JPH01208438A - Manufacture of aluminum alloy hard plate for wrapping - Google Patents
Manufacture of aluminum alloy hard plate for wrappingInfo
- Publication number
- JPH01208438A JPH01208438A JP3239288A JP3239288A JPH01208438A JP H01208438 A JPH01208438 A JP H01208438A JP 3239288 A JP3239288 A JP 3239288A JP 3239288 A JP3239288 A JP 3239288A JP H01208438 A JPH01208438 A JP H01208438A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- temperature
- less
- hot
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000005098 hot rolling Methods 0.000 claims abstract description 25
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 238000005097 cold rolling Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 238000000265 homogenisation Methods 0.000 claims description 8
- 238000004806 packaging method and process Methods 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 238000005096 rolling process Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 235000014171 carbonated beverage Nutrition 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
(産業上の利用分野)
本発明はビール、炭酸及び非炭酸飲料用等の缶蓋に好適
な包装用アルミニウム合金硬質板の製造法に関するもの
である。
(従来の技術及び解決しようとする課題)従来、飲料缶
用蓋材料としてはAl、−Mg系合金であるJIS50
52.5o82.5182等のアルミニウム合金硬質板
材が多用されている。
この材料の製造法には大別して2種類があり、1つは熱
間圧延後(放冷後)焼鈍する方法であり、例えば特公昭
52−48088号などが提案されている。また、もう
1つは熱間圧延後、冷間圧延して、その後焼鈍する方法
であり、例えば特開昭60−50141号などが提案さ
れている。
いずれの方法も焼鈍は常温からなされるものであり、前
者の方法において熱間圧延後直ちに焼鈍を実施しないの
は、炉の手配、数コイルをまとめる必要がある等の生産
性の問題、並びに数コイルまとめる場合には必然的にコ
イル間で温度差を生じ、保持時間等が変化するなど安定
性に問題があるためである。一方、後者の方法では冷延
後焼鈍するので必然的に低温とならざるを得ない。
また、焼鈍炉としてはバッチ炉(コイル状で焼鈍)とC
AL(通板焼鈍)がある。しかし、バッチ炉では前述の
生産性、安定性に特に問題がある。
また、CALは連続化が特徴であるが、連続化のために
コイル間を連続的に接続するためのアキュムレーターが
必要であり、アキュムレーターのロールは被処理材がア
ルミニウム材の場合にはゴムロールが用いられるために
、熱間圧延後の熱は放出されると共に、ゴムロールの性
能(通常、150℃以下の使用可能温度)の維持の点か
ら、CALのアキュムレーターにて高温保持することは
できなかった。
上記の如く、従来のアルミニウム硬質板製造法では、焼
鈍に際して熱延時の熱を有効に活用されておらず、熱延
後放冷に必要な時間が無駄時間となっており、また熱エ
ネルギーをも浪費されていた。
本発明は、か\る状況のもとでなされたものであって、
高強度高成形性材として所要の特性を有する包装用アル
ミニウム合金硬質板を生産性よく経済的に製造し得る方
法を提供することを目的とするものである。
(課題を解決するための手段)
前記目的を達成するため、本発明者は、特に熱の有効利
用、無駄時間の節減等の観点から、近年の缶軽量化のた
めの高強度高成形性材としての要請に応え得るアルミニ
ウム合金硬質板を生産性よく製造し得る方法について鋭
意研究を重ねた結果。
連続炉を使用しても化学成分の適切な調整と共に製造プ
ロセス条件、特に均質化熱処理、熱間圧延並びに連続加
熱冷却の各条件を規制することにより、可能であること
を見い出したものである。
すなわち、本発明に係る包装用アルミニウム合金硬質板
の製造法は、Mg: 2 、0〜5.5%を含有し、更
にMn:0.7%未満、Cr: 0 、5未満及びZn
:0.05〜1.0%のうちの1種又は2種以上を含有
し、残部がAl、及び不可避的不純物からなるAl合金
鋳塊につき、450℃以上の温度の均質化熱処理を施し
、熱間圧延を板厚5mm以下、280℃以上の温度で終
了してコイル状で巻き上げ。
その後、熱間圧延コイルを200℃以下の温度に下げる
ことなしに、350〜600℃の温度の連続炉に装入し
てコイルの状態で連続的に加熱し、加熱されたコイルは
引き続き放冷或いは冷却速度100℃/min以上にて
150℃以下まで急速冷却され、その後、冷間圧延率8
0%以上の冷間圧延を行い、必要に応じて安定化焼鈍を
施すことを特徴とするものである。
以下に本発明を更に詳細に説明する。
まず、本発明における化学成分限定理由について説明す
る。
Mgは強度向上に有効な元素であるが、2.0%未満で
は蓋材として強度が不充分であり、また、5.5%を超
える場合には強度は充分であるものの、熱間圧延時に割
れが発生したり、製品板での成形性が急激に低下する。
したがって、Mg量は2.0〜5.5%の半医とする。
Linは強度の向上に有効な元素であるものの、0.7
%を超える場合には、Mgと同様、圧延時に割れが発生
したり、強度が非常に高くなり過ぎ、製品板での成形性
の低下が著しくなる。したがって、M n fJは0.
