JPH01191719A - Method for operating smelting reduction furnace - Google Patents
Method for operating smelting reduction furnaceInfo
- Publication number
- JPH01191719A JPH01191719A JP1672388A JP1672388A JPH01191719A JP H01191719 A JPH01191719 A JP H01191719A JP 1672388 A JP1672388 A JP 1672388A JP 1672388 A JP1672388 A JP 1672388A JP H01191719 A JPH01191719 A JP H01191719A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- secondary combustion
- reduction furnace
- gas
- pulverized coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000003245 coal Substances 0.000 claims abstract description 42
- 238000002485 combustion reaction Methods 0.000 claims abstract description 35
- 239000002893 slag Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000007664 blowing Methods 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 239000003575 carbonaceous material Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 54
- 238000006057 reforming reaction Methods 0.000 abstract description 17
- 230000001590 oxidative effect Effects 0.000 abstract 2
- 239000002253 acid Substances 0.000 abstract 1
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 25
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 238000005979 thermal decomposition reaction Methods 0.000 description 5
- 238000006114 decarboxylation reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- QVGXLLKOCUKJST-OUBTZVSYSA-N oxygen-17 atom Chemical compound [17O] QVGXLLKOCUKJST-OUBTZVSYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、二次燃焼を行う溶融還元炉を操業する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of operating a smelting reduction furnace that performs secondary combustion.
〈従来の技術〉
最近、高炉・転炉法に代わる製鉄技術として溶融還元精
錬法が注目を浴びている。この方法で使用する溶融還元
炉は、使用する原料に制約を受けることなく、より小規
模な設備により鉄系合金溶湯を製造すること、及び精錬
反応の際に生じる熱を有効に回収することを目的として
開発されたものである。<Conventional Technology> Recently, the smelting reduction refining method has been attracting attention as a steelmaking technology that can replace the blast furnace/converter method. The smelting reduction furnace used in this method is capable of producing molten iron alloys with smaller-scale equipment without being restricted by the raw materials used, and of effectively recovering the heat generated during the refining reaction. It was developed for this purpose.
溶融還元炉の生産性を上げるには熱供給を効率よく行う
ことが重要であるが、例えば上吹酸素により安定な二次
燃焼帯を作り、高い二次燃焼率を得る装置が特開昭62
−192513号公報に提案されている。二次燃焼した
排ガスは、例えば特開昭60−145307号公報で提
案されたフローで処理される。In order to increase the productivity of a smelting reduction furnace, it is important to efficiently supply heat.
It is proposed in the publication No.-192513. The secondary combustion exhaust gas is treated, for example, according to the flow proposed in Japanese Patent Application Laid-open No. 145307/1983.
すなわち、溶融還元炉で発生した高温のガスは、排気口
から排出され、廃熱ボイラー等の熱交換器により熱交換
される。次いで、このガスは、予備還元炉から回収され
たガスの一部と混合され、ガスホルダーに蓄えられる。That is, high-temperature gas generated in the smelting reduction furnace is discharged from the exhaust port and heat exchanged with a heat exchanger such as a waste heat boiler. This gas is then mixed with a portion of the gas recovered from the pre-reduction furnace and stored in a gas holder.
そして、混合ガスの一部が脱炭酸装置における脱炭酸に
より酸化度0.07〜0.15の範囲に調整された後、
加熱器により加熱されて予備還元炉に導入される。Then, after a part of the mixed gas is adjusted to an oxidation degree in the range of 0.07 to 0.15 by decarboxylation in a decarboxylation device,
It is heated by a heater and introduced into a preliminary reduction furnace.
〈発明が解決しようとする問題点〉
前記特開昭62−192513号公報に記載のような方
法によって高二次燃焼率を得るように溶融還元炉を操業
すると、排ガスは高温かつ高酸化度となり、前記特開昭
60−145307号公報のフローにある熱交換器や脱
炭酸装置など多くの処理設備が必要となり、その処理能
力も大きなものが要求される。<Problems to be Solved by the Invention> When a smelting reduction furnace is operated to obtain a high secondary combustion rate by the method described in JP-A-62-192513, the exhaust gas becomes high in temperature and has a high degree of oxidation. A large number of processing equipment such as a heat exchanger and a decarboxylation device as shown in the flow of JP-A-60-145307 are required, and the processing capacity thereof is also required to be large.
