIG. 4, this example is manufactured by the manufacturing method explained in FIG. As mentioned above, even if the first groove and the second groove are formed continuously after the last coil insulating layer is formed, the taper angle in the track width direction is larger than the αnotaver angle in the magnetic path direction. You can do it.
以上、実施例を用いて本発明を説明したが、発明のポイ
ントである第1.@2の2つの溝で1つのスルーホール
を作るという魚身外のヘッド構造についてはいろいろ変
形が考えられることはいうまでもない。また、スルーホ
ールの形状そのものは2つの溝で決定されるが9.ざら
lここのスルーホールより大きい溝を追加し、各々のエ
ツチングする厚さを薄くし、エツチングしやすくしても
よい0〔発明の効果〕
本発明によれば、スルーホールによって形[したギャッ
プ部は長方形となり、ギャップ深さ方向のどの点におい
てもトラック幅の−様な薄膜磁気ヘッドを作ることが可
能となる。才た、従来より薄い膜でトラック幅を決めら
れるので、トラック幅精度そのものも向上する効果があ
る。The present invention has been described above using examples, but the first point is the main point of the invention. It goes without saying that there are many possible variations on the structure of the head outside the fish body, where one through hole is created using two grooves as shown in @2. Also, the shape of the through hole itself is determined by the two grooves.9. [Effects of the Invention] According to the present invention, a groove formed by a through hole may be added to make the etching process easier by adding a groove that is larger than the through hole. has a rectangular shape, making it possible to create a thin film magnetic head with a track width of - at any point in the gap depth direction. Since the track width can be determined using a thinner film than before, the track width accuracy itself can be improved.
第1図(a)、伽)は本発明の一実施例を示す薄膜磁気
ヘッドの斜視図および断面図、第2図は第1図の薄膜磁
気ヘッドの上部コア形成前のギャップ形成部の拡大斜視
図、!3図(a)〜(i)は本発明の薄膜磁気ヘッドの
製造方法を説明する工程断面図、第4因は他の実施例を
示す薄膜磁気ヘッドの摺動面を示す正面図、第5図(a
) 、 (b)は従来の薄膜磁気ヘッドの斜視図と、ギ
ャップ形成部の平面図である。
1・・・基板 2・・・下部磁気コア3・・
・ギャップ材 4・・・コイル絶縁膜41、42.
45・−・それぞれ第1.第2.$5コイル絶縁層
5・・・コイル導体 6・・・上部磁気コア7・・
・スルーホール 71・・・第1エツチング溝72・
・・第2エツチング溝
代理人 弁理士 小 川 勝 男
13 ロ
33 凹
J3 + 図
ヱ ら 回
(α)1(a) and 2) are a perspective view and a sectional view of a thin film magnetic head showing an embodiment of the present invention, and FIG. 2 is an enlarged view of the gap forming part before forming the upper core of the thin film magnetic head of FIG. 1. Perspective view,! 3(a) to 3(i) are process sectional views explaining the manufacturing method of the thin film magnetic head of the present invention, the fourth factor is a front view showing the sliding surface of the thin film magnetic head showing another embodiment, and the fifth factor is Figure (a
) and (b) are a perspective view of a conventional thin film magnetic head and a plan view of a gap forming part. 1... Board 2... Lower magnetic core 3...
-Gap material 4...Coil insulating film 41, 42.
45.--Respectively 1st. Second. $5 Coil insulating layer 5...Coil conductor 6...Upper magnetic core 7...