7%未満に規制する。
Crも強度の向上に有効な元素であるものの、0.5%
を超える場合には強度が高くなり過ぎると共に、Mnと
の組合せにより巨大な金属間化合物を形成し、製品板で
の成形性の低下が著しくなる。したがって、Cr量は0
.5%未満に規制する。
Znは強度には殆ど関係しないものの、成形性、例えば
エンドのリベット加工性の向上に有効な元素である。し
かし、0.05%未満ではその効果が小さく、また1、
0%を超える場合にはその効果が飽和し、経済的でなく
なる。したがって、Znは0.05〜1.0%の範囲と
する。
但し、上記Mn、Cr及びZnは、主として成形性の確
保のために少なくとも1種を添加すれば足りる。
なお、不純物としてSi、Fe、Cu、Ti、Bなどが
含まれ得るが、不純物量は可及的に少ない方がよい。例
えば、Siは0.3%以下、望ましくは0.1%以下、
Feは0.5%以下、望ましくは0゜2%以下、Cuは
0.3%以下、Tiは0.1%以下、Bは0.05%で
あれば本発明の効果に特に問題はない。
次に上記組成のアルミニウム合金硬質板の製造法につい
て説明する。
前述の化学成分を有するアルミニウム合金は、常法によ
り溶解、鋳造されるが、得られた鋳塊には熱間圧延され
る前に特定温度にて均質化熱処理を施す必要がある。す
なわち、この時の加熱温度が450℃未満では偏析の除
去が不充分であり、また熱間圧延時に変形抵抗の増大に
伴う耳割れ等の問題を生じるので好ましくない。したが
って、均質化熱処理温度は450℃以上とする。
次の熱間圧延では、板厚及び終了温度が最終板製品(冷
延後)の強度及び深絞り加工後の耳率にそれぞれ影響を
与えるので、それらの条件を規制する必要がある。すな
わち、熱間圧延板厚が5mmを超える場合には製品板で
の強度が高すぎることによる成形性の低下並びに深絞り
加工後の耳率の増大の問題を生じる。また、熱延終了温
度が280℃未満ではその後の焼鈍においても立方体集
合組織(0−90@方向耳)の形成が弱く、このため冷
間圧延製品において45°方向耳の高いものになる。し
たがって、熱間圧延に際しては、板厚5mm以下、28
0℃以上の温度で終了する必要がある。
この熱間圧延板はコイル状で巻上げられ、本発明の最大
の特徴である次工程の連続加熱冷却に供される。
すなわち、従来は、熱間圧延板は後述の如き問題(生産
性、安定性、連続化等)により放冷されるのが通例であ
り、この場合、熱エネルギーの損失並びに放冷完了まで
の無駄時間を要する。
これに対し、本発明ではこれらの両者の問題を解決する
べく焼鈍を行うものであり、熱間圧延されたコイルは、
随時、再結晶組織化するための高温連続炉にコイル状で
装入される。その際、200℃以下に放冷が進む場合し
こけ、析出物(例えば、M g 2 S l )が形成
され、これはその後の焼鈍においても再固溶が困難であ
り、強度不足及び耳高の原因となる。したがって、熱間
圧延コイルを200℃以下の温度に下げることなしに高
温連続炉に装入する必要がある。
この高温連続炉で熱延コイルは再結晶組織化されるわけ
であるが、炉温か350℃未満では再結晶に要する時間
が長くなり、また600℃を超える場合にはコイル状で
焼鈍されるため、コイルのエッチ部で結晶粒成長、バー
ニング等の問題が生じる。したがって、高温連続炉の炉
温は350〜600 ℃の範囲とする。なお、この高温
連続炉は入口及び出口を1ケ所つづ有し、炉内にはコイ
ルを移動させる機構を有するものである。
更に、加熱されたコイルは冷却されるが、この場合、放
冷或いは強制冷却のいずれでもよいが、生産性の面では
強制冷却の方が好ましい。
但し、強制冷却の場合は、固溶体強化をより向上させる
ためには冷却速度が速く、低温まで実施した方がよい。
