JPH01190272A - Displacement magnifying mechanism for solid state actuator - Google Patents
Displacement magnifying mechanism for solid state actuatorInfo
- Publication number
- JPH01190272A JPH01190272A JP63013620A JP1362088A JPH01190272A JP H01190272 A JPH01190272 A JP H01190272A JP 63013620 A JP63013620 A JP 63013620A JP 1362088 A JP1362088 A JP 1362088A JP H01190272 A JPH01190272 A JP H01190272A
- Authority
- JP
- Japan
- Prior art keywords
- displacement
- actuator
- actuators
- solid
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 44
- 230000007246 mechanism Effects 0.000 title claims abstract description 29
- 239000007787 solid Substances 0.000 title claims abstract description 13
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 2
- 230000004043 responsiveness Effects 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気ディスク装置、光デイスク装置等の情報
機器、半導体製造装置、超精密測定装置等における小型
部品精密位置決め機構に適用できる固体アクチュエータ
変位拡大機構に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a solid state actuator that can be applied to small component precision positioning mechanisms in information equipment such as magnetic disk devices and optical disk devices, semiconductor manufacturing equipment, ultra-precision measurement equipment, etc. Regarding the displacement amplification mechanism.
精密位置決め用の固体アクチュエータとして、大きな発
生力と高速応答性とを有することから従来、第5図に示
すように圧電縦効果を利用した薄板状圧電セラミックス
“積層型アクチュエータAが多く用いられている。Conventionally, as a solid-state actuator for precision positioning, a thin plate-shaped piezoelectric ceramic "laminated actuator A" that utilizes the piezoelectric longitudinal effect, as shown in Fig. 5, has been widely used because it has a large generated force and high-speed response. .
しかしながら、このような積層型圧電セラミックスでは
、単位電界強度に対する発生歪が小さいので、10μm
程度の可動範囲を得る場合でも、各セラミックス素子の
厚みを薄くすると共に、高い駆動電圧を必要としていた
。また、積層枚数も多くなり、必然的に変位方向のアク
チュエータ長も大きくなるので、精密位置決め機構の小
型化が困難であるという欠点を有していた。However, in such laminated piezoelectric ceramics, the strain generated per unit electric field strength is small, so 10 μm
Even in order to obtain a certain range of motion, it is necessary to reduce the thickness of each ceramic element and to use a high driving voltage. Furthermore, since the number of laminated sheets increases and the length of the actuator in the displacement direction inevitably increases, it is difficult to miniaturize the precision positioning mechanism.
そこで、比較的大きな可動範囲が必要な場合には、第6
図に示すように、変位拡大機構Bが用いられていた。1
は積層型圧電セラミックス、2はレバー、3はベース、
4はヒンジであり、積層型圧電セラミックス1の変位d
がてこの原理によってレバー2でn倍に拡大され、その
レバー2の先端の変位がnd倍となる。また、説明は省
略するが、低電圧で比較的大きな変位が得られるバイモ
ルフをアクチュエータとする例もある。Therefore, if a relatively large range of motion is required, the sixth
As shown in the figure, a displacement magnification mechanism B was used. 1
is a laminated piezoelectric ceramic, 2 is a lever, 3 is a base,
4 is a hinge, and the displacement d of the laminated piezoelectric ceramic 1 is
is magnified n times by the lever 2 according to the lever principle, and the displacement of the tip of the lever 2 becomes nd times. Further, although the description will be omitted, there is also an example in which a bimorph that can obtain a relatively large displacement with a low voltage is used as an actuator.
しかしながら、これら従来のものは、撓み易い部材を含
むので、共振点が低く、高速応答性に欠けるという問題
がある。However, since these conventional devices include members that are easily bent, they have a problem of having a low resonance point and lacking in high-speed response.
