JPH01202833A - Accurate xy stage device - Google Patents
Accurate xy stage deviceInfo
- Publication number
- JPH01202833A JPH01202833A JP63026489A JP2648988A JPH01202833A JP H01202833 A JPH01202833 A JP H01202833A JP 63026489 A JP63026489 A JP 63026489A JP 2648988 A JP2648988 A JP 2648988A JP H01202833 A JPH01202833 A JP H01202833A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- rolling
- angle error
- yawing
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005096 rolling process Methods 0.000 claims abstract description 16
- 238000005259 measurement Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は半導体製造装置の位置決め装#t#こおける
高精度XYステージ装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high-precision XY stage device in a positioning device #t# of a semiconductor manufacturing device.
(従来の技術)
vLSI製造に用いるための半導体露光装置用テーブル
装置においては1位置決め精度として0.05μm以下
が要求される。このような超精密な位置決め装置ではレ
ーザ干渉計蛋こよりて、ウェハテーブル上のミラーの位
置をX@、Y軸測定しサーボ回路によりて位置決めする
ことが一般的である。しかし、この方法ではテーブル移
動に伴うヨーイング角誤差、ピッチング角誤差、ローリ
ング角誤差と呼ばれるステージの角度変#h1[があり
。(Prior Art) In a table device for a semiconductor exposure apparatus used in vLSI manufacturing, one positioning accuracy is required to be 0.05 μm or less. In such an ultra-precise positioning device, it is common to use a laser interferometer to measure the position of the mirror on the wafer table in the X and Y axes, and then perform positioning using a servo circuit. However, in this method, there are angle changes #h1 of the stage called yawing angle error, pitching angle error, and rolling angle error due to table movement.
これらの誤差成分を微小に収める必要がある8通常、精
度良くガイドを製作しても、ころがり軸・受は等の場合
は、角度変a[は5秒程度はでてしまう、また、ウェハ
テーブルのヨーイング角誤差を補正する方法は提案され
ている。これは、ウェハテーブル上のミラー面を1軸に
対しては2点測定し、テーブル移動時の2点の位置を引
いた量をヨーイング誤差とし、この直をOにするように
θ軸移動テーブルにサーボをかけるものである。このよ
うにすれば、テーブルのヨーイング誤差による位置誤差
はなくすことができる。It is necessary to keep these error components to a very small level.8 Normally, even if a guide is manufactured with high precision, if the rolling shaft or bearing etc. A method for correcting the yaw angle error has been proposed. This is done by measuring the mirror surface on the wafer table at two points for one axis, subtracting the position of the two points when the table moves, and taking the yawing error as the yawing error. It applies a servo to. In this way, position errors due to table yawing errors can be eliminated.
しかし1例えば、チー゛プル移動時にピッチング誤差が
5秒ありたとき、ウェハの露光面とレーザ干渉計による
ミラーの測定立直の2距離が2mmあるとすれば、0.
05μmの位置誤差が生じてしまう、従来は、この誤差
を、ガイドの加工摺度を経験的fこ上げることで小さく
、かつTTLアライメントによって無くして含た。その
ための製作に時間とコスト高を必要とし、TTLアライ
メント番こよりスループットの大幅な低下がありた。However, 1. For example, if there is a pitching error of 5 seconds when moving the chip, and the distance between the exposed surface of the wafer and the mirror measured by the laser interferometer is 2 mm, then 0.
Conventionally, this error, which causes a position error of 0.5 μm, was reduced by increasing the machining sliding degree of the guide by an empirical value f, and was eliminated by TTL alignment. The production thereof requires time and high cost, and the throughput is significantly reduced compared to TTL alignment.
(発明が解決しよりとする課題)
本発明は前述した問題点を解決しようとするものであり
、チップ露光の際TTLアライメントによるスループッ
トの低下が無く、ガイドの加工摺度を経験的曇こ上げな
くてもすむ角度補正制御装置を備えた高情[XYステー
ジ装置を提供するものである。(Problems to be Solved by the Invention) The present invention is an attempt to solve the above-mentioned problems, and eliminates the throughput drop due to TTL alignment during chip exposure and improves the roughness of the guide based on experience. The present invention provides an advanced XY stage device equipped with an angle correction control device that can be omitted.
