JPH01197632A - Liquid refractometer and liquid concentration meter using same - Google Patents
Liquid refractometer and liquid concentration meter using sameInfo
- Publication number
- JPH01197632A JPH01197632A JP63023041A JP2304188A JPH01197632A JP H01197632 A JPH01197632 A JP H01197632A JP 63023041 A JP63023041 A JP 63023041A JP 2304188 A JP2304188 A JP 2304188A JP H01197632 A JPH01197632 A JP H01197632A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- light
- fluid
- refractive index
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title abstract description 82
- 238000005259 measurement Methods 0.000 claims abstract description 47
- 239000000523 sample Substances 0.000 claims abstract description 32
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 239000012530 fluid Substances 0.000 claims description 46
- 230000003287 optical effect Effects 0.000 abstract description 5
- 239000013307 optical fiber Substances 0.000 abstract description 5
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 101700004678 SLIT3 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/4133—Refractometers, e.g. differential
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
- G01N2021/432—Dip refractometers, e.g. using optical fibres comprising optical fibres
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は液体や気体などの流体屈折計およびこれを用
いた流体密度計に関し、プローブを分離することによっ
て、測定流体のサンプリングを行うことなく測定流体の
屈折率および密度を常時オンラインで計測できるように
したものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluid refractometer for liquids, gases, etc., and a fluid density meter using the same. This allows the refractive index and density of the measurement fluid to be measured online at all times.
[従来技術とその問題点 ]
従来、流体たとえば液体の屈折率を測定する装置として
は、プリズムによる光の屈折角を測定するアツベ法、最
小偏角法のほか、測定液体の屈折率に依存して変化した
焦点距離を測定するデュク・ド・ショルヌ法などの光の
屈折法則に基づく屈折計が広く知られている。また、測
定液体の屈折率と密度との間には、後述するように一定
の関係式か成り立つことから、上記液体屈折計を用いた
液体密度計も知られている。しかしながら、上記液体屈
折計およびこれを用いた液体密度計はいずれら測定液体
の屈折率および密度を検出するプローブが他の構成要素
である光源や処理部と、直接、接続されておりプローブ
のみの分離が困難である。[Prior art and its problems] Conventionally, devices for measuring the refractive index of fluids, such as liquids, include the Atsube method, which measures the angle of refraction of light by a prism, the minimum deviation method, and other methods that depend on the refractive index of the liquid to be measured. Refractometers based on the law of refraction of light, such as the Duc de Charne method, which measures the focal length that changes due to the change in the focal length due to the change in the focal length, are widely known. Further, since a certain relational expression holds between the refractive index and the density of the liquid to be measured, as will be described later, a liquid density meter using the above liquid refractometer is also known. However, in both the liquid refractometer and the liquid density meter using the liquid refractometer, the probe that detects the refractive index and density of the liquid to be measured is directly connected to other components such as a light source and a processing section, so that only the probe can be used. Difficult to separate.
したがって、測定時には測定液体をその都度サンプリン
グしなければならないので、測定液体の屈折率および密
度を常時オンラインで計測することは不可能であった。Therefore, it is necessary to sample the liquid to be measured each time the measurement is made, so it has been impossible to constantly measure the refractive index and density of the liquid to be measured online.
この発明は上記問題点を解決するためになされたもので
、プローブと光源および処理部とを光ファイバからなる
ライトガイドまたはイメージガイドにより接続すること
によってプローブのみを測定流体内に、直接、浸漬して
常時オンラインで流体の屈折率および密度を計測するこ
とができるようにした流体屈折計およびこれを用いた流
体密度計を提供することを目的としている。This invention was made to solve the above problems, and by connecting the probe, a light source, and a processing section with a light guide or an image guide made of optical fiber, only the probe can be directly immersed in the measurement fluid. The object of the present invention is to provide a fluid refractometer that can measure the refractive index and density of a fluid online at all times, and a fluid density meter using the fluid refractometer.