具体的しこけ、冷却速度が100℃/min未満では不
充分であり、また冷却後の温度が150 ℃を超える場
合にはその後の冷間圧延までに更に放冷が必要となり、
無駄な時間を要することになる。したがって、強制冷却
の場合には冷却速度100℃/min以上にて150
℃以下まで急速冷却をする。なお、冷却の方法としては
空冷及び水冷があり、いずれもコイルをほどきながら実
施する。
次に、製品板厚まで冷間圧延率80%以上の冷間圧延を
施す。これは要望の板厚に精度よく仕上げると共に、強
度の向上を図るためである。しかし、冷間圧延率が80
%未満では充分な強度が得られないので好ましくない。
更には、必要に応じて、安定化焼鈍を施すことができる
。安定化焼鈍の目的はArA−Mg系合金の特徴である
経時変化を抑制するためにあるが、その条件は特に制限
されない。−数的には100〜200℃の温度に数時間
処理される。
(実施例)
次に本発明の実施例を示す。
実施例I
A l1l−4,5%Mg−0,35%Mn−0,15
%Zn−0,20%Fe−0,09%Siの化学成分を
有するアルミニウム合金鋳塊(50mm厚)に500℃
X5hrの均質化熱処理を施し、熱延圧延にて板厚4m
mとした。この時の熱間圧延終了温度は30O℃と25
0℃を目標に製作した。
熱間圧延後の冷却条件、熱処理(焼鈍)条件は、実製造
レベルに合わせるためにプログラム式高温恒温槽にて第
1表に示すようにコントロールした。
更に、熱処理後、Q 、 4 mm厚まで冷間圧延した
。
得られた材料について、ベーキング(200℃X 20
m1n)後の機械的性質を調べると共に、深絞り耳率及
び成形性(張出性、リベット加工性)を評価した。その
結果を第2表に示す。
なお、深絞り耳率は、エリクセン試験機(40φポンチ
)を使用し、鉱物油(′/A滑)使用、シワ押え力50
0kgの条件により、絞り比1.67のカップ山谷の差
を平均高さで除した値(X100)で求めた。
張出性は、エリクセン試験A法により評価した。
リベット加工性は、6φ→4φ→3.2φの多段絞り張
出しの限界高さにより評価し、限界高さが1.75mm
以上のものを良好と判断した。
第2表より明らかなとおり、本発明例Nα1及びNα3
は、従来法による比較例Nα5に比べ、強度は0 、5
〜1 、0 kgf/mm2高く、エンドの主要成形で
あるリベット加工性に優れていることがわかる。
また各本発明例は、熱間圧延後200℃以下の温度に下
げることなしに恒温炉に装入されるので、無駄時間がな
く熱間圧延後のエネルギーの有効活用により生産性、省
エネルギーでも優れている。
一方、比較例Ha 2は、加熱不足のために未再結晶と
なり、耳高で成形性に劣っている。また比較例Nα4は
、低い板温度にするための放冷に長時間を要するので、
生産性及び省エネルギーは従来法による比較例Nα5と
大差がない。更に比較例Nα6は熱延終了温度が低いた
めに耳高となっている。(Industrial Application Field) The present invention relates to a method for producing a packaging aluminum alloy hard plate suitable for can lids for beer, carbonated and non-carbonated beverages, and the like. (Prior art and problems to be solved) Conventionally, JIS50 Al, -Mg based alloys have been used as lid materials for beverage cans.