そこで、本発明は、溶融還元炉内で、二次燃焼帯へは影
響を与えずに、二次燃焼したガスの改質と熱回収を行い
、より低温で低酸化度のガスとして排出することによっ
て、ガスの処理設備を簡単なものにできるか、あるいは
一部省略できるように開発されたものである。Therefore, the present invention aims to reform and recover the heat of the secondary combustion gas in the smelting reduction furnace without affecting the secondary combustion zone, and to discharge it as a gas with a lower temperature and low oxidation degree. It was developed to simplify or omit some of the gas processing equipment.
く問題点を解決するための手段〉
本発明の溶融還元炉の操業方法は、二次燃焼により生成
した高温で酸化度の高いガスを、炉内の二次燃焼帯の直
上で吹き込んだ微粉炭と反応させて、より低温で酸化度
の低いガスとして炉外に排出することを特徴とする。Means for Solving the Problems〉 The operating method of the smelting reduction furnace of the present invention is to inject pulverized coal into which high-temperature, highly oxidized gas generated by secondary combustion is blown directly above the secondary combustion zone in the furnace. It is characterized by reacting with the gas and discharging it outside the furnace as a gas with a lower oxidation degree at a lower temperature.
以下図面を用いて詳細に説明する。第1図は本発明を転
炉型の溶融還元炉に適用した例である。This will be explained in detail below using the drawings. FIG. 1 shows an example in which the present invention is applied to a converter-type melting reduction furnace.
即ち溶融還元炉の下部には溶銑12が、その上に炭材の
懸濁したスラグ相13があり、その表面からは還元反応
と炭素の燃焼によって生成したCOガスと、石炭の熱分
解生成物である11.ガスなどが発生している。上吹酸
素17による二次燃焼を行うと、この酸素ジェットが周
囲のガスを巻き込み、ガス中のCO,H2と
1、 CO+ −0□ → CO□■、11□+
□02 → 1120
の反応を行い、燃焼熱によって高温のガスとなり、スラ
グ面に衝突して伝熱し、鉱石の還元、溶解に必要な熱を
供給する。一部の熱は燃焼生成ガスの顕熱となってその
温度を上昇させる。特に二次燃焼率が高くなるように操
業すると、燃焼生成ガスの温度が上昇する。二次燃焼帯
18では、燃焼生成ガスの一部が再び酸素ジェットに巻
き込まれて循環流を形成するが、二次燃焼帯の上部領域
2゜では、ガスは上昇流を形成している。この領域に一
1mm程度の微粉炭を吹き込むと、ガスの酸化度が高く
、1500〜2000°C程度の高温であるとき容易に
下記の反応
m、 CO! 十C→ 2CO
■、thO+c → CO+H!