[問題点を解決するための手段]
この発明にあっては、測定流体を満たして流体プリズム
を形成するようにした流体プリズム部を設けたプローブ
内に、測定光を上記流体プリズム部に導く送光部と、流
体プリズム部からの測定光を受ける受光部とを収容し、
上記送光部に測定光を導波するライトガイドを光源と送
光部とに接続し、上記受光部からの測定光を導波するイ
メージガイドを受光部と処理部とに接続し、上記処理部
において受光部で検出された受光位置情報に基づいて測
定流体の屈折率を求めろようにすることにより、また、
測定流体を満たして流体プリズムを形成するようにした
流体プリズム部を設けたプローブ内に、測定光を上記流
体プリズム部に導く送光部と、流体プリズム部からの測
定光を受けろ受光部とを収容し、上記送光部に測定光を
導波するライトガイドを光源と送光部とに接続し、上記
受光部からの測定光を導波するイメージガイドを受光部
と処理部とに接続し、上記処理部において受光部で検出
された受光位置情報に基づいて測定流体の密度を求める
ようにすることにより、上記の問題を解決している。[Means for Solving the Problems] According to the present invention, a probe is provided with a fluid prism section that is filled with a fluid to be measured to form a fluid prism, and a transmitter that guides measurement light to the fluid prism section is provided. Contains a light section and a light receiving section that receives measurement light from the fluid prism section,
A light guide that guides measurement light to the light transmitting section is connected to the light source and the light transmitting section, an image guide that guides the measurement light from the light receiving section is connected to the light receiving section and the processing section, and the above processing By determining the refractive index of the measuring fluid based on the light receiving position information detected by the light receiving part in the part,
A light transmitting part that guides measurement light to the fluid prism part and a light receiving part that receives the measurement light from the fluid prism part are installed in the probe which is provided with a fluid prism part that is filled with a measuring fluid to form a fluid prism part. A light guide for guiding the measurement light from the light receiving section is connected to the light source and the light transmitting section, and an image guide for guiding the measurement light from the light receiving section is connected to the light receiving section and the processing section. The above problem is solved by determining the density of the measurement fluid in the processing section based on the light receiving position information detected by the light receiving section.
[作用 コ
この発明の流体屈折計およびこれを用いた流体密度計に
あっては、光ファイバからなるライトガイドまたはイメ
ージガイドによって、プローブと各部とを接続したので
、プローブのみを測定流体内に浸漬することができる。[Function] In the fluid refractometer of this invention and the fluid density meter using the same, the probe and each part are connected by a light guide or an image guide made of an optical fiber, so only the probe is immersed in the measuring fluid. can do.
また、プローブのみを遠隔地に設置することができる。Moreover, only the probe can be installed at a remote location.
したがって、測定時に測定流体のサンプリングを行うこ
となく、常時オンラインで流体の屈折率および密度を計
測することができる。Therefore, the refractive index and density of the fluid can be measured online at all times without sampling the fluid to be measured during measurement.
[実施例 ] 以下、図面を参照して、この発明の詳細な説明する。[Example ] Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図および第2図はこの発明を、液体の屈折率を測定
するために用いた一実施例を示すもので、第1図におい
て符号lはこの例の液体屈折計である。この液体屈折計
、■は、屈折率測定用の測定光を射出する光源2と、上
記測定光を測定液体3中に通して屈折による偏角を検知
するプローブ4と、上記偏角から屈折率を求める処理部
5とから概略構成されており、また、プローブ4と光源
2とはライトガイド6により、プローブ4と処理部5と
はイメージガイド7により、それぞれ接続されている。FIGS. 1 and 2 show an embodiment in which the present invention is used to measure the refractive index of a liquid. In FIG. 1, reference numeral 1 indicates a liquid refractometer in this example. This liquid refractometer (■) includes a light source 2 that emits measurement light for refractive index measurement, a probe 4 that passes the measurement light into a measurement liquid 3 to detect the declination angle due to refraction, and a refractive index based on the declination angle. The probe 4 and the light source 2 are connected to each other by a light guide 6, and the probe 4 and the processing part 5 are connected to each other by an image guide 7.