本発明の目的は、上記の点に鑑み、変位方向の寸法に比
べて可動範囲が大きくとれ、しがも高速応答性に優れた
固体アクチュエータ変位拡大機構を提供することである
。In view of the above points, an object of the present invention is to provide a solid actuator displacement magnifying mechanism that has a large movable range compared to the dimension in the displacement direction and has excellent high-speed response.
このために本発明は、圧電効果、電歪及び磁歪現象、相
変態等の各種電気物理現象によって生じる固体内部の機
械的歪を利用する複数個の固体アクチュエータと、それ
らを結合する結合部材とからなる精密位置決め機構にお
いて、
複数個の該固体アクチュエータを変位方向と直角な面内
に上記結合部材により並列に配置し、該個々の固体アク
チュエータの変位が加算されて出力されるよう構成した
。To this end, the present invention comprises a plurality of solid-state actuators that utilize mechanical strain inside a solid body caused by various electrophysical phenomena such as piezoelectric effects, electrostrictive and magnetostrictive phenomena, and phase transformation, and a connecting member that connects them. In this precision positioning mechanism, a plurality of the solid actuators are arranged in parallel in a plane perpendicular to the displacement direction by the coupling member, and the displacements of the individual solid actuators are added and output.
本発明はレバー、ヒンジ等を用いたてこの原理による拡
大ではなく、複数個の固体アクチュエータの変位を加算
して出力させるようにしているので、アクチュエータや
結合部材の形状を、例えば筒状にする等により、従来の
変位拡大機構に比べて、機構剛性を高めることが可能と
なり、高速応答性を得ることができる。また、所要の変
位を一定とすると、単独アクチュエータに比べて、変位
方向の機構寸法の小型化が可能であり、つまり変位方向
の寸法に比べて可動範囲が大きくとれ、また駆動電圧も
節減でき、小型部品の精密位置決め機構を容易に実現で
きる。The present invention does not perform expansion based on the lever principle using levers, hinges, etc., but outputs the sum of the displacements of multiple solid actuators, so the shape of the actuators and coupling members is, for example, cylindrical. As a result, the mechanical rigidity can be increased compared to conventional displacement magnification mechanisms, and high-speed response can be achieved. Furthermore, if the required displacement is constant, the mechanical dimensions in the displacement direction can be made smaller compared to a single actuator, which means that the movable range can be larger than the dimensions in the displacement direction, and the drive voltage can also be reduced. A precision positioning mechanism for small parts can be easily realized.
以下、本発明の実施例について説明する。第1図及び第
2図はその一実施例の変位拡大機構Cを示す図である。Examples of the present invention will be described below. FIGS. 1 and 2 are diagrams showing a displacement magnifying mechanism C according to one embodiment.
10はベース、11〜13・は直径の異なる3個の軸方
向に変位可能な中空円筒状アクチュエータ、14.15
は外側上部、内側下部に鍔を有する筒状の結合部材、1
6はベースに対して位置決めすべき部品を結合する出力
部材である。10 is a base, 11 to 13 are three axially displaceable hollow cylindrical actuators with different diameters, 14.15
1 is a cylindrical connecting member having a collar on the outer upper part and the inner lower part;
Reference numeral 6 denotes an output member that connects the parts to be positioned with respect to the base.
アクチュエータ11はベース10と外側の結合部材14
の外側上部の鍔との間に、アクチュ呈−タ12はその結
合部材14の内側下部の鍔と内側の結合部材15の外側
上部の鍔との間に、及びアクチュエータ13はその結合
部材15の内側下部の鍔と出力部材16との間に各々結
合されている。The actuator 11 has a base 10 and an outer coupling member 14.
The actuator 12 is located between the outer upper collar of the coupling member 14 and the outer upper collar of the inner coupling member 15, and the actuator 13 is located between the inner lower collar of the coupling member 14 and the outer upper collar of the inner coupling member 15. They are each coupled between the inner lower collar and the output member 16.