が起こり、かつ微粉炭中に揮発分があるときは、熱分解
反応によりCO,H2が発生する。原料装入シュート2
1から装入される原料中の炭材は、二次燃焼帯18の上
部領域20でのガス上昇流に抗して、スラグ13上まで
供給される必要があるため、その炭材の平均粒径は数柵
オーダで微粉炭19よりも大きい。一方、上部領域20
での反応■、■および熱分解反応は粒径に強く依存する
ため、原料装入シュート21から装入される原料中の炭
材によるこの反応は僅かしか生じない。そのため、この
反応を積極的に生じせしめるためには、微粉炭19を微
粉炭吹込みノズル15より上部領域20に吹き込むこと
が必要である。That is, there is hot metal 12 in the lower part of the smelting reduction furnace, and above it there is a slag phase 13 in which carbonaceous materials are suspended, and from the surface of the slag phase 13 there is CO gas generated by reduction reaction and combustion of carbon, and thermal decomposition products of coal. 11. Gas etc. are generated. When secondary combustion is performed using top-blown oxygen 17, this oxygen jet engulfs the surrounding gas, and the CO, H2, and 1, CO+ in the gas are
The reaction of □02 → 1120 occurs, and the gas becomes high temperature due to the heat of combustion, collides with the slag surface and transfers heat, supplying the heat necessary for reducing and melting the ore. Some of the heat becomes sensible heat of the combustion generated gas and increases its temperature. In particular, when operating to increase the secondary combustion rate, the temperature of the combustion gas increases. In the secondary combustion zone 18, part of the combustion product gases is again involved in the oxygen jet and forms a circulating flow, whereas in the upper region 2° of the secondary combustion zone the gases form an upward flow. When about 1 mm of pulverized coal is injected into this region, the degree of oxidation of the gas is high and the following reactions occur easily when the temperature is about 1500 to 2000°C: CO! 10C → 2CO ■, thO+c → CO+H! When this occurs and volatile matter is present in the pulverized coal, CO and H2 are generated by the thermal decomposition reaction. Raw material charging chute 2
The carbonaceous material in the raw material charged from 1 needs to be supplied above the slag 13 against the gas upward flow in the upper region 20 of the secondary combustion zone 18, so that the average particle size of the carbonaceous material The diameter is on the order of several fences and is larger than pulverized coal 19. On the other hand, the upper region 20
Since the reactions (1) and (2) and the thermal decomposition reaction strongly depend on the particle size, only a small amount of this reaction occurs due to the carbonaceous material in the raw material charged from the raw material charging chute 21. Therefore, in order to actively cause this reaction, it is necessary to blow the pulverized coal 19 into the upper region 20 from the pulverized coal injection nozzle 15.
この領域20を通過するガスの温度と酸化度吹き込み量
を調節する。この反応領域20を仮に改質反応帯と呼ぶ
ことにすると、改質反応帯20を通過するガスの酸化度
0.5以上、温度1500°C以上であるとき炉内へ装
入している炭材量の30%以下に相当する微粉炭をノズ
ル15より改質反応帯20に吹き込む。改質反応帯20
を通過したガスは、反応■、■および微粉炭の熱分解反
応の吸熱によって温度が700〜1300℃に低下し、
酸化度も0.1〜0.5に低下して炉外へ排出される。The temperature of the gas passing through this region 20 and the amount of oxidation blown are adjusted. If this reaction zone 20 is temporarily called a reforming reaction zone, when the degree of oxidation of the gas passing through the reforming reaction zone 20 is 0.5 or more and the temperature is 1500°C or more, the coal charged into the furnace is Pulverized coal corresponding to 30% or less of the material amount is blown into the reforming reaction zone 20 from the nozzle 15. Modification reaction zone 20
The temperature of the gas passing through decreases to 700-1300℃ due to the endothermic reaction of reactions ① and ② and the thermal decomposition reaction of pulverized coal.
The degree of oxidation also decreases to 0.1 to 0.5 and is discharged from the furnace.
この際、ガス量が最大30%程度増加する。、改質反応
帯20へ吹き込む微粉炭量が多すぎると、温度の低下に
より反応■、■が十分に進行せず、未燃焼の炭素が一部
二次燃焼帯18に巻きこまれて二次燃焼率を低下させる
ことになり鉄浴への熱供給の効率が低下する。さらに排
ガス中の炭素分も増加する。At this time, the amount of gas increases by about 30% at most. If the amount of pulverized coal injected into the reforming reaction zone 20 is too large, reactions (2) and (2) will not proceed sufficiently due to the temperature drop, and some unburned carbon will be drawn into the secondary combustion zone 18 and secondary combustion will occur. This reduces the efficiency of heat supply to the iron bath. Furthermore, the carbon content in the exhaust gas also increases.