上記光源2はランプと適宜、単色の干渉フィルタとから
なり、例えばナトリウムランプとナトリウムD線のみを
選択的に透過させる干渉フィルタとを組み合わせたちの
を用いることができる。The light source 2 is composed of a lamp and an appropriate monochromatic interference filter. For example, a combination of a sodium lamp and an interference filter that selectively transmits only sodium D rays can be used.
これらのランプおよびフィルタは測定波長領域に応じて
好適なものを選択することができる。また第2図に示す
ように、上記プローブ4は、測定時、測定液体3を満た
して液体プリズム8を形成するようにした液体プリズム
部9と、液体プリズム8に測定光PAを入射させる送光
部10と、液体プリズム8により屈折された測定光PB
をその偏角(入射光PAと射出光PBとのなす角)δに
応じてその受光面f上の位置に受光させる受光部11と
からなるものである。上記液体プリズム部9は二枚の透
明な光学的平行平面板(たとえば、石英ガラス板)を両
側面として3角形状の溝に構成したものであって、この
溝に測定液体3を満たすことによって、測定液体3から
なる液体プリズム8を形成するものである。また、上記
送光部IOはコリメータレンズI2、スリット13、お
よびミラーI4の光学部材により構成されている。上記
コリメータレンズ12の物側焦点面にはライトガイド6
の終端部Aが取り付けられており、コリメータレンズI
2に入射する測定光PAを平行光束に変換して射出する
ようになしている。コリメータレンズ12の像空間側に
はスリット■3が配され、コリメータレンズ12から射
出された測定光PAを線状の平行光束になすようにして
いる。上記ミラー14にあっては測定光PAが液体プリ
ズム8に所定の角度で入射するようにその取り付は位置
が調整されている。また、上記ライトガイド6の始端部
は光源2に取り付けられている。ここで、ライトガイド
6としては、複数のファイバを束ねたファイババンドル
が用いられる。また、」二記受光部1!は対物レンズ1
5からなる光学系により構成されている。この対物レン
ズ15は液体プリズム8により屈折された測定光PI3
の光路上に配されている。上記受光部11には対物レン
ズ15の結像面にイメージガイド7の受光面fか重なる
ようにイメージガイド7の始端部Bが取り付けられてい
る。他方、イメージガイド7の終端部は処理部5に取り
付けられている。ここでイメージガイド7としては二次
元画像を忠実に伝送し得るイメージファイバが用いられ
る。この処理部5はイメージガイド7により伝送されて
きた測定光PBの偏角情報に基づいて、たとえば、プロ
グラム演算処理をすることにより、あるいは目盛りで目
測することにより屈折率を求めるようになされている。Suitable lamps and filters can be selected depending on the measurement wavelength range. Further, as shown in FIG. 2, the probe 4 includes a liquid prism part 9 that is filled with the liquid to be measured 3 to form a liquid prism 8 during measurement, and a light transmission part that makes the measuring light PA incident on the liquid prism 8. 10 and the measurement light PB refracted by the liquid prism 8.
The light receiving section 11 receives the light at a position on the light receiving surface f according to the polarization angle (angle formed by the incident light PA and the emitted light PB) δ. The liquid prism section 9 is constructed by forming two transparent optically parallel flat plates (for example, quartz glass plates) into a triangular groove on both sides. , forming a liquid prism 8 made of the measuring liquid 3. Further, the light transmitting section IO is composed of optical members including a collimator lens I2, a slit 13, and a mirror I4. A light guide 6 is provided on the object side focal plane of the collimator lens 12.
The terminal end A of the collimator lens I is attached, and the collimator lens I
The measurement light PA incident on the light beam 2 is converted into a parallel light beam and then emitted. A slit 3 is disposed on the image space side of the collimator lens 12 to convert the measurement light PA emitted from the collimator lens 12 into a linear parallel light beam. The mounting position of the mirror 14 is adjusted so that the measurement light PA is incident on the liquid prism 8 at a predetermined angle. Further, the starting end of the light guide 6 is attached to the light source 2. Here, as the light guide 6, a fiber bundle formed by bundling a plurality of fibers is used. In addition, "2 light receiving section 1! is objective lens 1
It is composed of an optical system consisting of 5 parts. This objective lens 15 is the measurement light PI3 refracted by the liquid prism 8.