Hard aluminum alloy plates such as 52.5o82.5182 are often used. There are roughly two types of manufacturing methods for this material. One is a method of annealing after hot rolling (after cooling), which has been proposed, for example, in Japanese Patent Publication No. 52-48088. Another method is to perform hot rolling, then cold rolling, and then annealing, which has been proposed, for example, in JP-A No. 60-50141. In both methods, annealing is performed from room temperature, and the reason why annealing is not performed immediately after hot rolling in the former method is due to productivity problems such as the need to arrange a furnace, the need to combine several coils, and the number of coils. This is because when the coils are grouped together, a temperature difference inevitably occurs between the coils, causing stability problems such as changes in retention time, etc. On the other hand, in the latter method, since annealing is performed after cold rolling, the temperature inevitably becomes low. In addition, as an annealing furnace, a batch furnace (coiled and annealed) and a C
There is AL (thread annealing). However, batch furnaces have particular problems in terms of productivity and stability. In addition, CAL is characterized by continuous operation, but in order to achieve continuity, an accumulator is required to connect the coils continuously, and the roll of the accumulator is a rubber roll when the material to be treated is aluminum. Since the heat after hot rolling is used, the heat after hot rolling is released, and in order to maintain the performance of the rubber roll (usually a usable temperature of 150°C or less), it is not possible to maintain the high temperature in the CAL accumulator. There wasn't. As mentioned above, in the conventional aluminum hard plate manufacturing method, the heat during hot rolling is not effectively utilized during annealing, and the time required for cooling after hot rolling is wasted time, and thermal energy is also wasted. It was wasted. The present invention was made under such circumstances, and
The object of the present invention is to provide a method for economically and productively manufacturing aluminum alloy hard plates for packaging that have the required characteristics as a high-strength, high-formability material. (Means for Solving the Problems) In order to achieve the above object, the present inventor has developed a high-strength, high-formability material that has been used in recent years to reduce the weight of cans, particularly from the viewpoint of effective use of heat and reduction of wasted time. The result of intensive research into a method for manufacturing aluminum alloy hard plates with high productivity that can meet the demands of the industry. We have discovered that it is possible to use a continuous furnace by appropriately adjusting the chemical components and regulating the manufacturing process conditions, particularly the conditions of homogenization heat treatment, hot rolling, and continuous heating and cooling. That is, the method for manufacturing an aluminum alloy hard plate for packaging according to the present invention contains Mg: 2, 0 to 5.5%, Mn: less than 0.7%, Cr: 0, less than 5, and Zn.
: An Al alloy ingot containing one or more of 0.05 to 1.0%, the remainder consisting of Al and inevitable impurities, is subjected to homogenization heat treatment at a temperature of 450 ° C. or higher, Hot rolling is completed at a plate thickness of 5 mm or less and a temperature of 280°C or higher, and then rolled up into a coil. After that, the hot-rolled coil is charged into a continuous furnace at a temperature of 350 to 600℃ without lowering the temperature to 200℃ or less, and is continuously heated in the coil state, and the heated coil is then left to cool. Alternatively, it is rapidly cooled to 150°C or less at a cooling rate of 100°C/min or more, and then the cold rolling rate is 8
It is characterized by cold rolling of 0% or more and stabilizing annealing as required. The present invention will be explained in more detail below. First, the reason for limiting the chemical components in the present invention will be explained. Mg is an effective element for improving strength, but if it is less than 2.0%, it will not have sufficient strength as a lid material, and if it exceeds 5.5%, it will have sufficient strength, but it will not work during hot rolling. Cracks may occur, and the formability of the product plate may deteriorate rapidly. Therefore, the amount of Mg is set at 2.0 to 5.5%. Although Lin is an effective element for improving strength, 0.7
%, similar to Mg, cracks may occur during rolling, the strength will become too high, and the formability of the product plate will significantly deteriorate. Therefore, M n fJ is 0.
Regulated to less than 7%. Although Cr is also an effective element for improving strength, 0.5%
If it exceeds the above, the strength will become too high, and in combination with Mn, a huge intermetallic compound will be formed, resulting in a significant decrease in the formability of the product sheet. Therefore, the amount of Cr is 0
.. Regulated to less than 5%. Although Zn has little to do with strength, it is an effective element for improving formability, such as end riveting workability. However, if it is less than 0.05%, the effect is small, and 1.