この例では、3個のアクチュエータ11〜13に対して
軸方向に伸び変位するように電圧を印加すると、個々の
アクチュエータ11〜13の変位が加算され、出力部材
16は同一高さの単独アクチュエータの場合の約3倍伸
び変位することになり、変位を拡大できる。In this example, when a voltage is applied to the three actuators 11 to 13 so that they extend and displace in the axial direction, the displacements of the individual actuators 11 to 13 are added, and the output member 16 is The elongation and displacement will be approximately three times that of the case, and the displacement can be expanded.
このように、この実施例では全てのアクチュエータ11
〜13の変位が同じ方向になるように駆動する。このよ
うに駆動するための具体的結線方法については、周知の
事項であるので説明は省略する。また、本実施例のよう
な筒状の部材を使用すれば、高い剛性が得られる。更に
本実施例においては、レバーによる拡大機構と異なり、
ヒンジのような撓み易い部材を必要としないので、高剛
性設計が可能となる。In this way, in this embodiment, all the actuators 11
-13 are driven in the same direction. The specific wiring connection method for driving in this manner is well known, so a description thereof will be omitted. Further, by using a cylindrical member as in this embodiment, high rigidity can be obtained. Furthermore, in this embodiment, unlike the enlargement mechanism using a lever,
Since flexible members such as hinges are not required, a highly rigid design is possible.
第3図は別の実施例の変位拡大機構りを示す図である。FIG. 3 is a diagram showing a displacement magnification mechanism of another embodiment.
20はベース、21〜23は直径の異なる3個の軸方向
に変位可能な筒状アクチュエータである。アクチュエー
タ21.22は中空円筒状、アクチュエータ23は中実
円筒状である。24.25は円板状の結合部材、26は
出力部材である。20 is a base, and 21 to 23 are three axially displaceable cylindrical actuators having different diameters. The actuators 21, 22 have a hollow cylindrical shape, and the actuator 23 has a solid cylindrical shape. 24 and 25 are disc-shaped coupling members, and 26 is an output member.
上側の結合部材24はアクチュエータ21.22の上部
を結合し、下側の結合部材25はアクチュエータ22.
23の下側を結合する。The upper coupling member 24 couples the upper part of the actuator 21.22, and the lower coupling member 25 couples the upper part of the actuator 22.22.
Join the lower side of 23.
この実施例では、アクチュエータ21が伸び、アクチュ
エータ22が縮み、アクチュエータ23が伸びるようそ
れらアクチュエータ21〜23を駆動することにより、
出力部材26はベース20に対して伸びる方向に拡大変
位する。このようにこの実施例では、隣接するアクチュ
エータの変位方向が相互に逆になるように駆動する。In this embodiment, the actuators 21 to 23 are driven so that the actuator 21 extends, the actuator 22 contracts, and the actuator 23 extends.
The output member 26 is expanded and displaced in the extending direction with respect to the base 20. In this manner, in this embodiment, adjacent actuators are driven so that their displacement directions are opposite to each other.
第4図は更に別の実施例の変位拡大機構Eを示す図であ
る。この実施例は第3図に示した変位拡大機構りのアク
チュエータ23を他のアクチュエータ21.22と同様
に中空のアクチュエータ23として、そのアクチュエー
タ231の中心部に出力部材26の変位を検知する変位
検センサ27を設け、その変位センサ27による検知信
号によって駆動電圧を制御するようにしている。FIG. 4 is a diagram showing a displacement magnification mechanism E of yet another embodiment. In this embodiment, the actuator 23 of the displacement magnification mechanism shown in FIG. A sensor 27 is provided, and the drive voltage is controlled by a detection signal from the displacement sensor 27.
例えば、圧電アクチュエータにおいては、駆動電圧に対
する変位ヒステリシスが大きいので、高精度位置決めの
ためには変位を検出し、駆動電圧を補償する必要がある
。For example, a piezoelectric actuator has a large displacement hysteresis with respect to a drive voltage, so it is necessary to detect displacement and compensate the drive voltage for highly accurate positioning.
この変位センサとしては、例えば、静電容量センサを用
いればコンパクトに構成できるが、他の原理によるセン
サであっても良い。動作については第3図に示した変位
拡大機構りと同じである。This displacement sensor can be constructed compactly by using, for example, a capacitance sensor, but a sensor based on another principle may also be used. The operation is the same as that of the displacement magnifying mechanism shown in FIG.
以上説明した各実施例においては、円筒アクチュエータ
を用いたが、その形状は本発明を制限するものではない
。また、アクチュエータの数も3個の場合について説明
したが、2個以上であれば本発明の構成を実現でき、変
位拡大が可能である。Although a cylindrical actuator is used in each of the embodiments described above, the shape thereof does not limit the present invention. Further, although the case where the number of actuators is three has been described, if there are two or more, the configuration of the present invention can be realized and the displacement can be expanded.
以上説明したように、本発明の固体アクチュエ! −夕
変位拡大機構によれば、単独のアクチュエータで動作さ
せる場合に比べて、変位方向の機構寸法の大幅な低減が
可能で、精密位置決め機構の小型化に適する効果を持つ
。また、筒状のアクチュエータ及び結合部材を用いるな
どの形状設計により、従来のレバーによる拡大機構に比
べて、機構剛性を高めることが可能で、高速応答性に優
れた精密位置決め機構を構成できる利点がある。As explained above, the solid actuator of the present invention! - According to the vertical displacement amplifying mechanism, the size of the mechanism in the displacement direction can be significantly reduced compared to the case where it is operated by a single actuator, and this has an effect suitable for miniaturizing the precision positioning mechanism. In addition, due to the shape design using a cylindrical actuator and coupling member, it is possible to increase the rigidity of the mechanism compared to the conventional lever-based expansion mechanism, which has the advantage of being able to construct a precision positioning mechanism with excellent high-speed response. be.
第1図は本発明の一実施例の変位拡大機構の斜視図、第
2図は第1図のn−n線に沿った断面図、第3図は別の
実施例の変位拡大機構の断面図、第4図は更なる別の実
施例の変位拡大機構の断面図、第5図と第6図は従来の
変位拡大機構の説明図である。
10・・・ベース、11〜13・・・アクチュエータ、
14.15・・・結合部材、16・・・出力部材、20
・・・ベース、21〜23.231・・・アクチュエー
タ、24.25・・・結合部材、26・・・出力部材、
27・・・変位センサ。
代理人 弁理士 長 尾 常 明
第2図FIG. 1 is a perspective view of a displacement magnifying mechanism according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line nn in FIG. 1, and FIG. 3 is a cross-sectional view of a displacement magnifying mechanism according to another embodiment. 4 are sectional views of a displacement amplifying mechanism according to yet another embodiment, and FIGS. 5 and 6 are explanatory diagrams of a conventional displacement amplifying mechanism. 10...Base, 11-13...Actuator,
14.15... Connection member, 16... Output member, 20
... base, 21-23.231 ... actuator, 24.25 ... coupling member, 26 ... output member,
27...Displacement sensor. Agent Patent Attorney Tsuneaki Nagao Figure 2
Claims (1)
電気物理現象によって生じる固体内部の機械的歪を利用
する複数個の固体アクチュエータと、それらを結合する
結合部材とからなる精密位置決め機構において、 複数個の該固体アクチュエータを変位方向と直角な面内
に上記結合部材により並列に配置し、該個々の固体アク
チュエータの変位が加算されて出力されるよう構成した
ことを特徴とする固体アクチュエータ変位拡大機構。(1) Precise positioning consisting of multiple solid-state actuators that utilize mechanical strain inside a solid body caused by various electrophysical phenomena such as piezoelectric effects, electrostrictive and magnetostrictive phenomena, and phase transformation, and a connecting member that connects them. In the mechanism, a plurality of the solid actuators are arranged in parallel by the coupling member in a plane perpendicular to the displacement direction, and the displacements of the individual solid actuators are added and output. Actuator displacement expansion mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013620A JPH01190272A (en) | 1988-01-26 | 1988-01-26 | Displacement magnifying mechanism for solid state actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013620A JPH01190272A (en) | 1988-01-26 | 1988-01-26 | Displacement magnifying mechanism for solid state actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01190272A true JPH01190272A (en) | 1989-07-31 |
Family
ID=11838274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63013620A Pending JPH01190272A (en) | 1988-01-26 | 1988-01-26 | Displacement magnifying mechanism for solid state actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01190272A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106205583A (en) * | 2016-08-31 | 2016-12-07 | 北京越音速科技有限公司 | Piezo-activator and low-frequency underwater acoustic transducer |
US10097111B2 (en) | 2015-03-04 | 2018-10-09 | Seiko Epson Corporation | Piezoelectric drive device and robot |
JP2020526009A (en) * | 2017-06-12 | 2020-08-27 | マイクロファイン マテリアルズ テクノロジーズ ピーティーイー リミテッドMicrofine Materials Technologies Pte Ltd | Cost-effective high flexural rigidity connector and piezoelectric actuator made therefrom |
-
1988
- 1988-01-26 JP JP63013620A patent/JPH01190272A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10097111B2 (en) | 2015-03-04 | 2018-10-09 | Seiko Epson Corporation | Piezoelectric drive device and robot |
CN106205583A (en) * | 2016-08-31 | 2016-12-07 | 北京越音速科技有限公司 | Piezo-activator and low-frequency underwater acoustic transducer |
CN106205583B (en) * | 2016-08-31 | 2023-06-16 | 北京越音速科技有限公司 | Piezoelectric actuator and low-frequency underwater acoustic transducer |
JP2020526009A (en) * | 2017-06-12 | 2020-08-27 | マイクロファイン マテリアルズ テクノロジーズ ピーティーイー リミテッドMicrofine Materials Technologies Pte Ltd | Cost-effective high flexural rigidity connector and piezoelectric actuator made therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juuti et al. | Mechanically amplified large displacement piezoelectric actuators | |
Yao et al. | Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage | |
Li et al. | Design and development of a new piezoelectric linear Inchworm actuator | |
US4736131A (en) | Linear motor driving device | |
US6707230B2 (en) | Closed loop control systems employing relaxor ferroelectric actuators | |
US5751090A (en) | Peristaltic driver apparatus | |
Choi et al. | A compliant parallel mechanism with flexure-based joint chains for two translations | |
Robbins et al. | High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization | |
CN107622786B (en) | Two-stage piezoelectric driving micro-nano positioning platform | |
Zhang et al. | A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam | |
US6291928B1 (en) | High bandwidth, large stroke actuator | |
US9190600B2 (en) | Large-deflection microactuators | |
Rios et al. | A new electrical configuration for improving the range of piezoelectric bimorph benders | |
Jaecklin et al. | Comb actuators for xy-microstages | |
CN110065926B (en) | Two-degree-of-freedom scott-russell flexible micro-nano positioning platform | |
Breguet et al. | Monolithic piezoceramic flexible structures for micromanipulation | |
JPH01190272A (en) | Displacement magnifying mechanism for solid state actuator | |
US20190214543A1 (en) | Monolithic pzt actuator, stage, and method for making | |
US6278223B1 (en) | Differential type piezoelectric actuator | |
US8072120B2 (en) | Multiple degrees of freedom motion system | |
Marth et al. | Development of a compact high-load PZT-ceramic long-travel linear actuator with picometer resolution for active optical alignment applications | |
US11711033B2 (en) | Piezoelectric motor with bending travelling wave | |
JPS62138071A (en) | Linear motor | |
Zhou et al. | Linear piezo-actuator and its applications | |
JPS61285424A (en) | Optical beam deflector |