JPH01203218A - Production of thin oxide superconducting film - Google Patents
Production of thin oxide superconducting filmInfo
- Publication number
- JPH01203218A JPH01203218A JP63025606A JP2560688A JPH01203218A JP H01203218 A JPH01203218 A JP H01203218A JP 63025606 A JP63025606 A JP 63025606A JP 2560688 A JP2560688 A JP 2560688A JP H01203218 A JPH01203218 A JP H01203218A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- metals
- deposited
- substrate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 150000002739 metals Chemical class 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 229910052788 barium Inorganic materials 0.000 claims abstract description 11
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 9
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 239000010409 thin film Substances 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 16
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 abstract description 23
- 230000007704 transition Effects 0.000 abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002887 superconductor Substances 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、酸化物超伝導薄膜の製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconducting thin film.
[従来の技術]
超伝導現象とはある温度以下で電気抵抗がτになる現象
である。第3図に典型的な抵抗・温度特性を示す。抵抗
が減少し始める温度をオンセット超伝導転移温度”eo
n+完全に零になる温度を写抵抗超伝導転移温度Tce
ndと呼んでいる。ところで、Ln、[1a2Cu30
7−d(LnはY(イットリ゛ウム)あるいはランタノ
イド元素)の組成式を持つ酸化物が、それまでに知られ
ていた物質よりも高い超伝導転移温度を持つ超伝導体で
あることが発見され、その超伝導転移温度Te@ndが
液体窒素の沸点77にを越えるに至ってはその応用の可
能性が益々クローズアップされている。この酸化物超伝
導体を電子デバイス、超伝導配線等に応用するためには
、薄膜形成技術が必須技術となる。[Prior Art] Superconductivity is a phenomenon in which electrical resistance becomes τ below a certain temperature. Figure 3 shows typical resistance/temperature characteristics. The temperature at which resistance begins to decrease is the onset superconducting transition temperature "eo"
The temperature at which n+ becomes completely zero is the photoresistance superconducting transition temperature Tce
It is called nd. By the way, Ln, [1a2Cu30
It was discovered that an oxide with the composition formula 7-d (Ln is Y (yttrium) or a lanthanide element) is a superconductor with a higher superconducting transition temperature than any previously known substance. Now that its superconducting transition temperature Te@nd has exceeded the boiling point of liquid nitrogen, 77, the possibility of its application is attracting more and more attention. In order to apply this oxide superconductor to electronic devices, superconducting wiring, etc., thin film formation technology is essential.
これら酸化物超伝導体薄膜の形成技術として幾つかの方
法が報告されている。これらを大きく分けるとスパッタ
法および蒸着法が挙げられる。Several methods have been reported as techniques for forming these oxide superconductor thin films. Broadly speaking, these methods include sputtering methods and vapor deposition methods.
スパッタ法の代表例として、文献(1) ’Y。As a typical example of the sputtering method, see Reference (1) 'Y.
Enomoto et al、: Japane
se Journal of 八ppliedP
hysics、 vol、26. No、7. p、1
1248,1 に記載された方法がある。この文献によ
る製造法を以下に説明する。Enomoto et al: Japan
se Journal of 8ppliedP
hysics, vol, 26. No, 7. p, 1
There is a method described in No. 1248,1. The manufacturing method according to this document will be explained below.
ターゲット材料としてはY−Ba−Cu−0からなる焼
結体が用いられている。まず、酸素とアルゴンの混合ガ
ス中でターゲットをスパッタリングすることにより、5
rTi03基板上にY−Da−Cu−0からなる薄膜を
形成する。酸化物超伝導体の超伝導性は組成に極めて敏
感で僅かのずれでも超伝導転移温度の低下、超伝導性の
消失等を引き起こしてしまうので、形成された薄膜の元
素の原子数比がY:Ba:Cu−1:2:3になるよう
にターゲットの組成は適当な原子数比に調整されている
。このままでは超伝導体にはならないので、薄膜形成後
スパッタ装置から取り出し、酸素ガス中で適当な熱処理
を加えることにより、電気抵抗が雫となる温度で定義さ
れる超伝導転移温度Tcendが77に以上である薄膜
が作製される。しかし、ターゲットからスパッタリング
される割合が各元素により異なるため、スパッタリング
を進めるにつれてターゲット表面の組成比が変化し、こ
のため基板に形成される薄膜の原子数比がY:Ba:C
u=1:2:3からずれてしまう。従って、Tcend
が77にから大きく低下すると共に再現性も全くないと
いう重大な欠点を持つ。A sintered body made of Y-Ba-Cu-0 is used as the target material. First, by sputtering a target in a mixed gas of oxygen and argon,
A thin film made of Y-Da-Cu-0 is formed on an rTi03 substrate. The superconductivity of oxide superconductors is extremely sensitive to the composition, and even a slight deviation will cause a decrease in the superconducting transition temperature and loss of superconductivity. Therefore, if the atomic ratio of the elements in the formed thin film is The composition of the target is adjusted to an appropriate atomic ratio such that :Ba:Cu-1:2:3. Since it will not become a superconductor as it is, by removing it from the sputtering equipment after forming the thin film and applying appropriate heat treatment in oxygen gas, the superconducting transition temperature Tcend, defined as the temperature at which the electrical resistance drops, will reach 77 or higher. A thin film is produced. However, since the rate of sputtering from the target differs depending on each element, the composition ratio on the target surface changes as sputtering progresses, and as a result, the atomic ratio of the thin film formed on the substrate changes to Y:Ba:C.
It deviates from u=1:2:3. Therefore, Tcend
It has a serious drawback that the value is significantly lower than 77 and there is no reproducibility at all.
蒸着法の代表例としては、文献(2) rR,[l。As a typical example of the vapor deposition method, see Document (2) rR, [l.
Laibowitz、; Physical Revi
ew It、 vol、35. No。Laibowitz; Physical Revi
ew It, vol, 35. No.
16、 p、8821.に記載された方法がある。この
文献による製造法を以下に説明する。16, p, 8821. There is a method described in The manufacturing method according to this document will be explained below.
Y、BaおよびCuの3つの金属をそれぞれ別のハース
に装填し、それぞれ独立の3つの電子ビーム源を用いて
3つの金属を同時に蒸着する。その際10一’Torr
程度の酸素τ囲気を真空装置の中に導入し、このバック
グラウンドのガス雰囲気の中で蒸着している。さらに、
基板を450℃程度に加熱することにより、蒸着中に酸
化を進行させている。Three metals, Y, Ba, and Cu, are loaded into separate hearths, and the three metals are simultaneously vapor-deposited using three independent electron beam sources. At that time, 101' Torr
An atmosphere of about .tau. of oxygen is introduced into the vacuum apparatus, and the deposition is performed in this background gas atmosphere. moreover,
By heating the substrate to about 450° C., oxidation progresses during vapor deposition.
酸素雰囲気中で同時蒸着した膜でも膜中に含まれる酸素
の量は不十分であるため、蒸着終了後、酸素ガスを流し
た電気炉の中で900〜950℃の温度で熱処理を行っ
ている。しかし、この方法は酸素雰囲気中で3つの金属
を同時に蒸着し、かつ基板と膜厚モニタとの温度が異な
るため、前者のスパッタ法と同様にY、BaおよびCu
の原子数比を1:2:3に正確に、再現よく制御するの
が難しく、77に以上の超伝導転移温度を有する薄膜を
再現良く形成するのが困難であるという大きな欠点を有
している。Even if the film is co-deposited in an oxygen atmosphere, the amount of oxygen contained in the film is insufficient, so after the deposition is complete, heat treatment is performed at a temperature of 900 to 950°C in an electric furnace with oxygen gas flowing. . However, in this method, three metals are deposited simultaneously in an oxygen atmosphere, and the temperatures of the substrate and film thickness monitor are different, so Y, Ba, and Cu are deposited as in the former sputtering method.
It has the major drawback that it is difficult to accurately and reproducibly control the atomic ratio of There is.
[発明が解決しようとする課題]
以上の2つの酸化物超伝導薄膜形成法共に、薄膜の超伝
導特性に最も大きな影響を与える原子数比の正確な制御
が再現良くできないという致命的欠点を有している。こ
の欠点を解決できる超伝導薄膜形成法として、3つの金
属を積層に蒸着する方法が、文献(3) ’B、Y、T
saur et al、; Appliedr’hys
ics Letters、 vol、51. No、1
1. +1.858Jにおいて開示され、また文献(4
)「山木眞史他:特願昭52−268343号Jにおい
て提案されている。[Problems to be Solved by the Invention] Both of the above two methods for forming oxide superconducting thin films have the fatal drawback that accurate control of the atomic ratio, which has the greatest effect on the superconducting properties of the thin film, cannot be reproducibly performed. are doing. As a superconducting thin film formation method that can solve this drawback, there is a method in which three metals are deposited in a stacked manner as described in the literature (3) 'B, Y, T
saur et al;
ics Letters, vol, 51. No.1
1. +1.858J, and also in the literature (4
) "Masashi Yamaki et al.: Proposed in Japanese Patent Application No. 52-268343 J.
文献(3)における方法は、まず、Y、BaおよびCu
の3つの金属をCu−+Ba−+Yの順序でY:Ba:
Cu=1:2:3の組成比になるように積層蒸着してい
る。この積層構造を1単位として積層蒸着を6回行う。In the method in document (3), first, Y, Ba and Cu
The three metals are arranged in the order of Cu-+Ba-+Y: Y:Ba:
Laminated vapor deposition is performed so that the composition ratio of Cu is 1:2:3. Laminate deposition is performed six times with this laminated structure as one unit.
蒸着終了後、酸素ガスを流した電気炉の中で熱処理する
ことにより酸化を進行させ、酸化物超伝導薄膜を得てい
る。この酸化物超伝導薄膜の超伝導転移温度Teend
のトップデータとしては、イツトリウム安定化ジルコニ
ア(YSZ)を基板としたときは72に1 サファイア
を基板としたときは40にを報告している。いずれの場
合でもTeanaは77に以下である。After the deposition, oxidation is progressed by heat treatment in an electric furnace with oxygen gas flowing therein, and an oxide superconducting thin film is obtained. The superconducting transition temperature of this oxide superconducting thin film
The top data reported is 1 in 72 when using yttrium stabilized zirconia (YSZ) as a substrate and 40 when using sapphire as a substrate. In either case, Teana is 77 or less.
文献(4)においては、Baとの間で全率固溶する観点
から、Yに替わってYb(イッテルビウム)を用い、Y
b、BaおよびCuの3つの金属からなる積層蒸着膜を
酸素中で熱処理することにより、酸化物超伝導薄膜を得
ている。この結果、超伝導転移温度Tc@ndは上昇し
、トップデータとしてMgOを基板としたときに75に
を得ている。しかし、この値は応用上2つの判断基準で
ある液体窒素温度の沸点77Kを越えていない。In literature (4), Yb (ytterbium) is used instead of Y from the viewpoint of complete solid solution with Ba;
An oxide superconducting thin film is obtained by heat-treating a laminated vapor-deposited film consisting of three metals, Ba, Cu, and Cu in oxygen. As a result, the superconducting transition temperature Tc@nd has increased, and the top data is 75 when MgO is used as a substrate. However, this value does not exceed the boiling point of liquid nitrogen temperature, 77K, which is two criteria for application.
第4図に同一ロットで積層蒸着および酸素中アニールし
た10個の試料のTconとTcendを示した。FIG. 4 shows Tcon and Tcend of 10 samples of the same lot that were deposited in layers and annealed in oxygen.
Tconはさほどばらつかないが、Tcendは50K
から75Kまで大きくばらつき、再現性が悪いという欠
点を持っている。この原因は次のように考えられる。Tcon does not vary much, but Tcend is 50K
It has the drawback that it varies widely from 75K to 75K and has poor reproducibility. The reason for this is thought to be as follows.
上述の金属積層蒸着膜を酸素ガス中で熱処理することに
より酸化物超伝導薄膜を作製する場合には、熱処理時に
金属同志の相互拡散と酸化が同時に進行する。従って、
酸化されやすいBaのみが酸素濃度の高い表面方向に移
動するためにBa濃度の不均一性を持ったり、酸化物の
拡散定数が極めて小さいため拡散が十分には進まない等
の理由により、Yb、BaおよびCuの原子数比が組成
比である1:2:3からずれてしまう部分が形成される
。このため、Tcendが低下すると考えられる。酸化
物と金属との混合物の拡散現象は試料毎に微妙に異なる
ため、同一ロット内試料間でのi’ c a n dの
ばらつき、再現性の悪さも同様の原因によるものである
。When producing an oxide superconducting thin film by heat-treating the above-mentioned metal laminated vapor-deposited film in oxygen gas, mutual diffusion and oxidation of metals progress simultaneously during the heat treatment. Therefore,
Yb, A portion is formed in which the atomic ratio of Ba and Cu deviates from the composition ratio of 1:2:3. Therefore, it is thought that Tcend decreases. Since the diffusion phenomenon of a mixture of oxide and metal differs slightly from sample to sample, variations in i' can and poor reproducibility between samples in the same lot are also due to the same cause.
木発明の目的は、上述の問題点を解決し、超伝導転移温
度T e l! II dが77に以上であると共に、
同一ロットで製作した試着間は勿論のこと、別ロットの
試料間の超伝導転移温度のばらつきを抑えることができ
る酸化物超伝導R膜の製造方法を提供することにある。The purpose of the invention is to solve the above-mentioned problems and to improve the superconducting transition temperature T e l! II d is greater than or equal to 77, and
It is an object of the present invention to provide a method for manufacturing an oxide superconducting R film that can suppress variations in superconducting transition temperature not only between samples manufactured in the same lot but also between samples in different lots.
[課題を解決するための手段]
このような目的を達成するために、本発明は、Yあるい
はランタノイド金属、 BaおよびCuの原子数比が1
:2:3になるようにそれぞれの金属を個別に順次堆
積することによって形成される3層堆積層を1単位とし
て、積層単位を1回または複数回基板上に積層堆積し、
それぞれの金属との化学反応が起こらない雰囲気中ある
いは真空中において堆積膜を加熱して、積層堆積膜に相
互拡散を生ぜしめて均一な合金を形成させ、酸素ガス中
において熱処理することを特徴とする。[Means for Solving the Problem] In order to achieve such an object, the present invention provides a method in which the atomic ratio of Y or lanthanide metal, Ba and Cu is 1.
: A three-layer deposited layer formed by individually sequentially depositing each metal in a ratio of 2:3 is set as one unit, and the stacked unit is stacked and deposited on the substrate once or multiple times,
It is characterized by heating the deposited film in an atmosphere where chemical reactions with the respective metals do not occur or in a vacuum to cause interdiffusion in the stacked deposited films to form a uniform alloy, and then heat-treating in oxygen gas. .
[作 用1
木発明においては、積層金属と反応しない雰囲気中で積
層堆積膜が互いに十分相互拡散し、合金を形成する温度
で熱処理することによりl:2:3の組成比を面方向お
よび深さ方向共に均一にした後に、酸素ガス中で熱処理
するため、均一なLn1Ba2CLI30t−d(Ln
はYあるいはランタノイド元素)を再現良く形成するこ
とができる。従って、超伝導転移温度が高く、かつ超伝
導特性のばらつきの少ない酸化物超伝導薄膜を製造する
ことができる。[Function 1 In the wood invention, the composition ratio of 1:2:3 is increased in the plane direction and depth by heat treatment at a temperature at which the laminated deposited films sufficiently interdiffuse and form an alloy in an atmosphere that does not react with the laminated metal. After making the Ln1Ba2CLI30t-d (Ln
(Y or lanthanoid elements) can be formed with good reproducibility. Therefore, it is possible to produce an oxide superconducting thin film that has a high superconducting transition temperature and less variation in superconducting properties.
[実施例]
以下に実施例によって本発明の詳細な説明する。酸化物
超伝導薄膜は、工程■〜■で製造される。[Examples] The present invention will be explained in detail below using Examples. The oxide superconducting thin film is manufactured in steps ① to ②.
■電子ビーム蒸着の独立したハースに、Y(あるいはラ
ンタノイド金属)、BaおよびCuをそれぞれ装填する
。(2) Load Y (or lanthanide metal), Ba, and Cu into separate hearths for electron beam evaporation.
■MgO,5rTiCh、ZrO,YSZあるいはへ℃
205等で形成された基板上に3つの金属を電子ビーム
蒸着により、順次M層jft積する。各々の膜ノアはY
(あるいはランタノイド金属)、Ba、Cuの原子数比
が1:2:3になるように設定する。本実施例ではこの
3層積層膜の全体のJりみはlO〜200nm程度の範
囲に選んだ。積層順は全ての順列に対して試みたが超伝
導特性の変化はなかった。従って、どのような積層順で
もよい。■MgO, 5rTiCh, ZrO, YSZ or to ℃
M layers of three metals are sequentially deposited on a substrate made of 205 or the like by electron beam evaporation. Each membrane Noah is Y
(or lanthanoid metal), Ba, and Cu so that the atomic ratio is 1:2:3. In this example, the overall J depth of this three-layer laminated film was selected to be in the range of about 10 to 200 nm. Although all stacking orders were tried, there was no change in the superconducting properties. Therefore, any stacking order may be used.
■上述の3層の積層構造をIRI−位として、この単位
を1回または複数回基板上に積層堆積する。この単位を
1回だけ基板上に積層する場合は、工程■において、こ
の工程は終了している。(2) The above-mentioned three-layer laminated structure is set at IRI-position, and this unit is laminated and deposited on the substrate once or multiple times. If this unit is to be laminated on the substrate only once, this step is completed in step (2).
■蒸着終了後、積層蒸着膜と反応しないガス(不活性ガ
ス、窒素ガスあるいは炭酸ガス等)中あるいは真空中で
熱処理し、均一な合金をつくる。昇温速度、降温速度は
10℃/h〜1000℃/hである。熱処理温度が高け
れば必要な処理時間は短く、逆に温度が低ければ均一化
に長時間を要する。実用的な観点からは熱処理温度は4
00℃以上が好ましく、400℃〜800℃、 10分
から数時間の熱処理条件を選ぶことができる。②After vapor deposition, heat treatment is performed in a gas (inert gas, nitrogen gas, carbon dioxide, etc.) that does not react with the laminated vapor deposited film or in a vacuum to create a uniform alloy. The temperature increase rate and temperature decrease rate are 10°C/h to 1000°C/h. If the heat treatment temperature is high, the necessary treatment time will be short, whereas if the temperature is low, it will take a long time to achieve uniformity. From a practical point of view, the heat treatment temperature is 4
The temperature is preferably 00°C or higher, and the heat treatment conditions can be selected from 400°C to 800°C and from 10 minutes to several hours.
■その後、酸素ガスを流した電気炉の中で熱処理を行う
。昇温速度は10℃/h〜1000℃/h、降温速度は
lO℃/h〜500℃/hである。熱処理温度の下限は
700℃である。実用的な観点からは熱処理温度は75
0℃以上が好ましく、750℃〜950℃、10分から
数時間の熱処理条件を選ぶことができる。■Then, heat treatment is performed in an electric furnace flowing oxygen gas. The temperature increasing rate is 10°C/h to 1000°C/h, and the temperature decreasing rate is 10°C/h to 500°C/h. The lower limit of the heat treatment temperature is 700°C. From a practical point of view, the heat treatment temperature is 75
The temperature is preferably 0°C or higher, and the heat treatment conditions can be selected from 750°C to 950°C and from 10 minutes to several hours.
第3図に、本実施例で得た典型的酸化物超伝導薄膜の抵
抗と温度の実験結果を示す。ランタノイド金属としてY
bを、基板はMgOを用いた。積層順は、Yb→Ba−
+(:uであり、3つの金属の積層単位の膜厚d0は2
00nm 、積層単位の積層回数nは3回とした。従っ
て、全体の積層膜の膜厚dはd=d、n=600nmで
ある。Yb、DaおよびCuは反応しないガスとして、
本実施例では窒素ガスを用いた。窒素ガス中での熱処理
温度1時間はそれぞれ800℃、2時間とした。昇降温
速度は500℃/hとした。FIG. 3 shows the experimental results of the resistance and temperature of the typical oxide superconducting thin film obtained in this example. Y as a lanthanide metal
b, and MgO was used as the substrate. The stacking order is Yb→Ba-
+(:u, and the film thickness d0 of the stacked unit of three metals is 2
00 nm, and the number of laminations n in the lamination unit was 3. Therefore, the film thickness d of the entire laminated film is d=d, n=600 nm. Yb, Da and Cu are non-reactive gases,
In this example, nitrogen gas was used. The heat treatment temperature in nitrogen gas for 1 hour was 800° C. for 2 hours. The temperature raising/lowering rate was 500°C/h.
第1図に示すように、抵抗が零になる超伝導転移温度T
candは79にであり、窒素温度の沸点77にを越え
ている。As shown in Figure 1, the superconducting transition temperature T at which the resistance becomes zero
cand is 79 degrees, exceeding the boiling point of nitrogen temperature 77 degrees.
第2図には、同一ロットあるいは別ロットて作製した1
0個の試料のTea□およびTccndを示す。データ
のばらつきは非常に小さく全試斜共にrcendは77
にを越えている。これは同一ロットで作製した試料間は
勿論のこと、別ロフトの試将間でのデータのばらつきが
極めて小さいことを示す。上述の実施例の工程■を導入
した効果が大きいことは一目瞭然である。Figure 2 shows 1.
Tea□ and Tccnd of 0 samples are shown. The data variation is very small and the rcend is 77 for all test slopes.
It's beyond. This shows that the variation in data is extremely small, not only between samples made in the same lot, but also between samples made in different lofts. It is obvious at a glance that the effect of introducing step (2) in the above-mentioned embodiment is great.
以上の得られた結果はランタノイド金属をYb、基板を
MgOとする等のように条件を特定して説明したが、こ
の組み合わせに限らず、実施例に記した内容においては
同様な結果が得られた。また、本実施例では、積層蒸着
金属と反応しないガス中の熱処理において、温度を室温
まで下げた後に酸素ガス中熱処理を行うように説明した
が、前者の熱処理で所定の熱処理温度で所定の時間熱処
理を行った後温度を下げることなく酸素ガスにガスを切
り換え酸素ガス中における熱処理を開始しても勿論よい
。The results obtained above have been explained by specifying conditions such as using Yb as the lanthanide metal and MgO as the substrate, but the same results can be obtained not only with this combination but also with the contents described in the examples. Ta. In addition, in this example, in the heat treatment in a gas that does not react with the laminated vapor-deposited metal, it was explained that the heat treatment in oxygen gas was performed after lowering the temperature to room temperature. Of course, after heat treatment, the gas may be switched to oxygen gas and heat treatment in oxygen gas may be started without lowering the temperature.
また、本実施例では、金属の堆積方法として電子ビーム
を用いる方法について説明したが、抵抗加熱蒸着、高周
波加熱蒸着あるいはスパッタ蒸着であっても酸化物超伝
導薄膜の作製が実現できることは勿論である。Furthermore, in this example, a method using an electron beam was explained as a metal deposition method, but it is of course possible to fabricate an oxide superconducting thin film using resistance heating evaporation, high frequency heating evaporation, or sputter evaporation. .
[発明の効果]
以上説明したように、本発明においては、窒素温度の沸
点77に以上の7抵抗超伝導転移部度を持つ酸化物超伝
導薄膜を再現良くかつばらつき少なく作製することがで
きるので、液体窒素温度で動作する電子デバイスおよび
超伝導配線等に幅広い応用を切り開くことができるとい
う効果がある。[Effects of the Invention] As explained above, in the present invention, an oxide superconducting thin film having a resistance superconducting transition degree of 7 or more at a boiling point of 77 at a nitrogen temperature can be produced with good reproducibility and with little variation. This has the effect of opening up a wide range of applications to electronic devices and superconducting interconnects that operate at liquid nitrogen temperatures.
第1図は本発明の実施例による酸化物超伝導薄膜の抵抗
・温度特性を示す図、
第2図は本発明の実施例による酸化物超伝導薄膜の温度
特性図、
第3図は酸化物超伝導体の抵抗・温度特性図、第4図は
従来の製造方法による酸化物超伝導薄膜の温度特性図で
ある。FIG. 1 is a diagram showing the resistance/temperature characteristics of an oxide superconducting thin film according to an embodiment of the present invention, FIG. 2 is a diagram showing temperature characteristics of an oxide superconducting thin film according to an embodiment of the present invention, and FIG. FIG. 4 is a diagram showing the temperature characteristics of an oxide superconducting thin film produced by a conventional manufacturing method.