If it exceeds 0%, the effect is saturated and it becomes uneconomical. Therefore, Zn is in the range of 0.05 to 1.0%. However, it is sufficient to add at least one of the above-mentioned Mn, Cr, and Zn mainly to ensure moldability. Note that although Si, Fe, Cu, Ti, B, and the like may be included as impurities, it is preferable that the amount of impurities be as small as possible. For example, Si is 0.3% or less, preferably 0.1% or less,
There is no particular problem with the effects of the present invention as long as Fe is 0.5% or less, preferably 0°2% or less, Cu is 0.3% or less, Ti is 0.1% or less, and B is 0.05%. . Next, a method for manufacturing an aluminum alloy hard plate having the above composition will be explained. Aluminum alloys having the above-mentioned chemical components are melted and cast by conventional methods, but the resulting ingots must be subjected to homogenization heat treatment at a specific temperature before hot rolling. That is, if the heating temperature at this time is less than 450° C., the removal of segregation is insufficient and problems such as edge cracking occur due to increased deformation resistance during hot rolling, which is not preferable. Therefore, the homogenization heat treatment temperature is set to 450°C or higher. In the next step of hot rolling, the plate thickness and finishing temperature each affect the strength of the final plate product (after cold rolling) and the edge ratio after deep drawing, so it is necessary to regulate these conditions. That is, when the hot-rolled plate thickness exceeds 5 mm, the strength of the product plate is too high, resulting in a decrease in formability and an increase in the selvage ratio after deep drawing. Furthermore, if the hot rolling end temperature is less than 280° C., the formation of cubic texture (0-90@ direction selvage) is weak even in subsequent annealing, resulting in a cold rolled product having a high 45° selvage. Therefore, when hot rolling, the plate thickness is 5 mm or less, 28
It is necessary to finish at a temperature of 0°C or higher. This hot-rolled plate is wound up into a coil shape and subjected to continuous heating and cooling in the next step, which is the most distinctive feature of the present invention. In other words, conventionally, hot-rolled plates were usually allowed to cool due to the problems described below (productivity, stability, continuity, etc.), and in this case, there was a loss of thermal energy and wasted time until the cooling was completed. It takes time. In contrast, in the present invention, annealing is performed to solve both of these problems, and the hot rolled coil is
From time to time, it is charged in a coiled form into a high-temperature continuous furnace for recrystallization. At that time, if cooling proceeds to 200°C or less, precipitates (for example, M g 2 S l ) are formed, which is difficult to solidify even during subsequent annealing, resulting in insufficient strength and a high edge height. It causes. Therefore, it is necessary to charge the hot-rolled coil into a high-temperature continuous furnace without lowering the temperature to below 200°C. The hot-rolled coil is recrystallized in this high-temperature continuous furnace, but if the furnace temperature is less than 350°C, the time required for recrystallization is longer, and if it exceeds 600°C, the coil is annealed. , problems such as crystal grain growth and burning occur in the etched portion of the coil. Therefore, the furnace temperature of the high-temperature continuous furnace is set in the range of 350 to 600°C. This high-temperature continuous furnace has one inlet and one outlet, and has a mechanism for moving the coil inside the furnace. Further, the heated coil is cooled, and in this case, either natural cooling or forced cooling may be used, but forced cooling is preferable in terms of productivity. However, in the case of forced cooling, in order to further improve solid solution strengthening, it is better to perform cooling at a faster rate and to a lower temperature. Specifically, if the cooling rate is less than 100°C/min, it is insufficient, and if the temperature after cooling exceeds 150°C, further cooling is required before subsequent cold rolling.
This would be a waste of time. Therefore, in the case of forced cooling, at a cooling rate of 100°C/min or more, 150°C
Rapidly cool down to below ℃. Note that cooling methods include air cooling and water cooling, both of which are performed while unwinding the coil. Next, cold rolling is performed at a cold rolling rate of 80% or more until the thickness of the product plate is reached. This is to achieve the desired thickness with high accuracy and to improve strength. However, the cold rolling rate is 80
If it is less than %, sufficient strength cannot be obtained, which is not preferable. Furthermore, stabilization annealing can be performed if necessary. Although the purpose of stabilizing annealing is to suppress the aging characteristic of ArA-Mg alloys, the conditions are not particularly limited. - Numerically treated at a temperature of 100-200°C for several hours. (Example) Next, an example of the present invention will be shown. Example I A l1l-4,5%Mg-0,35%Mn-0,15
An aluminum alloy ingot (50 mm thick) having a chemical composition of %Zn-0,20%Fe-0,09%Si was heated at 500℃.
After homogenization heat treatment for 5 hours, the plate thickness was 4m by hot rolling.
It was set as m. The hot rolling end temperature at this time is 30O℃ and 25
It was manufactured with a temperature of 0°C as the target. The cooling conditions and heat treatment (annealing) conditions after hot rolling were controlled as shown in Table 1 using a programmable high temperature constant temperature bath in order to match the actual manufacturing level. Furthermore, after the heat treatment, it was cold rolled to a thickness of Q, 4 mm. The obtained material was baked at 200°C
In addition to examining the mechanical properties after m1n), the deep drawing selvage ratio and formability (stretchability, riveting workability) were evaluated. The results are shown in Table 2. The deep drawing edge ratio was determined using an Erichsen tester (40φ punch), using mineral oil ('/A slip), and using a wrinkle pressing force of 50.
Under the condition of 0 kg, the difference between the peaks and valleys of a cup with an aperture ratio of 1.67 was calculated as the value (X100) divided by the average height. Stretchability was evaluated by Erichsen test A method. Riveting workability was evaluated by the limit height of multi-stage drawing of 6φ → 4φ → 3.2φ, and the limit height was 1.75mm.
The above items were judged to be good. As is clear from Table 2, the invention examples Nα1 and Nα3
Compared to comparative example Nα5 using the conventional method, the strength is 0,5
~1.0 kgf/mm2 is high, and it can be seen that the riveting processability, which is the main forming of the end, is excellent. In addition, each of the examples of the present invention is charged into a constant temperature furnace without lowering the temperature to 200°C or less after hot rolling, so there is no wasted time and the energy after hot rolling is effectively used, resulting in excellent productivity and energy saving. ing. On the other hand, Comparative Example Ha 2 was not recrystallized due to insufficient heating, and had a high edge and poor moldability. In addition, in Comparative Example Nα4, it takes a long time to cool the plate to a low temperature.
Productivity and energy saving are not much different from Comparative Example Nα5 made by the conventional method. Furthermore, Comparative Example Nα6 has a low end temperature of hot rolling, so the edge height is high.
去1目1ん
第3表に示す化学成分を有するアルミニウム合金鋳塊(
50mm厚)に520℃X2hrの均質化熱処理を施し
、熱間圧延(終了温度300℃目標)により板厚4mm
にした。
その後の工程は、第1表のNα1(本発明例)の場合と
同一条件の熱処理、冷間圧延を実施した。
得られた材料について、実施例1の場合と同様に材料特
性を調べた。その結果を第4表に示す。
なお、合金記号りとEのものは熱間圧延時及び冷間圧延
時に耳割れが生じたので、所望の製品板(板厚4mm)
が得られず、材料特性の調査は行わなかった。
第4表より明らかなとおり、本発明例A、B及びFはい
ずれも耳率が小さく成形性も優れている。
特に本発明例Aはコーヒー、果汁等の非炭酸飲料用缶蓋
材に、本発明例B、Fはビール、炭酸飲料用等の内圧缶
蓋材に適しており、BとFとの違いはZn添加の有無に
あり、適量のZn添加はリベット加工性の向上につなが
ることがわかる。
一方、比較例CはMg量が少ないために強度不足で、蓋
材の薄肉化は困難であ。なお、本発明範囲よりも多量の
Mg(合金記号D)又はM n (合金記号E)を含む
場合は製造上の問題があった。Aluminum alloy ingots having the chemical composition shown in Table 3 (Table 1)
50mm thick) was subjected to homogenization heat treatment at 520°C for 2 hours, and hot rolled (finishing temperature target: 300°C) to a plate thickness of 4mm.
I made it. In the subsequent steps, heat treatment and cold rolling were carried out under the same conditions as in the case of Nα1 (inventive example) in Table 1. The material properties of the obtained material were investigated in the same manner as in Example 1. The results are shown in Table 4. In addition, since edge cracks occurred during hot rolling and cold rolling for alloys with alloy numbers R and E, the desired product plate (plate thickness 4 mm)
could not be obtained, and no investigation of material properties was conducted. As is clear from Table 4, Examples A, B, and F of the present invention all have a small selvage ratio and excellent moldability. In particular, Invention Example A is suitable for can lid materials for non-carbonated beverages such as coffee and fruit juice, and Invention Examples B and F are suitable for internal pressure can lid materials for beer, carbonated beverages, etc. The difference between B and F is It can be seen that the addition of an appropriate amount of Zn leads to an improvement in riveting workability, depending on whether or not Zn is added. On the other hand, Comparative Example C lacks strength due to the small amount of Mg, and it is difficult to make the lid material thinner. It should be noted that if a larger amount of Mg (alloy symbol D) or M n (alloy symbol E) than the range of the present invention is included, there are problems in manufacturing.