改質反応帯への微粉炭吹き込み方法の1つとして、第2
図に示したように3個以上のノズルを水平方向に中心か
ら15〜45度の角度α傾けて設置し、これから微粉炭
を改質反応帯へ吹き込むと、より大きな改質効果が得ら
れる。この場合改質反応帯に旋回流が形成され、上昇し
てきたガス流と微粉炭の反応■、■が促進される。傾斜
角度が15度未満であると、十分に旋回流が形成されず
、45度を超えると、吹きこまれたガス及び微粉炭が炉
壁へ衝突しやすくなり効果的な改質反応帯を形成するこ
とができない。As one of the methods of blowing pulverized coal into the reforming reaction zone, the second
As shown in the figure, if three or more nozzles are installed horizontally at an angle α of 15 to 45 degrees from the center and pulverized coal is blown into the reforming reaction zone, a greater reforming effect can be obtained. In this case, a swirling flow is formed in the reforming reaction zone, promoting the reactions (1) and (2) between the ascending gas flow and the pulverized coal. If the inclination angle is less than 15 degrees, a sufficient swirling flow will not be formed, and if it exceeds 45 degrees, the injected gas and pulverized coal will easily collide with the furnace wall, forming an effective reforming reaction zone. Can not do it.
更にまた改質反応帯への微粉炭吹き込み方法の1つとし
て、第3図に示したように炉口の上から斜めにランス2
2を挿入して改質反応帯へ微粉炭を吹き込んでもよい。Furthermore, as one method for injecting pulverized coal into the reforming reaction zone, as shown in Figure 3, a lance 2 is inserted diagonally from above the furnace mouth.
2 may be inserted to blow pulverized coal into the reforming reaction zone.
この場合ランスが可動であるから炉内の状況に応じて任
意の高さ位置に微粉炭を吹き込んで改質反応帯を形成さ
せることかできる。In this case, since the lance is movable, pulverized coal can be blown into any height position depending on the situation inside the furnace to form a reforming reaction zone.
改質反応帯を通過したガスは温度が低下するため、それ
より上部では炉壁耐火物の損傷は軽減し、炉上部で排ガ
スの通過するフードへの熱的負荷が低減し、放散熱によ
る熱損失も減少する。さら龜、 −排ガス予備還
元工程のプロセスとして導入するための熱交換器、ガス
改質の設備等も減じることができる。As the temperature of the gas that passes through the reforming reaction zone decreases, damage to the furnace wall refractories in the upper part of the furnace is reduced, the thermal load on the hood through which the exhaust gas passes in the upper part of the furnace is reduced, and the heat generated by the radiated heat is reduced. Losses are also reduced. Furthermore, it is also possible to reduce the number of heat exchangers, gas reforming equipment, etc. that are introduced as part of the exhaust gas preliminary reduction process.
〈実施例〉
1、第1図に示した転炉型の溶融還元炉を用いて本発明
を実施した例を示す。<Example> 1. An example in which the present invention was implemented using the converter-type melting reduction furnace shown in FIG. 1 will be described.
溶銑12とスラグ13の存在する溶融還元炉3に、上方
に備えた装入口21から予備還元された鉱石と石炭が連
続的に装入される。溶銑およびスラブは1450〜15
50°Cに保たれている。炉底に設けられた羽口14か
らは酸素が吹き込まれている。装入された鉱石は溶銑中
の炭素およびスラグ中の炭材によって還元され、底吹さ
れた酸素は溶銑中の酸素と反応して、共にCOガスを発
生する。また石炭の熱分解によってH,ガスが発生する
。Preliminarily reduced ore and coal are continuously charged into a smelting reduction furnace 3 in which hot metal 12 and slag 13 are present through a charging port 21 provided above. Hot metal and slabs are 1450-15
It is kept at 50°C. Oxygen is blown into the furnace through tuyeres 14 provided at the bottom of the furnace. The charged ore is reduced by the carbon in the hot metal and the carbonaceous material in the slag, and the bottom-blown oxygen reacts with the oxygen in the hot metal to generate CO gas. In addition, H and gas are generated by thermal decomposition of coal.