is placed on the optical path. The starting end B of the image guide 7 is attached to the light receiving section 11 so that the light receiving surface f of the image guide 7 overlaps the image forming surface of the objective lens 15. On the other hand, the terminal end of the image guide 7 is attached to the processing section 5. Here, as the image guide 7, an image fiber capable of faithfully transmitting two-dimensional images is used. The processing unit 5 is configured to obtain the refractive index based on the declination information of the measurement light PB transmitted by the image guide 7, for example, by performing program calculation processing or by measuring with a scale. .
なお、この例の液体屈折計1にあっては、プローブ4は
測定液体3の流入を防ぐために液密とされた保護容器1
6に収納されている。この保護容器16に用いられる材
料としては測定液体3中に溶出しないものが適当で、た
とえば、ステンレスなどの金属材料、ガラスなどの無機
材料、硬質プラスチック材料などが好適である。さらに
、ライトガイド6及びイメージガイド7のうち、測定液
体3中に浸漬される部分に対しても可撓性の保護チュー
ブ17で覆うようになされている。In the liquid refractometer 1 of this example, the probe 4 is placed in a protective container 1 that is liquid-tight to prevent the measurement liquid 3 from flowing in.
It is stored in 6. Suitable materials for use in the protective container 16 include those that do not dissolve into the liquid to be measured 3, such as metal materials such as stainless steel, inorganic materials such as glass, and hard plastic materials. Further, the portions of the light guide 6 and the image guide 7 that are immersed in the measurement liquid 3 are also covered with a flexible protective tube 17.
以上の構成の液体屈折計1を用いて測定液体3の屈折率
を測定するには、第1図に示すように、まず、プローブ
4を測定液体3中に浸漬して、液体プリズム部9の溝内
に測定液体3を満たして液体プリズム8が形成されるよ
うにする。次に、所定の波長の測定光PAをライトガイ
ド6によりプローブ4に導く。このようにして導波され
た測定光PAは送光部10において線状の平行光束にさ
れて液体プリズム8に入射され、ここで屈折されたのち
、受光部11に取り付けられたイメージガイド7の始端
部Bに受光される。すなわち、第3図に示すように、こ
の始端部Bの受光面f上に、液体プリズム8による偏角
δに対応した位置に輝線りが結像され、この輝線りの位
置i、It測定液体の屈折率によって異なる。この輝線
りの位置情報はイメージガイド7により処理部5に導か
れる。処理部5では、導かれた輝線りの位置情報を入力
して光学理論に基づくプログラム演算処理がなされ、測
定波長における測定液体3の屈折率が求められる。また
、他の算出方法として、屈折率既知の液体を用いてあら
かじめ受光位置と屈折率との相関を求めておき、これに
より屈折率を算出しても良い。To measure the refractive index of the liquid to be measured 3 using the liquid refractometer 1 with the above configuration, first, as shown in FIG. The groove is filled with measuring liquid 3 so that a liquid prism 8 is formed. Next, the measurement light PA of a predetermined wavelength is guided to the probe 4 by the light guide 6. The measurement light PA guided in this way is made into a linear parallel light beam in the light transmitting section 10 and is incident on the liquid prism 8, where it is refracted and then reflected in the image guide 7 attached to the light receiving section 11. The light is received at the starting end B. That is, as shown in FIG. 3, a bright line is imaged on the light-receiving surface f of this starting end B at a position corresponding to the deflection angle δ by the liquid prism 8, and the position i of this bright line is the same as that of the liquid to be measured. It depends on the refractive index of This bright line position information is guided to the processing section 5 by the image guide 7. In the processing section 5, the positional information of the guided bright line is input and a program calculation process based on optical theory is performed to obtain the refractive index of the measurement liquid 3 at the measurement wavelength. Alternatively, as another calculation method, the correlation between the light receiving position and the refractive index may be determined in advance using a liquid with a known refractive index, and the refractive index may be calculated from this.
次に、この発明を、液体の密度を測定するために用いた
一実施例について説明する。この例の液体密度計は処理
部を異にする以外は、第1図および第2図に示した液体
屈折計と同様の構成のものであるので、第3図に示した
と同様の輝線の位置情報がイメージガイドより処理部に
導かれるまでは上記例の液体屈折計と同様である。この
例の処理部においては、下記に示すローレンツ・ローレ
ンツの式を利用したアルゴリズムにより、まず、測定液
体の屈折率を求め、求められた屈折率から容易にその密
度を求めることができるようになっている。Next, an example in which the present invention is used to measure the density of a liquid will be described. The liquid density meter in this example has the same configuration as the liquid refractometer shown in Figures 1 and 2, except for the different processing section, so the position of the emission line is the same as that shown in Figure 3. The process until information is guided from the image guide to the processing section is similar to the liquid refractometer in the above example. In the processing section of this example, the refractive index of the liquid to be measured is first determined using an algorithm using the Lorentz-Lorentz equation shown below, and the density can be easily determined from the determined refractive index. ing.
ρ−(n’ 1)/r (n”+2)(ここで、
ρは測定液体の密度、nは測定液体の屈折率、rは測定
液体に固有の比屈折をそれぞれ表す。)
以上の構成の液体屈折計1およびこれを用いた液体密度
計によれば、光源2および処理部5からプローブ4を分
離して、プローブ4のみを測定液体3内に浸漬すること
ができる。したがって、測定時に測定液体3のサンプリ
ングを行うことなく、常時オンラインで、かつ、離隔さ
れた液体の屈折率および密度を計測することができる。ρ-(n' 1)/r (n''+2) (where,
ρ represents the density of the liquid to be measured, n represents the refractive index of the liquid to be measured, and r represents the specific refraction of the liquid to be measured. ) According to the liquid refractometer 1 having the above configuration and the liquid density meter using the same, the probe 4 can be separated from the light source 2 and the processing section 5, and only the probe 4 can be immersed in the measurement liquid 3. Therefore, the refractive index and density of a separated liquid can be measured online at all times without sampling the measurement liquid 3 during measurement.
特に、通常、サンプリングの不可能な液化ガスなどの極
低温液体や流動中の液体などの屈折率測定や密度測定に
好適である。In particular, it is suitable for measuring the refractive index and density of cryogenic liquids such as liquefied gases, which cannot normally be sampled, and flowing liquids.
また、上記輝線の時間的位置変化(ΔX)を検出するこ
とにより、屈折率および密度の時間的変化を知ることら
できる。また、測定液体内で、プローブを移動させるこ
とにより、測定液体内の屈折率分布および密度分布を知
ることらできる。このようにすれば、巨大タンクに貯蔵
された液体(たとえば、液化天然ガスなど)の製造およ
び品質管理などに有用である。Furthermore, by detecting the temporal position change (ΔX) of the bright line, it is possible to know the temporal change in the refractive index and density. Furthermore, by moving the probe within the liquid to be measured, the refractive index distribution and density distribution within the liquid to be measured can be determined. This is useful for manufacturing and quality control of liquids (such as liquefied natural gas) stored in huge tanks.
なお、上記の例ではイメージガイド7としてイメージフ
ァイバを用いるようにしたが、これに限らず、−次元画
像を伝送し得るファイバアレイを用いるようにしても良
い。この場合にあっては、プローブ光PBによる輝線の
代わりに輝点が伝送されることになる。In the above example, an image fiber is used as the image guide 7, but the present invention is not limited to this, and a fiber array capable of transmitting a -dimensional image may be used. In this case, a bright spot is transmitted instead of a bright line due to the probe light PB.
さらに、CCDラインセンサを受光面fに配しても良い
。この場合にあっては、イメージファイバに代えて、電
気ケーブルが用いられることになる。Furthermore, a CCD line sensor may be arranged on the light receiving surface f. In this case, an electric cable will be used instead of the image fiber.
なお、この発明の液体密度計について上記した例では、
まず、測定液体の屈折率を求め、求められた屈折率から
容易にその密度を求める場合について述べたが、輝線の
位置情報から直接的に密度を求めるように構成しても良
い。In addition, in the above-mentioned example of the liquid density meter of the present invention,
First, a case has been described in which the refractive index of the liquid to be measured is determined and the density is easily determined from the determined refractive index, but the configuration may be such that the density is directly determined from the positional information of the emission line.
以上、実施例は液体の屈折率および密度を測定する例で
あったが、気体の屈折率および密度の、111定も同様
にして求めることができる。Although the above example was an example of measuring the refractive index and density of a liquid, the 111 constant of the refractive index and density of a gas can be similarly determined.
[発明の効果 コ
以上説明したように、この発明の流体屈折計およびこれ
を用いた流体密度計は、光源とプローブとを光ファイバ
からなるライトガイドにより接続し、かつ、プローブと
処理部とを光ファイバからなるイメージガイドにより接
続したものであるので、プローブのみを測定流体内に浸
漬することができる。また、プローブのみを遠隔地に設
置することができる。したがって、測定時に測定流体の
サンプリングを行うことなく、常時オンラインで流体の
屈折率および密度を計測することができる。[Effects of the Invention] As explained above, the fluid refractometer of the present invention and the fluid density meter using the same connect a light source and a probe with a light guide made of an optical fiber, and connect the probe and a processing section. Since the probe is connected by an image guide made of an optical fiber, only the probe can be immersed in the measurement fluid. Moreover, only the probe can be installed at a remote location. Therefore, the refractive index and density of the fluid can be measured online at all times without sampling the fluid to be measured during measurement.
特に、通常、サンプリングの不可能な液化ガスなどの極
低温液体や流動中の液体などの屈折率測定や密度測定に
好適である。In particular, it is suitable for measuring the refractive index and density of cryogenic liquids such as liquefied gases, which cannot normally be sampled, and flowing liquids.
また、巨大タンクに貯蔵された液体中の屈折率分布や密
度分布の測定を容易に行うことができるので、たとえば
、液化天然ガスなどの製造および品質管理などに有用で
ある。Furthermore, since the refractive index distribution and density distribution in a liquid stored in a huge tank can be easily measured, it is useful, for example, in the production and quality control of liquefied natural gas and the like.
第1図および第2図はこの発明の液体屈折計の一実施例
を示すもので、第1図はその全体構成を示す概略構成図
、第2図はこの液体屈折計の検出部の要部構成を示す要
部拡大図、第3図は測定液体の屈折率の違いにより受光
面上の輝線の位置が異なる模様を示す説明図である。
1・・・・・・液体屈折計
2・・・・・・光源
3・・・・・・測定液体
4・・・・・・プローブ
5・・・・・・処理部
6・・・・・・ライトガイド
7・・・・・・イメージガイド
8・・・・・・液体プリズム
9・・・・・・液体プリズム部
PA、FB・・・・・・測定光
10・・・・・・送光部
+1・・・・・・受光部。1 and 2 show an embodiment of a liquid refractometer according to the present invention. FIG. 1 is a schematic configuration diagram showing the overall configuration, and FIG. 2 is a main part of the detection section of this liquid refractometer. FIG. 3, which is an enlarged view of the main part showing the structure, is an explanatory diagram showing a pattern in which the positions of the bright lines on the light-receiving surface differ depending on the difference in the refractive index of the liquid to be measured. 1... Liquid refractometer 2... Light source 3... Measuring liquid 4... Probe 5... Processing section 6...・Light guide 7...Image guide 8...Liquid prism 9...Liquid prism section PA, FB...Measurement light 10...Transmission Light part +1... Light receiving part.
Claims (2)
にした流体プリズム部を設けたプローブ内に、測定光を
上記流体プリズム部に導く送光部と、流体プリズム部か
らの測定光を受ける受光部とを収容し、 上記送光部に測定光を導波するライトガイドを光源と送
光部とに接続し、 上記受光部からの測定光を導波するイメージガイドを受
光部と処理部とに接続し、 上記処理部において受光部で検出された受光位置情報に
基づいて測定流体の屈折率を求めるようにしたことを特
徴とする流体屈折計。(1) A light transmitting part that guides the measurement light to the fluid prism part and a light receiving part that receives the measurement light from the fluid prism part, in a probe equipped with a fluid prism part that is filled with a fluid to be measured to form a fluid prism part. A light guide that guides the measurement light to the light transmission section is connected to the light source and the light transmission section, and an image guide that guides the measurement light from the light reception section is connected to the light reception section and the processing section. A fluid refractometer, characterized in that the refractive index of the fluid to be measured is determined based on the light receiving position information detected by the light receiving section in the processing section.
にした流体プリズム部を設けたプローブ内に、測定光を
上記流体プリズム部に導く送光部と、流体プリズム部か
らの測定光を受ける受光部とを収容し、 上記送光部に測定光を導波するライトガイドを光源と送
光部とに接続し、 上記受光部からの測定光を導波するイメージガイドを受
光部と処理部とに接続し、 上記処理部において受光部で検出された受光位置情報に
基づいて測定流体の密度を求めるようにしたことを特徴
とする流体密度計。(2) A light transmitting part that guides measurement light to the fluid prism part and a light receiving part that receives the measurement light from the fluid prism part, in a probe equipped with a fluid prism part that is filled with a fluid to be measured to form a fluid prism part. A light guide that guides the measurement light to the light transmission section is connected to the light source and the light transmission section, and an image guide that guides the measurement light from the light reception section is connected to the light reception section and the processing section. A fluid density meter, characterized in that the processing section is connected to a fluid density meter, and the processing section calculates the density of the fluid to be measured based on the light receiving position information detected by the light receiving section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023041A JPH0652237B2 (en) | 1988-02-03 | 1988-02-03 | Fluid refractometer and fluid density meter using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023041A JPH0652237B2 (en) | 1988-02-03 | 1988-02-03 | Fluid refractometer and fluid density meter using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01197632A true JPH01197632A (en) | 1989-08-09 |
JPH0652237B2 JPH0652237B2 (en) | 1994-07-06 |
Family
ID=12099374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63023041A Expired - Lifetime JPH0652237B2 (en) | 1988-02-03 | 1988-02-03 | Fluid refractometer and fluid density meter using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0652237B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1845365A1 (en) * | 2005-02-02 | 2007-10-17 | Matsushita Electric Industrial Co., Ltd. | Optical element and optical measurement device using the same |
JP2010008292A (en) * | 2008-06-27 | 2010-01-14 | Chinontec Kk | Specific gravity measuring instrument for liquid sample |
WO2012038347A1 (en) * | 2010-09-21 | 2012-03-29 | Ab Elektronik Sachsen Gmbh | Sensor for monitoring a medium |
WO2012038346A1 (en) * | 2010-09-21 | 2012-03-29 | Ab Elektronik Sachsen Gmbh | Sensor for monitoring a medium |
TWI603069B (en) * | 2016-09-05 | 2017-10-21 | 浚洸光學科技股份有限公司 | Device for measuring solution concentration |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273080A (en) * | 1975-12-13 | 1977-06-18 | Yuasa Battery Co Ltd | Fluid refractive index measuring apparatus |
JPS5527947A (en) * | 1978-08-19 | 1980-02-28 | Yuasa Battery Co Ltd | Optical type measuring device |
JPS60201236A (en) * | 1984-03-26 | 1985-10-11 | Nippon Kogaku Kk <Nikon> | Refractivity measuring element |
JPS6212840A (en) * | 1985-07-10 | 1987-01-21 | Morioka Shoji Kk | Method and instrument for measuring concentration of liquid to be examined |
-
1988