(発明の効果)
以上詳述したように、本発明によれば、化学成分の適切
な調整と製造プロセス条件を規制するので、近年の薄肉
軽量化に応え得る高強度高成形性エンド材を提供するこ
とができると共に、生産性及び省エネルギーの効果が顕
著であり、この種の分野におけるアルミニウム缶化への
普及に貢献するところが大きい。
なお1本発明法における熱処理工程は他の材料、例えば
、キャップ材、器物材、更には熱処理系材料(Al−M
g−3i系、Al−Zn−Mg系)等にも活用可能であ
り、波及効果も太きい。
特許出願人 株式会社神戸製鋼所
代理人弁理士 中 村 尚(Effects of the Invention) As detailed above, according to the present invention, since the chemical components are appropriately adjusted and the manufacturing process conditions are regulated, it is possible to provide a high-strength, high-formability end material that can meet the recent trend toward thinner walls and lighter weights. In addition, it has remarkable productivity and energy saving effects, and will greatly contribute to the spread of aluminum cans in this type of field. Note that the heat treatment step in the method of the present invention may be performed on other materials, such as cap materials, equipment materials, and even heat treatment materials (Al-M
g-3i series, Al-Zn-Mg series), etc., and the ripple effect is also significant. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.
Claims (2)
%を含有し、更にMn:0.7%未満、Cr:0.5%
未満及びZn:0.05〜1.0%のうちの1種又は2
種以上を含有し、残部がAl及び不可避的不純物からな
るAl合金鋳塊につき、450℃以上の温度の均質化熱
処理を施し、熱間圧延を板厚5mm以下、280℃以上
の温度で終了してコイル状で巻き上げ、その後、熱間圧
延コイルを200℃以下の温度に下げることなしに、3
50〜600℃の温度の連続炉に装入してコイルの状態
で連続的に加熱し、加熱されたコイルは引き続き放冷或
いは冷却速度100℃/min以上にて150℃以下ま
で急速冷却され、その後、冷間圧延率80%以上の冷間
圧延を行うことを特徴とする包装用アルミニウム合金硬
質板の製造法。(1) In weight% (the same applies hereinafter), Mg: 2.0 to 5.5
%, further Mn: less than 0.7%, Cr: 0.5%
and Zn: one or two of 0.05 to 1.0%
An Al alloy ingot containing at least 5 mm of aluminum with the remainder consisting of Al and unavoidable impurities is subjected to homogenization heat treatment at a temperature of 450°C or higher, and hot rolling is completed at a plate thickness of 5 mm or less at a temperature of 280°C or higher. The hot-rolled coil is then rolled up into a coil for 3 hours without lowering the temperature below 200°C.
The coil is charged into a continuous furnace at a temperature of 50 to 600°C and continuously heated in the form of a coil, and the heated coil is then left to cool or rapidly cooled to 150°C or less at a cooling rate of 100°C/min or more, A method for producing an aluminum alloy hard plate for packaging, which comprises thereafter performing cold rolling at a cold rolling rate of 80% or more.
.7%未満、Cr:0.5%未満及びZn:0.05〜
1.0%のうちの1種又は2種以上を含有し、残部がA
l及び不可避的不純物からなるAl合金鋳塊につき、4
50℃以上の温度の均質化熱処理を施し、熱間圧延を板
厚5mm以下、280℃以上の温度で終了してコイル状
で巻き上げ、その後、熱間圧延コイルを200℃以下の
温度に下げることなしに、350〜600℃の温度の連
続炉に装入してコイルの状態で連続的に加熱し、加熱さ
れたコイルは引き続き放冷或いは冷却速度100℃/m
in以上にて150℃以下まで急速冷却され、その後、
冷間圧延率80%以上の冷間圧延を行い、安定化焼鈍を
施すことを特徴とする包装用アルミニウム合金硬質板の
製造法。(2) Contains Mg: 2.0 to 5.5%, and further contains Mn: 0
.. Less than 7%, Cr: less than 0.5% and Zn: 0.05~
Contains one or more of 1.0% and the remainder is A.
4 for an Al alloy ingot consisting of l and inevitable impurities.
Applying homogenization heat treatment at a temperature of 50°C or higher, finishing hot rolling at a plate thickness of 5 mm or less and a temperature of 280°C or higher, winding it into a coil, and then lowering the hot rolled coil to a temperature of 200°C or lower. Without heating, the coil is charged into a continuous furnace at a temperature of 350 to 600℃ and heated continuously, and the heated coil is then left to cool or at a cooling rate of 100℃/m.
It is rapidly cooled to 150°C or less at a temperature of in or more, and then,
A method for manufacturing an aluminum alloy hard plate for packaging, characterized by cold rolling at a cold rolling rate of 80% or more and stabilizing annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3239288A JPH01208438A (en) | 1988-02-15 | 1988-02-15 | Manufacture of aluminum alloy hard plate for wrapping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3239288A JPH01208438A (en) | 1988-02-15 | 1988-02-15 | Manufacture of aluminum alloy hard plate for wrapping |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01208438A true JPH01208438A (en) | 1989-08-22 |
Family
ID=12357681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3239288A Pending JPH01208438A (en) | 1988-02-15 | 1988-02-15 | Manufacture of aluminum alloy hard plate for wrapping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01208438A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247244A (en) * | 1988-08-09 | 1990-02-16 | Furukawa Alum Co Ltd | Production of rolled sheet of aluminum-base alloy |
WO2005049878A3 (en) * | 2003-10-29 | 2005-08-25 | Corus Aluminium Walzprod Gmbh | Method for producing a high damage tolerant aluminium alloy |
JP2006316332A (en) * | 2005-05-16 | 2006-11-24 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet material having excellent drawing formability, and method for producing the same |
US7666267B2 (en) | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
-
1988
- 1988-02-15 JP JP3239288A patent/JPH01208438A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247244A (en) * | 1988-08-09 | 1990-02-16 | Furukawa Alum Co Ltd | Production of rolled sheet of aluminum-base alloy |
US7666267B2 (en) | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
WO2005049878A3 (en) * | 2003-10-29 | 2005-08-25 | Corus Aluminium Walzprod Gmbh | Method for producing a high damage tolerant aluminium alloy |
GB2421739A (en) * | 2003-10-29 | 2006-07-05 | Corus Aluminium Walzprod Gmbh | Method for producing a high damage tolerant aluminium alloy |
GB2421739B (en) * | 2003-10-29 | 2008-02-06 | Corus Aluminium Walzprod Gmbh | Method for producing a high damage tolerant aluminium alloy |
JP2006316332A (en) * | 2005-05-16 | 2006-11-24 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet material having excellent drawing formability, and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4318755A (en) | Aluminum alloy can stock and method of making same | |
US6579387B1 (en) | Continuous casting process for producing aluminum alloys having low earing | |
JPH11181558A (en) | Production of aluminum alloy sheet for low and positive pressure can body | |
US5616190A (en) | Process for producing a thin sheet suitable for making up constituent elements of cans | |
JP3600022B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JP3550259B2 (en) | Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same | |
JPH01208438A (en) | Manufacture of aluminum alloy hard plate for wrapping | |
AU659099B2 (en) | Al base - Mn-Mg alloy for the manufacture of drawn and ironed container bodies | |
WO1992004477A1 (en) | Aluminum alloy composition | |
JP2933501B2 (en) | Method for producing aluminum alloy sheet excellent in formability of DI can bottom | |
JPH0140895B2 (en) | ||
US20030173003A1 (en) | Continuous casting process for producing aluminum alloys having low earing | |
JP2005076041A (en) | Method for manufacturing hard aluminum alloy sheet for can body | |
KR20220146620A (en) | Manufacturing method and equipment for aluminum can sheet | |
JPH06256916A (en) | Production of aluminum alloy sheet | |
JPH1161365A (en) | Production of aluminum alloy sheet for deep drawing | |
JPH0222446A (en) | Manufacture of high formability aluminum alloy hard plate | |
JP3587993B2 (en) | Manufacturing method of aluminum alloy sheet for deep drawing | |
JP3850542B2 (en) | Aluminum alloy plate excellent in curling property and winding property and method for producing the same | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability | |
JP3046663B2 (en) | Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab | |
JP3600021B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JPS6487752A (en) | Manufacture of aluminum alloy material for forming | |
JPH04362151A (en) | Aluminum alloy hard sheet excellent in formability and its manufacture | |
AU8756291A (en) | Al base - Mg-Mn alloy sheet for manufacturing drawn and ironed container bodies |