ここに、上吹ランス16からこの発生ガスの60〜70
%を燃焼させる量に相当する02ガスを吹き込んだ。ス
ラグ直上の二次燃焼帯18で、発生ガスと酸素ジェット
は燃焼反応し、浴面への伝熱を行った。燃焼ガスの一部
は二次燃焼帯で循環流を形成した。二次燃焼帯を脱した
ガスは酸化度0.6〜0.7、温度1700〜1800
°Cであった。ここに炉壁ノズル15から、粒径0.1
mm以下、揮発分30〜40%の微粉炭を、上方投入
石炭の20〜25%相当量吹き込んだ。この効果により
、溶融還元炉の炉口において酸化度0.3〜0.4、温
度800〜1000″Cの排ガスが得られた。Here, 60-70% of this generated gas is discharged from the top blowing lance 16.
02 gas was blown in an amount equivalent to burning %. In the secondary combustion zone 18 directly above the slag, the generated gas and the oxygen jet underwent a combustion reaction, and heat was transferred to the bath surface. A part of the combustion gas formed a circulating flow in the secondary combustion zone. The gas leaving the secondary combustion zone has an oxidation degree of 0.6 to 0.7 and a temperature of 1700 to 1800.
It was °C. Here, from the furnace wall nozzle 15, a particle size of 0.1
Pulverized coal having a volatile content of 30 to 40% was blown into the coal in an amount equivalent to 20 to 25% of the coal charged above. Due to this effect, exhaust gas with an oxidation degree of 0.3 to 0.4 and a temperature of 800 to 1000''C was obtained at the mouth of the melting reduction furnace.
2、実施例1と同様の転炉型の溶融還元炉に、第2図に
示す傾けた微粉炭吹き込みノズルを設置した。2. An inclined pulverized coal blowing nozzle shown in FIG. 2 was installed in a converter-type melting and reduction furnace similar to that in Example 1.
実施例1より予備還元率の高い鉱石と、石炭を溶融還元
炉に供給し、上吹酸素量を減らしたところ二次燃焼帯を
脱したガスの酸化度は0.5〜0.6、温度1600〜
1700℃であった。ここに炉壁ノズル15(角度α=
30°)から、粒径0.5印以下、揮発分30〜40%
の微粉炭を、上方投入石炭の15〜20%相当量吹き込
んだところ、より温度が低く微粉炭の粒度が粗いにもか
かわらず改質反応帯で十分反応が進行し、溶融還元炉の
炉口において酸化度0.3〜0.4、温度800−10
00°Cの排ガスが得られた。From Example 1, when ore with a high preliminary reduction rate and coal were supplied to a smelting reduction furnace and the amount of top blowing oxygen was reduced, the degree of oxidation of the gas leaving the secondary combustion zone was 0.5 to 0.6, and the temperature was 1600~
The temperature was 1700°C. Here, the furnace wall nozzle 15 (angle α=
30°), particle size 0.5 mark or less, volatile content 30-40%
When pulverized coal was injected in an amount equivalent to 15 to 20% of the above-injected coal, the reaction progressed sufficiently in the reforming reaction zone despite the lower temperature and coarser grain size of the pulverized coal, and oxidation degree 0.3-0.4, temperature 800-10
00°C exhaust gas was obtained.
3、実施例1と同様の転炉型の溶融還元炉に、第3図に
示す斜め方向からの微粉炭吹き込み用ランス22を設置
した。3. A lance 22 for blowing pulverized coal from an oblique direction as shown in FIG. 3 was installed in a converter type melting reduction furnace similar to that in Example 1.
脈石成分の多い予備還元鉱石と、石炭を溶融還元炉に供
給し、実施例1と同様に操業したところ溶銑の生産と同
時にスラグが多量に生成し、スラグのレベルが上昇した
。スラグレベルの上昇に合わせて上吹酸素ランスを上昇
させたため、二次燃焼帯も上方に移動した。これに合わ
せて微粉炭吹き込み位置もランスを徐々に上昇させて変
更し、改質反応帯も十分に確保することができた。When pre-reduced ore containing a large gangue component and coal were supplied to a smelting reduction furnace and operated in the same manner as in Example 1, a large amount of slag was generated at the same time as hot metal was produced, and the slag level increased. As the slag level rose, the top-blown oxygen lance was raised, and the secondary combustion zone also moved upward. In line with this, the pulverized coal injection position was changed by gradually raising the lance, and we were able to secure a sufficient reforming reaction zone.