Claims (1)
原子数比が1:2:3になるように前記それぞれの金属
を個別に順次堆積することによって形成される3層堆積
層を1単位として、該積層単位を1回または複数回基板
上に積層堆積し、 前記それぞれの金属との化学反応が起こらない雰囲気中
あるいは真空中において前記堆積膜を加熱して、該積層
堆積膜に相互拡散を生ぜしめて均一な合金を形成させ、 酸素ガス中において熱処理することを特徴とする酸化物
超伝導薄膜の製造方法。(1) One unit is a three-layer deposited layer formed by depositing Y or lanthanide metal, Ba, and Cu in sequence in an atomic ratio of 1:2:3. The laminated units are laminated one or more times on a substrate, and the deposited film is heated in an atmosphere or vacuum in which chemical reactions with the respective metals do not occur to cause interdiffusion in the laminated deposited film. A method for producing an oxide superconducting thin film, which comprises forming a uniform alloy and heat-treating it in oxygen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025606A JPH07112927B2 (en) | 1988-02-08 | 1988-02-08 | Method for manufacturing oxide superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025606A JPH07112927B2 (en) | 1988-02-08 | 1988-02-08 | Method for manufacturing oxide superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01203218A true JPH01203218A (en) | 1989-08-16 |
JPH07112927B2 JPH07112927B2 (en) | 1995-12-06 |
Family
ID=12170558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63025606A Expired - Lifetime JPH07112927B2 (en) | 1988-02-08 | 1988-02-08 | Method for manufacturing oxide superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07112927B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0597588A (en) * | 1991-03-27 | 1993-04-20 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | Production of oxide superconductor film |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472425A (en) * | 1987-09-12 | 1989-03-17 | Univ Tokai | Manufacture of superconducting material |
-
1988
- 1988-02-08 JP JP63025606A patent/JPH07112927B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472425A (en) * | 1987-09-12 | 1989-03-17 | Univ Tokai | Manufacture of superconducting material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0597588A (en) * | 1991-03-27 | 1993-04-20 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | Production of oxide superconductor film |
Also Published As
Publication number | Publication date |
---|---|
JPH07112927B2 (en) | 1995-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2711253B2 (en) | Superconducting film and method for forming the same | |
JP3188358B2 (en) | Method for producing oxide superconductor thin film | |
JPH10507590A (en) | Multilayer composite and method of manufacture | |
JPH01203218A (en) | Production of thin oxide superconducting film | |
EP0372808B1 (en) | Process for preparing a perovskite type superconductor film | |
JPS63242532A (en) | Super conductor and its manufacture | |
JPS63310515A (en) | Manufacture of superconductor membrane | |
JPH01275434A (en) | Production of high temperature superconducting oxide film | |
JPS63301424A (en) | Manufacture of oxide superconductor membrane | |
JPH0297421A (en) | Production of high temperature superconducting thin film | |
JP2742097B2 (en) | Method for producing oxide superconducting thin film | |
US5306703A (en) | Method of forming smooth, uniform thallium-based superconducting films | |
US5126320A (en) | Method for manufacturing an oxide superconducting thin-film | |
JP2564598B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP3058515B2 (en) | Superconducting Josephson device and its manufacturing method | |
JP2001236834A (en) | Oxide superconducting conductor | |
JP2506130B2 (en) | Method for manufacturing oxide superconducting thin film | |
JPH02258629A (en) | Preparation of bi-pb-sr-ca-cu-o superconductor thin film | |
JPH04342497A (en) | Method for forming complex oxide superconducting thin film | |
JPH07100609B2 (en) | Method of manufacturing thin film superconductor | |
JPH02232381A (en) | Superconducting thin tape and its production | |
JPS63310519A (en) | Manufacture of membrane consisting of oxide superconductor material | |
JPH01208323A (en) | Production of thin film | |
JPH02184521A (en) | Production of y-ba-cu-o based oxide high-temperature superconducting film | |
JPH01160826A (en) | Preparation of oxide superconducting thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071206 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 13 |