- 1988-02-03 JP JP63023041A patent/JPH0652237B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273080A (en) * | 1975-12-13 | 1977-06-18 | Yuasa Battery Co Ltd | Fluid refractive index measuring apparatus |
JPS5527947A (en) * | 1978-08-19 | 1980-02-28 | Yuasa Battery Co Ltd | Optical type measuring device |
JPS60201236A (en) * | 1984-03-26 | 1985-10-11 | Nippon Kogaku Kk <Nikon> | Refractivity measuring element |
JPS6212840A (en) * | 1985-07-10 | 1987-01-21 | Morioka Shoji Kk | Method and instrument for measuring concentration of liquid to be examined |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1845365A1 (en) * | 2005-02-02 | 2007-10-17 | Matsushita Electric Industrial Co., Ltd. | Optical element and optical measurement device using the same |
EP1845365A4 (en) * | 2005-02-02 | 2009-07-01 | Panasonic Corp | Optical element and optical measurement device using the same |
US7598483B2 (en) | 2005-02-02 | 2009-10-06 | Panasonic Corporation | Optical element and optical measurement device using the optical element |
JP2010008292A (en) * | 2008-06-27 | 2010-01-14 | Chinontec Kk | Specific gravity measuring instrument for liquid sample |
WO2012038347A1 (en) * | 2010-09-21 | 2012-03-29 | Ab Elektronik Sachsen Gmbh | Sensor for monitoring a medium |
WO2012038346A1 (en) * | 2010-09-21 | 2012-03-29 | Ab Elektronik Sachsen Gmbh | Sensor for monitoring a medium |
US9188528B2 (en) | 2010-09-21 | 2015-11-17 | Ab Elektronik Sachsen Gmbh | Sensor for monitoring a medium |
TWI603069B (en) * | 2016-09-05 | 2017-10-21 | 浚洸光學科技股份有限公司 | Device for measuring solution concentration |
JP2018040781A (en) * | 2016-09-05 | 2018-03-15 | 浚洸光學科技股▲ふん▼有限公司 | Liquid density detection device |
US10025077B2 (en) | 2016-09-05 | 2018-07-17 | Chun Kuang Optics Corp. | Device for measuring solution concentration |
Also Published As
Publication number | Publication date |
---|---|
JPH0652237B2 (en) | 1994-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0206433B1 (en) | Methods for measuring the light absorbance of a fluid medium | |
US5815278A (en) | Surface plasmon resonance light pipe sensing probe and related interface optics | |
US5181082A (en) | On-line titration using colorimetric end point detection | |
US6130439A (en) | Instrument for measuring the refractive index of a fluid | |
US20190271636A1 (en) | Concentration measuring device | |
CN105954232B (en) | A kind of measuring refractive indexes of liquid system | |
CN107462405A (en) | Broadband differential confocal Infrared Lens element refractive index measurement method and device | |
US11060930B2 (en) | Glass surface stress meter and multiple-tempered glass surface stress meter | |
US5347358A (en) | Refractometer | |
ITPI20110020A1 (en) | METHOD AND MEASUREMENT DEVICE OF THE THICKNESS OF A TRANSPARENT OBJECT AUTOMATIC PRODUCTION LINES | |
US10145789B2 (en) | Immersion refractometer | |
JPH01197633A (en) | Liquid refractometer and liquid concentration meter using same | |
JPH01197632A (en) | Liquid refractometer and liquid concentration meter using same | |
EP0079944A1 (en) | Fiber optic interferometer. | |
RU156297U1 (en) | FIBER OPTICAL REFRACTION MEASUREMENT DEVICE | |
Domanski et al. | Compact optical fiber refractive index differential sensor for salinity measurements | |
JPS6366441A (en) | Refractive index meter | |
RU2460988C1 (en) | Method of measuring particle size distribution in wide range of concentrations and apparatus for realising said method (versions) | |
RU78947U1 (en) | DEVICE FOR MEASURING LINEAR MOVEMENTS OF OBJECTS WITH A FLAT MIRROR-REFLECTING SURFACE | |
US5335057A (en) | Measuring geometry of optical fibre coatings with transverse incident beams | |
JPH072960U (en) | Ellipsometer Method for Measuring Samples in Solution | |
JPH01197634A (en) | Liquid refractometer and liquid concentration meter using same | |
JPH01197636A (en) | Liquid refractometer and liquid densitometer using same | |
JPH05203567A (en) | Liquid refractometer and liquid densimeter using it | |
Skogerboe et al. | Stray light rejection in fiber-optic probes |