〈発明の効果〉
以上に示したように、本発明においては、溶融還元炉の
スラグ上部の二次燃焼帯で酸化されたガスは、二次燃焼
帯直上の空間で吹き込まれた微粉炭と反応する改質反応
帯を形成し、ガス酸化度の低下および排ガス温度の低下
などの改質・熱回収がなされて炉外へ排出される。した
がって、この排ガスを予備還元工程へ導入するための熱
交換器、脱炭酸装置等の処理設備が節単になり、または
−部省略できる。また、改質反応帯より上部ではガス温
度が低下するため、溶融還元炉の上部の耐火物は損傷が
軽減し、排ガスフードにおいても熱的負荷が少なくなる
とともに放散熱による熱損失が減少するなどの効果が得
られる。<Effects of the Invention> As described above, in the present invention, the gas oxidized in the secondary combustion zone above the slag of the smelting reduction furnace reacts with the pulverized coal injected in the space directly above the secondary combustion zone. A reforming reaction zone is formed in which the gas is reformed and the heat is recovered by reducing the gas oxidation degree and exhaust gas temperature before being discharged to the outside of the furnace. Therefore, treatment equipment such as a heat exchanger and a decarboxylation device for introducing this exhaust gas into the preliminary reduction step can be saved or omitted. Additionally, since the gas temperature decreases above the reforming reaction zone, damage to the refractories at the top of the smelting-reduction furnace is reduced, and the thermal load on the exhaust gas hood is reduced, as well as heat loss due to radiated heat. The effect of this can be obtained.
第1図は本発明を転炉型の溶融還元炉に適用した例を示
す図、第2図は第2請求項に記載のノズルを使用する場
合の炉断面の例を示す図、第3図は炉外より挿入したラ
ンスを用いて微粉炭吹き込みを行う例を示す図である。
第2図
第3図FIG. 1 is a diagram showing an example in which the present invention is applied to a converter-type melting reduction furnace, FIG. 2 is a diagram showing an example of a furnace cross section when the nozzle according to claim 2 is used, and FIG. FIG. 2 is a diagram showing an example of pulverized coal injection using a lance inserted from outside the furnace. Figure 2 Figure 3
Claims (3)
炭素およびスラグ中の炭材で還元精錬すると同時に上吹
酸素により二次燃焼を行う溶融還元炉において、炉内の
COおよび/またはH_2が酸素と反応している二次燃
焼帯18の直上部に、炉体側壁に設けた微粉炭吹込ノズ
ル15より微粉炭19を吹き込むことを特徴とする溶融
還元炉の操業方法。(1) In a smelting reduction furnace, semi-reduced ore supplied from a preliminary reduction furnace is reduced and refined using carbon in an iron bath and carbonaceous materials in slag, and at the same time secondary combustion is performed using top-blown oxygen. Alternatively, a method for operating a smelting reduction furnace characterized by injecting pulverized coal 19 from a pulverized coal injection nozzle 15 provided on the side wall of the furnace body directly above the secondary combustion zone 18 where H_2 is reacting with oxygen.
平方向でかつ炉中心方向に対し15度〜45度同一方向
に傾けて該還元炉二次燃焼帯18の直上部に設置して微
粉炭19を吹き込むことを特徴とする特許請求の範囲第
1項記載の溶融還元炉の操業方法。(2) At least three or more pulverized coal injection nozzles 15 are installed horizontally and tilted in the same direction at 15 degrees to 45 degrees with respect to the furnace center direction directly above the secondary combustion zone 18 of the reduction furnace to generate pulverized coal. 2. The method of operating a melting reduction furnace according to claim 1, characterized in that the method comprises blowing 19.