(課題を解決するための手段)
本発明では、ステージの各位置におけるピッチング角誤
差、ローリン夛角誤差、ヨーイング角誤差を測定し、そ
れらの角度変動値を零とするように、ステージを制御す
る。(Means for Solving the Problems) In the present invention, the pitching angle error, rolling angle error, and yaw angle error are measured at each position of the stage, and the stage is controlled so that the angular fluctuation values thereof are set to zero. .
(作用)
ピッチング角誤差、Q−リング角誤差は、レーザ干渉計
でウェハテーブル上のミラーの間をおいた2点でステー
ジの位置を測定し、2点のステージの位置の差を検出し
て求める。今、レーザ干渉計の分解能を約0.01μm
とし、2点間の距離を30mnnとすると、約0.1秒
となる。前述のウェハの露光面とレーザ干渉計によるミ
ラーの測定位置の2距蝋が2mmとしてLSIチップで
の位、産誤差を再度計算してみると、約0゜001μm
の位置誤差にしがならない、つまり、レーザ干渉計の分
解能に近いM度でピッチング、ローリング変動を補正す
わば1位置合わせに与える影響はほとんどOlζできる
。(Function) Pitching angle error and Q-ring angle error are determined by measuring the stage position at two points between the mirrors on the wafer table using a laser interferometer, and detecting the difference between the stage positions at the two points. demand. Now, the resolution of the laser interferometer is about 0.01 μm.
If the distance between the two points is 30 mnn, it will take approximately 0.1 seconds. Assuming that the distance between the exposed surface of the wafer and the mirror measurement position using the laser interferometer is 2 mm, we calculate the production error for the LSI chip again and find that it is approximately 0°001 μm.
In other words, pitching and rolling fluctuations can be corrected at M degrees, which is close to the resolution of the laser interferometer, so that the influence on position alignment can be reduced to almost nothing.
(実施例)
第1図は本発明によるピッチング、ローリング、ヨーイ
ング補正機構をJL[した高精度XYステージの一実施
例である。また、第2図はピッチング。(Embodiment) FIG. 1 is an embodiment of a high-precision XY stage using a pitching, rolling, and yawing correction mechanism according to the present invention. Also, Figure 2 shows pitching.
ローリング、ヨーイング補正制置回路の一実施例である
。ステージ1,2は直交してモータ8と送りネジ9#こ
より駆動される。ウェハステージの位置はレーザ干渉計
7により計測される。ステージ1.2の移動にともなう
ピッチング変動はレーザ干渉計7a、7bで計測したス
テージ位置の差で検出され、ローリング変動はレーザ干
渉計7c。This is an example of a rolling and yawing correction restraint circuit. Stages 1 and 2 are orthogonally driven by a motor 8 and a feed screw 9#. The position of the wafer stage is measured by a laser interferometer 7. Pitching fluctuations due to movement of the stage 1.2 are detected by the difference in stage position measured by laser interferometers 7a and 7b, and rolling fluctuations are detected by laser interferometer 7c.
7dで計測したステージ位置の差で、ヨーイング変動は
レーザ干渉計7d 、7eで計測したステージ位置の差
で検出される。Yawing fluctuation is detected by the difference in stage position measured by laser interferometers 7d and 7e.
ステージ1,2上Iこは4〜6の各角度誤差補正ステー
ジがあり、レーザ干渉計により求めたピッチング、ロー
リング、ヨーイング誤差を補正する7゜ピッチング、ロ
ーリング、ヨーイング変動の補正IIJ 8は以下のよ
うiこ行う、まず、レーザ干渉計7bのアップ・ダウン
(’UP−DOWN )パルスをアップ/ダウ7 ・(
UP/DOWN) 力”)7タ10at”計数し、ラッ
チ11aに記憶する。また、レーザ干渉計7cのアップ
・ダウン(UP−DOWN)パルスをアップ/ダウン・
(UP/DOWN3カウンタ1.Obに記憶する。ラッ
チ10a、10bのデータを減算器12で減算し、各角
度誤差変動逼を得る。この直をラッチ13を経由してD
/Aコンバータ14でアナログ信号に変換する。このア
ナログ信号を増幅器15で増幅し、ローパスフィルタ1
6で高域を減衰させ、電力増幅器17でアクチエエータ
を駆動する。これにより各角度誤差補正ステージを動か
し、ピッチング、ローリング。ヨーイング変動を補正す
る。There are angular error correction stages 4 to 6 on stages 1 and 2, which correct pitching, rolling, and yawing errors determined by a laser interferometer. First, the up/down ('UP-DOWN) pulse of the laser interferometer 7b is activated.
UP/DOWN) Force is counted and stored in the latch 11a. In addition, the up/down (UP-DOWN) pulse of the laser interferometer 7c is
(Stored in UP/DOWN3 counter 1.Ob. The data of latches 10a and 10b are subtracted by subtractor 12 to obtain each angle error fluctuation value. This value is passed through latch 13 to D
/A converter 14 converts it into an analog signal. This analog signal is amplified by an amplifier 15, and a low pass filter 1
6 attenuates the high frequency range, and a power amplifier 17 drives the actuator. This moves each angle error correction stage for pitching and rolling. Correct yaw variation.
上述の構成を用いることで、ガイドのカロエ情度を極端
に上げなくても、また、TTLアライメントによる転写
によるスループットの低下無く、角度誤差に起因する位
置合わせ誤差を微小にできる。By using the above-mentioned configuration, it is possible to minimize the positioning error caused by the angular error without having to extremely increase the sensitivity of the guide and without reducing the throughput due to transfer by TTL alignment.
゛第1−は1本発明に係わる高精度XYステージ装置の
一実施例を示す斜視図、第2図はその制御回路の一実施
例を示す回路−である。
1・・・Y軸ステージ、2・・・X軸ステージ、3・・
・2軸ステージ、4・・・ピッチング角ステージ、5・
・・ローリング角ステージ、6・・・ヨーイング角ステ
ージ。
7・・・レーザ干渉計、8・・・DCモータ、9・・・
送りネジ、10・・・UP/DOWNカウンタ、11・
・・ラッチ、12・・・減算器% 13・・・うVチ、
14・・・D/Aコンバータ% 15・・・増幅器、1
6・・・ローパスフィルタ。
17・・・電力増幅器% 18・・・直角ミラー。
代理人 弁理士 則 近 憲 佑
同 松 山 光 之Fig. 1 is a perspective view showing an embodiment of a high-precision XY stage device according to the present invention, and Fig. 2 is a circuit showing an embodiment of the control circuit thereof. 1...Y-axis stage, 2...X-axis stage, 3...
・2-axis stage, 4... Pitching angle stage, 5.
... Rolling angle stage, 6... Yawing angle stage. 7... Laser interferometer, 8... DC motor, 9...
Feed screw, 10...UP/DOWN counter, 11.
...Latch, 12...Subtractor% 13...U Vchi,
14...D/A converter% 15...Amplifier, 1
6...Low pass filter. 17...Power amplifier% 18...Right angle mirror. Agent Patent Attorney Noriyuki Chika Yudo Hikaru Matsuyama
Claims (2)
ル装置をZ軸方向、ピッチング角方向、ローリング角方
向、ヨーイング角方向に独立に移動させるための駆動機
構と、テーブルのX軸位置、Y軸位置、Z軸位置、ピッ
チング角誤差、ローリング角誤差、ヨーイング角誤差を
常時検出するための計測手段と、露光するチップのX軸
、Y軸、Z軸位置を常に目標とする位置に位置決めする
と同時に、ピッチング角方向、ローリング角方向、ヨー
イング角方向に駆動する機構を用いて角度変動値を零に
するようなサーボ機構とを具備したことを特徴とする高
精度XYステージ装置。(1) In an XY table for semiconductor exposure equipment, a drive mechanism for independently moving the table device in the Z-axis direction, pitching angle direction, rolling angle direction, and yawing angle direction, and the X-axis position, Y-axis position of the table, Measuring means for constantly detecting Z-axis position, pitching angle error, rolling angle error, and yaw angle error; A high-precision XY stage device characterized by comprising a servo mechanism that reduces the angle fluctuation value to zero by using a mechanism that drives in the angular direction, rolling angular direction, and yawing angular direction.
のレーザ干渉測定システムの測定対象としてのミラーに
おいて、高精度XYステージの移動軸と直交するZ軸上
の2か所の点を判定できるに足る幅を持つことを特徴と
する請求項1記載の高精度XYステージ装置。(2) The measurement means is a laser interference measurement system, and in the mirror as the measurement target of this laser interference measurement system, it is sufficient to determine two points on the Z axis perpendicular to the movement axis of the high precision XY stage. The high-precision XY stage device according to claim 1, characterized in that it has a width.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63026489A JPH01202833A (en) | 1988-02-09 | 1988-02-09 | Accurate xy stage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63026489A JPH01202833A (en) | 1988-02-09 | 1988-02-09 | Accurate xy stage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01202833A true JPH01202833A (en) | 1989-08-15 |
Family
ID=12194914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63026489A Pending JPH01202833A (en) | 1988-02-09 | 1988-02-09 | Accurate xy stage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01202833A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05226223A (en) * | 1992-02-18 | 1993-09-03 | Canon Inc | Aligner |
JPH06151277A (en) * | 1992-10-30 | 1994-05-31 | Canon Inc | Aligner |
US6498352B1 (en) | 1993-02-26 | 2002-12-24 | Nikon Corporation | Method of exposing and apparatus therefor |
JP2007109861A (en) * | 2005-10-13 | 2007-04-26 | Tokyo Seimitsu Co Ltd | Prober and rotation/transfer control method in prober |
JP2008091785A (en) * | 2006-10-04 | 2008-04-17 | Dainippon Screen Mfg Co Ltd | Substrate moving apparatus |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US8854601B2 (en) | 2005-05-12 | 2014-10-07 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1988
- 1988-02-09 JP JP63026489A patent/JPH01202833A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05226223A (en) * | 1992-02-18 | 1993-09-03 | Canon Inc | Aligner |
JPH06151277A (en) * | 1992-10-30 | 1994-05-31 | Canon Inc | Aligner |
US6498352B1 (en) | 1993-02-26 | 2002-12-24 | Nikon Corporation | Method of exposing and apparatus therefor |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US8854601B2 (en) | 2005-05-12 | 2014-10-07 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
JP2007109861A (en) * | 2005-10-13 | 2007-04-26 | Tokyo Seimitsu Co Ltd | Prober and rotation/transfer control method in prober |
JP2008091785A (en) * | 2006-10-04 | 2008-04-17 | Dainippon Screen Mfg Co Ltd | Substrate moving apparatus |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2704734B2 (en) | Stage positioning correction method and apparatus | |
US5179863A (en) | Method and apparatus for setting the gap distance between a mask and a wafer at a predetermined distance | |
JPH01202833A (en) | Accurate xy stage device | |
US5825730A (en) | Mastering machine having non-repetitive runout compensation | |
US7096751B2 (en) | Measuring apparatus and accuracy analyzing apparatus having the same | |
JPH0926828A (en) | Positioning control method and device and semiconductor production device using the control method and device | |
JPH04120716A (en) | Method and mechanism for positioning aligner | |
JP3014499B2 (en) | Position information detecting device and transfer device using the same | |
JP2593483B2 (en) | Initial setting method of XYθ table | |
JP3003863B2 (en) | Planar positioning device and method | |
JP2777931B2 (en) | Exposure equipment | |
JP2860609B2 (en) | Semiconductor exposure equipment | |
JPH0382013A (en) | Control method of positioning of stage | |
JPS60111910A (en) | Precise planeness accuracy measuring apparatus | |
JPS63202019A (en) | Apparatus for measuring accuracy of optical element | |
JPH04142438A (en) | Face characteristic measuring method for plane mirror and stage device with this measuring function | |
JPS63140311A (en) | Correcting and controlling device for angle fluctuation | |
JPH1058174A (en) | Laser beam machine | |
JPH0467696A (en) | Direct drawing device | |
KR0136427B1 (en) | Device for correcting a microangle of stage of exposure device using a plane step motor | |
JPH09210648A (en) | Method and device for measuring plane shape | |
JPH0798256A (en) | Driving force measuring instrument | |
JPH056848A (en) | Moving stage for alignment use and exposure alignemnt method | |
JP3002832B2 (en) | NC machine tool equipment | |
JPH10221039A (en) | Method for measuring squareness of moving axis |