・Through hole 71...first etching groove 72・
・・Second Etching Groove Agent Patent Attorney Masao Ogawa 13 Ro33 Concave J3 + Figure Era times (α)
Claims (1)
コイル絶縁膜および上部磁気コアを積層してなる薄膜磁
気ヘッドにおいて、互いの溝の稜線が略直線領域におい
て略直交して上記コイル絶縁膜に形成された、トラック
幅方向の幅がトラック幅に等しい第1の長方形の溝と幅
がトラック幅より大きい第2の長方形の溝の少なくとも
2つの溝の重複部から成るコイル絶縁膜のスルーホール
をギヤツプ形成面としたことを特徴とする薄膜磁気ヘッ
ド。 2、前記下部磁気コアが少なくともギャップ形成面では
トラック幅寸法となつている薄膜磁気ヘッドにおいて、
前記少なくとも2つの溝でできるコイル絶縁膜のスルー
ホールの位置が該下部磁気コア表面に略一致し、かつ、
前記第2の溝のトラック幅方向のテーパ下端が第1の溝
のテーパ部にあることを特徴とする請求項1記載の薄膜
磁気ヘッド。[Claims] 1. A lower magnetic core, a gap material, a coil conductor, on a substrate,
In a thin film magnetic head formed by laminating a coil insulating film and an upper magnetic core, the coil insulating film is formed such that the ridgelines of each groove are substantially perpendicular to each other in a substantially straight region, and the width in the track width direction is equal to the track width. A thin film magnetic head characterized in that a gap forming surface is a through hole in a coil insulating film formed by an overlapping portion of at least two grooves, a first rectangular groove and a second rectangular groove whose width is larger than the track width. 2. A thin film magnetic head in which the lower magnetic core has a track width dimension at least on the gap forming surface,
The position of the through hole in the coil insulating film formed by the at least two grooves substantially coincides with the surface of the lower magnetic core, and
2. The thin film magnetic head according to claim 1, wherein the tapered lower end of the second groove in the track width direction is located at the tapered portion of the first groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3522888A JP2595013B2 (en) | 1988-02-19 | 1988-02-19 | Thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3522888A JP2595013B2 (en) | 1988-02-19 | 1988-02-19 | Thin film magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01211312A true JPH01211312A (en) | 1989-08-24 |
JP2595013B2 JP2595013B2 (en) | 1997-03-26 |
Family
ID=12435980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3522888A Expired - Lifetime JP2595013B2 (en) | 1988-02-19 | 1988-02-19 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2595013B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111723A (en) * | 1990-04-16 | 2000-08-29 | Hitachi, Ltd. | Narrow track thin film magnetic head suitable for high density recording and reproducing operations and fabrication method thereof wherein an air bearing surface has at least one groove containing a non-magnetic electrically conductive layer |
-
1988
- 1988-02-19 JP JP3522888A patent/JP2595013B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111723A (en) * | 1990-04-16 | 2000-08-29 | Hitachi, Ltd. | Narrow track thin film magnetic head suitable for high density recording and reproducing operations and fabrication method thereof wherein an air bearing surface has at least one groove containing a non-magnetic electrically conductive layer |
US6278578B1 (en) | 1990-04-16 | 2001-08-21 | Hitachi, Ltd. | Narrow track thin film head having a focused ion beam etched air bearing surface |
US6307707B1 (en) | 1990-04-16 | 2001-10-23 | Hitachi, Ltd. | Narrow track thin film head including magnetic poles machined by focused ion beam etching |
US6538844B2 (en) | 1990-04-16 | 2003-03-25 | Hitachi, Ltd. | Method of fabricating a magnetic head by focused ion beam etching |
US6665141B2 (en) | 1990-04-16 | 2003-12-16 | Hitachi, Ltd. | Magnetic head having track width defined by trench portions filled with magnetic shield material |
US6839200B2 (en) | 1990-04-16 | 2005-01-04 | Hitachi, Ltd. | Combination perpendicular magnetic head having shield material formed at both ends of an upper pole of a write element |
Also Published As
Publication number | Publication date |
---|---|
JP2595013B2 (en) | 1997-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4804816A (en) | Method of making a thin-film magnetic head having a multi-layered coil structure | |
US5056353A (en) | Marker for detecting amount of working and process for producing thin film magnetic head | |
JPH01211312A (en) | Thin-film magnetic head | |
JPS61151818A (en) | Thin film magnetic head | |
JPH03225611A (en) | Production of thin-film magnetic head | |
JPS5860421A (en) | Thin-film magnetic head | |
JPH01133212A (en) | Thin film magnetic head and its production | |
JP2572213B2 (en) | Thin film magnetic head | |
JPS5975422A (en) | Thin film magnetic head | |
JPS63131313A (en) | Thin film magnetic head and its manufacture | |
JPS60226008A (en) | Thin film magnetic head and its production | |
JPH02236806A (en) | Magnetic head and its manufacture | |
JPS6025015A (en) | Manufacture of thin-film magnetic head | |
JPS62145525A (en) | Manufacture of thin film magnetic head | |
JPH0289208A (en) | Production of thin-film magnetic head | |
JPH0447369B2 (en) | ||
JPH02236811A (en) | Production of thin-film magnetic head | |
JPS6249652B2 (en) | ||
JPS63257910A (en) | Thin film magnetic head | |
JPH01133211A (en) | Thin film magnetic head and its production | |
JPH0550044B2 (en) | ||
JPH04344308A (en) | Thin film magnetic head | |
JPS62229510A (en) | Thin film magnetic head | |
JPH03147508A (en) | Production of thin-film magnetic head | |
JPH09147321A (en) | Thin-film magnetic head and its production |