炭素およびスラグ中の炭材で還元精錬すると同時に上吹
酸素により二次燃焼を行う溶融還元炉において、炉内の
COおよび/またはH_2が酸素と反応している二次燃
焼帯18の直上部に、該還元炉の炉外斜め上方から挿入
したランス22により微粉炭を吹き込むことを特徴とす
る溶融還元炉の操業方法。(3) In the smelting reduction furnace, the semi-reduced ore supplied from the preliminary reduction furnace is reduced and refined using carbon in the iron bath and carbonaceous materials in the slag, and at the same time secondary combustion is performed using top-blown oxygen. Alternatively, a method for operating a smelting reduction furnace, characterized in that pulverized coal is injected directly above the secondary combustion zone 18 where H_2 is reacting with oxygen using a lance 22 inserted from diagonally above the outside of the reduction furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63016723A JPH0723495B2 (en) | 1988-01-27 | 1988-01-27 | Operation method of smelting reduction furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63016723A JPH0723495B2 (en) | 1988-01-27 | 1988-01-27 | Operation method of smelting reduction furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01191719A true JPH01191719A (en) | 1989-08-01 |
JPH0723495B2 JPH0723495B2 (en) | 1995-03-15 |
Family
ID=11924184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63016723A Expired - Lifetime JPH0723495B2 (en) | 1988-01-27 | 1988-01-27 | Operation method of smelting reduction furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723495B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03177513A (en) * | 1989-09-04 | 1991-08-01 | Nippon Steel Corp | Smelting reduction method for metal and smelting reduction furnace |
CN111270037A (en) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | System and process method for producing sponge iron by directly reducing hydrogen-rich synthesis gas |
CN114250329A (en) * | 2020-09-25 | 2022-03-29 | 宝山钢铁股份有限公司 | Iron-making process with external convolution zone |
-
1988
- 1988-01-27 JP JP63016723A patent/JPH0723495B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03177513A (en) * | 1989-09-04 | 1991-08-01 | Nippon Steel Corp | Smelting reduction method for metal and smelting reduction furnace |
CN111270037A (en) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | System and process method for producing sponge iron by directly reducing hydrogen-rich synthesis gas |
CN114250329A (en) * | 2020-09-25 | 2022-03-29 | 宝山钢铁股份有限公司 | Iron-making process with external convolution zone |
Also Published As
Publication number | Publication date |
---|---|
JPH0723495B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4837856B2 (en) | Direct smelting method | |
CA2236587C (en) | Duplex procedure for the production of metals and metal alloys from oxidic metal ores | |
JPS62263908A (en) | Melt-reduction of iron ore | |
JP4212895B2 (en) | Method for generating molten iron in electric furnace | |
US4414026A (en) | Method for the production of ferrochromium | |
JPH0463215A (en) | Method and apparatus for refining metal | |
JPH01191719A (en) | Method for operating smelting reduction furnace | |
JPH0723494B2 (en) | Method and apparatus for refining molten metal | |
JP2638861B2 (en) | Melt reduction method | |
JPS61221322A (en) | Melting and refining method for metallic raw material | |
EP0950117B1 (en) | A method for producing metals and metal alloys | |
JP2600733B2 (en) | Smelting reduction method | |
US4412862A (en) | Method for the production of ferrochromium | |
JPH06228623A (en) | Steelmaking method having small energy consumption | |
JP2022117935A (en) | Molten iron refining method | |
JPH01195211A (en) | Method for melting and reducing iron oxide | |
JPS58199810A (en) | Operating method of converter | |
JPH02282410A (en) | Smelting reduction method for ore | |
JPH10330813A (en) | Smelting reduction and decarburizing equipment and operating method thereof | |
JPH01195213A (en) | Method for supplying raw powdery material into iron bath type melting and reducing furnace | |
JPH01195214A (en) | Operation of iron bath type melting and reducing furnace | |
JPH1121610A (en) | Lance for blowing gas and operation of converter type refining furnace | |
JPH06102806B2 (en) | Smelting reduction furnace | |
JPH01195210A (en) | Method for supplying coat to melting and reducing furnace for iron oxide | |
JPH02125807A (en) | Smelting reduction method for ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |