JPH01195354A - Electron spin resonance microscope - Google Patents
Electron spin resonance microscopeInfo
- Publication number
- JPH01195354A JPH01195354A JP63020983A JP2098388A JPH01195354A JP H01195354 A JPH01195354 A JP H01195354A JP 63020983 A JP63020983 A JP 63020983A JP 2098388 A JP2098388 A JP 2098388A JP H01195354 A JPH01195354 A JP H01195354A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- sample
- electron spin
- modulation coil
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004435 EPR spectroscopy Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000003068 static effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- HHEAADYXPMHMCT-UHFFFAOYSA-N dpph Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1[N]N(C=1C=CC=CC=1)C1=CC=CC=C1 HHEAADYXPMHMCT-UHFFFAOYSA-N 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子スピンの2次元分布を検出することが可能
な電子スピン共鳴(ESR)顕微鏡に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron spin resonance (ESR) microscope capable of detecting a two-dimensional distribution of electron spins.
近時、磁気共■!5イメージング(MRr)の発展が目
覚ましい、このMHIは、核磁気共鳴(NMR)イメー
ジングと、電子スピン共鳴(E S R)イメージング
に大別され、両者とも均一な静磁場に磁場勾配を重畳し
てNMR映像あるいはESR映像を取得する。現在は、
主に人体を対象としたN M Rイメージング装置が医
療用に実用化されている。医療用としては、msオーダ
ーの分解能があれば十分であるが、この分解能を更に高
めれば、生物細胞のMHI像を観察することが可能とな
り、NMRam鏡あるいはESR顕微鏡としての道が開
けるため、様々な開発が行われている。Recently, magnetic co-■! The development of MHI imaging (MRr) is broadly divided into nuclear magnetic resonance (NMR) imaging and electron spin resonance (ESR) imaging, both of which involve superimposing a magnetic field gradient on a uniform static magnetic field. Obtain NMR or ESR images. Currently,
NMR imaging devices mainly aimed at the human body have been put into practical use for medical purposes. For medical purposes, a resolution on the order of milliseconds is sufficient, but if this resolution is further increased, it will be possible to observe MHI images of biological cells, which will open the door to use as an NMRam mirror or an ESR microscope. development is underway.
w4微鏡として分解、能を高めるには、磁場勾配を医療
用より和高める必要があり、NMR顕微鏡の場合には、
10μm程度の空間分解能を得るために数10ガウス/
cI11程度の磁場勾配が必要とされている。ところが
、ESRにおいては共鳴信号の線幅が通常の場合でも数
ガウスから数10ガウスと広いため高い磁場勾配を必要
とし、例えば、10μmの分解能を得るためには、線幅
が2ガウスの場合でもおよそ1000ガウス/cmの磁
場勾配が必要になり、NMRと同様の方法でZ軸上にお
いてこれだけ大きい磁場勾配を与えることは難しく、そ
のためスピンの2次元分布を測定することは困難であっ
た。In order to improve resolution and performance as a W4 microscope, it is necessary to increase the magnetic field gradient compared to medical use, and in the case of an NMR microscope,
To obtain a spatial resolution of about 10 μm, several tens of Gauss/
A magnetic field gradient of the order of cI11 is required. However, in ESR, the linewidth of the resonance signal is usually wide, ranging from several Gauss to several tens of Gauss, so a high magnetic field gradient is required. For example, to obtain a resolution of 10 μm, even if the linewidth is 2 Gauss, A magnetic field gradient of approximately 1000 Gauss/cm is required, and it is difficult to provide such a large magnetic field gradient on the Z-axis using a method similar to NMR, making it difficult to measure the two-dimensional distribution of spins.
本発明は上記問題点を解決するためのもので、試料に対
して局所磁場を与えることにより2次元スピン分布を求
めることを可能にした電子スピン共鳴顕微鏡を提供する
ことを特徴とする。The present invention is intended to solve the above problems, and is characterized by providing an electron spin resonance microscope that makes it possible to obtain a two-dimensional spin distribution by applying a local magnetic field to a sample.
そのために本発明の電子スピン共鳴顕微鏡は、掃引可能
な静磁場内に配置された試料に対してマイクロ波磁界を
印加し、電子スピン共鳴に基づ(信号を検出する電子ス
ピン共鳴装置において、試料表面に対向して配置された
局所磁場変調コイルと、前記検出信号のうち局所磁場変
調周波数の信号を通過させる狭帯域増幅器と、狭帯域増
幅器出力を磁場変調信号で位相検波する位相検波器と、
試料または局所磁場変調コイルを2次元走査する走査手
段とを備え、試料または局所磁場変調コイルを2次元走
査することにより試料の2次元電子スピン分布を検出す
ることを特徴とする。To this end, the electron spin resonance microscope of the present invention applies a microwave magnetic field to a sample placed in a sweepable static magnetic field, and detects signals based on electron spin resonance. a local magnetic field modulation coil disposed facing the surface; a narrowband amplifier that passes a signal of the local magnetic field modulation frequency among the detection signals; and a phase detector that phase-detects the output of the narrowband amplifier using the magnetic field modulation signal;
It is characterized by comprising a scanning means for two-dimensionally scanning the sample or the local magnetic field modulation coil, and detecting the two-dimensional electron spin distribution of the sample by two-dimensionally scanning the sample or the local magnetic field modulation coil.
本発明の電子スピン共鳴顕微鏡は、試料に対向して局所
磁場変調コイルを設け、この変調コイルに変調信号を供
給して局所的に磁場を変調し、検出信号を変調信号で位
相検波して変調コイルに対向した位置の磁場変調された
共鳴信号のみを検出し、試料または変調コイルを2次元
的に走査することにより試料の2次元電子スピン分布を
求めることが可能となる。In the electron spin resonance microscope of the present invention, a local magnetic field modulation coil is provided facing the sample, a modulation signal is supplied to the modulation coil to locally modulate the magnetic field, and the detected signal is modulated by phase detection with the modulation signal. By detecting only the magnetic field-modulated resonance signal at a position facing the coil and two-dimensionally scanning the sample or the modulation coil, it is possible to determine the two-dimensional electron spin distribution of the sample.
(実施例〕 以下、実施例を図面を参照して説明する。(Example〕 Examples will be described below with reference to the drawings.
第1図は本発明の電子スピン共鳴顕微鏡の構成を示す図
、第2図は本発明の局所磁場変調コイルと試料とを示す
図、第3図は各部における検出信号波形である。図中、
11は制御装置、13はXYステージ、15は励磁用電
源、17は磁場発生装置、19は空洞共振器、21はロ
ッド、23は試料、25は局所磁場変調コイル、27は
変調信号発生器、29はマイクロ波発振器、31は方向
性結合器、33は検波器、35は狭帯域増幅器、37は
位相検波器、39は記録計、41.43はクォーツチュ
ーブ、45は試料ホルダー、47はコイルホルダーであ
る。FIG. 1 is a diagram showing the configuration of an electron spin resonance microscope according to the present invention, FIG. 2 is a diagram showing a local magnetic field modulation coil and a sample according to the present invention, and FIG. 3 is a diagram showing detection signal waveforms at various parts. In the figure,
11 is a control device, 13 is an XY stage, 15 is an excitation power source, 17 is a magnetic field generator, 19 is a cavity resonator, 21 is a rod, 23 is a sample, 25 is a local magnetic field modulation coil, 27 is a modulation signal generator, 29 is a microwave oscillator, 31 is a directional coupler, 33 is a detector, 35 is a narrowband amplifier, 37 is a phase detector, 39 is a recorder, 41.43 is a quartz tube, 45 is a sample holder, 47 is a coil It is a holder.
図において、試料ホルダー45に支持された試料23は
磁場発生装置17により発生された静磁場中に置かれ、
制御装置11により駆動制御されたXYステージ13に
よりロッド21を介してX方向、Y方向に走査される。In the figure, a sample 23 supported by a sample holder 45 is placed in a static magnetic field generated by a magnetic field generator 17,
The XY stage 13 whose drive is controlled by the control device 11 scans in the X direction and the Y direction via the rod 21 .
この試料と対向してコイルホルダーに保持された変調コ
イル39が配置され、変調信号発生器27から、例えば
100kHzの局所磁場変調信号が供給されている。磁
場発生装置17は励磁用電源15により掃引されて磁場
強度を変えられるようになっている。また空洞共振器1
9にはマイクロ波発振器29から、例えば9GHzのマ
イクロ波が供給されており、試料の電子ピン共鳴により
、共振器19の整合がくずれて発生した反射波が、方向
性結合器31を介して検波器33の方向へ取出され、検
出されるように構成されている。A modulation coil 39 held by a coil holder is arranged facing the sample, and a local magnetic field modulation signal of, for example, 100 kHz is supplied from a modulation signal generator 27. The magnetic field generator 17 can be swept by the excitation power source 15 to change the magnetic field strength. Also, cavity resonator 1
9 is supplied with microwaves of, for example, 9 GHz from a microwave oscillator 29, and the reflected waves generated when the matching of the resonator 19 is broken due to the electron pin resonance of the sample are detected via the directional coupler 31. It is configured to be taken out in the direction of the container 33 and detected.
このような構成において、XYステージ13により試料
23をX方向、Y方向に走査し、各位置において磁場掃
引を行い、変調コイル39により100kHzで磁場変
調を行って電子スピン共鳴による吸収信号を検出する。In this configuration, the sample 23 is scanned in the X and Y directions by the XY stage 13, the magnetic field is swept at each position, and the modulation coil 39 modulates the magnetic field at 100 kHz to detect an absorption signal due to electron spin resonance. .
このときの検出信号は、例えば方向性結合器31からは
第3図(a)に示すように9GHzのキャリアが100
kHzで変調を受けた形で取り出され、これを検波器3
3で検波すると第3図(b)のような信号として検出さ
れる。そして100 k Hzを通す狭帯域増幅器35
により第3図(C)に示すように100KHz成分だけ
が検出され、これを変調信号発生器27からの100k
Hzで位相検波することにより第3図(d)に示すよう
な微分波形として変調コイルに対向した部分の電子スピ
ンによる共鳴信号が検出される。The detection signal at this time is, for example, as shown in FIG. 3(a) from the directional coupler 31, the 9 GHz carrier is
It is extracted in the form modulated at kHz, and this is sent to the detector 3.
3, a signal as shown in FIG. 3(b) is detected. and a narrowband amplifier 35 that passes 100 kHz.
As shown in FIG. 3(C), only the 100KHz component is detected, and this is
By performing phase detection at Hz, a resonance signal due to the electron spin in the portion facing the modulation coil is detected as a differential waveform as shown in FIG. 3(d).
なお、Fe、Mn、Cuのように複数種類の成分が同一
部位にあるような場合には、試料表面の各位置位置にお
いて第4図(イ)に示すように所定のスペクトルシフト
で観察され、これを積分することにより第4図(ロ)に
示すように吸収波形が求められ、各位置における各成分
毎のスピンのl?2 ffiを検出することができる。In addition, when multiple types of components such as Fe, Mn, and Cu are present at the same site, they are observed at each position on the sample surface with a predetermined spectral shift as shown in Figure 4 (a). By integrating this, the absorption waveform is obtained as shown in Figure 4 (b), and the l? of the spin for each component at each position is obtained. 2 ffi can be detected.
なお上記説明では、各位置において磁場強度を掃引し、
そこに含まれるすべての成分を検出して2次元分布を求
めるようにしたが、磁場強度を特定成分のピークが出現
する値に固定し、X方向、Y方向の走査を行うてスピン
の2次元分布を求めれば、特定成分のみの2次元分布を
求めることができる。In the above explanation, the magnetic field strength is swept at each position,
The two-dimensional distribution of spins was obtained by detecting all the components contained therein, but by fixing the magnetic field strength to a value where the peak of a specific component appears and scanning in the X and Y directions, If the distribution is determined, a two-dimensional distribution of only the specific component can be determined.
第5図はテストサンプルに針でピンホールを開け、そこ
にDPPH(ジフェニルビクリルヒドラジル)の精細微
粒子を詰め、DPPHの精細微粒子が落ちないように表
面を10μmのテフロンフィルムでカバーしたものをサ
ンプルホルダーに取付けて空洞共振器内にセットし、本
発明による局所磁場変調コイルを対向させてサンプルを
X方向、Y方向に走査した場合を示しており、同図(イ
)は試料と変調コイルの断面図、同図(ロ)はEsRス
ペクトル波形、同図(ハ)はX方向に沿って局所磁場を
走査したときのESR強度の変化を示す図である。なお
、D P P Hのスポットは直径170ミクロン、変
調コイルは半径120ミクロン、7ターンのものを用い
た。Figure 5 shows a test sample with a pinhole made with a needle, filled with fine particles of DPPH (diphenylvicrylhydrazyl), and the surface covered with a 10 μm Teflon film to prevent the fine particles of DPPH from falling. This figure shows the case where the sample is attached to a sample holder and set in a cavity resonator, and the sample is scanned in the X and Y directions with the local magnetic field modulation coil according to the present invention facing each other. FIG. 2B is a cross-sectional view of FIG. 2B, and FIG. The D P P H spot used had a diameter of 170 microns, and the modulation coil had a radius of 120 microns and 7 turns.
第5図(ロ)の破線は変調コイルへの供給電流の位相を
180°変えた場合を示し、局所磁場変調コイルへの供
給電流の位相を1800変えると極性の反転したスペク
トルが得られることがら検出信号が局所磁場変調による
ものであることが分かる。The broken line in Figure 5 (b) shows the case where the phase of the current supplied to the modulation coil is changed by 180 degrees, and it can be seen that if the phase of the current supplied to the local magnetic field modulation coil is changed by 180 degrees, a spectrum with reversed polarity can be obtained. It can be seen that the detected signal is due to local magnetic field modulation.
また第5図(ハ)に示すように、DPPHスボyトが変
調コイルの中心にあるとき最大となり、’D P P
Hスポットが変調コイル中心から離れるにつれて小さく
なり、ピーク値の半値幅は270μmであった。この値
は変調コイルの直径にほぼ等しく、したがって分解能は
変調コイルの直径に等しいことが分かる。Also, as shown in Fig. 5(c), when the DPPH sub-board is at the center of the modulation coil, it becomes maximum, and 'D P P
The H spot became smaller as it moved away from the center of the modulation coil, and the half width of the peak value was 270 μm. It can be seen that this value is approximately equal to the diameter of the modulation coil and therefore the resolution is equal to the diameter of the modulation coil.
第6図(イ)はサンプルにおけるDPPHの3スポツト
のパターンを示しており、このような試料に対して本発
明による局所磁場法により第6図(ロ)に示すような2
次元スピン分布像、第6図(ハ)のような斜視像が得ら
れた。Figure 6 (a) shows the pattern of three spots of DPPH in a sample, and the two spots shown in Figure 6 (b) are obtained for such a sample by the local magnetic field method according to the present invention.
A dimensional spin distribution image, a perspective image as shown in FIG. 6 (c), was obtained.
第7図は変調コイル径を2r、&i径を23.a/rを
0.25、ターン数を7として計算により求めたコイル
周囲の磁場強度を示す図であり、Z=(lは試料表面に
とっている。In Fig. 7, the modulation coil diameter is 2r, &i diameter is 23. It is a diagram showing the magnetic field strength around the coil calculated by setting a/r to 0.25 and the number of turns to 7, where Z=(l is taken from the sample surface.
第7図からρ<Q、5rでは試料表面における磁場強度
は一定で、ρ=r付近で急激に減少している。そしてE
SR強度は、変調幅が信号の線幅より小さいとき、変f
IvA場強度に比例するので、分解能は変調コイルの直
径に等しくなることが分かり、このことは第5図(ハ)
の結果と一致している。またρ>1.25rでは磁場強
度は負となりρ<1.25rと位相が反転し、これはD
PPHのスポットがコイル中心から離れたときに弱い位
相反転信号として検出される原因となる。From FIG. 7, when ρ<Q, 5r, the magnetic field strength at the sample surface is constant, and it decreases rapidly near ρ=r. and E
When the modulation width is smaller than the linewidth of the signal, the SR intensity changes f
Since it is proportional to the IvA field strength, it can be seen that the resolution is equal to the diameter of the modulation coil, which is shown in Figure 5 (c).
This is consistent with the results of Also, when ρ>1.25r, the magnetic field strength becomes negative and the phase is reversed to ρ<1.25r, which is due to D
This causes the PPH spot to be detected as a weak phase inversion signal when it moves away from the coil center.
またX方向において磁場強度は急速に減少し、試料の検
出潔さは変調コイルの直径以下であり、試料表面の検出
しかできないことが分かる。It can also be seen that the magnetic field strength rapidly decreases in the X direction, the sample detection accuracy is less than the diameter of the modulation coil, and only the sample surface can be detected.
なお、上記実施例においては試料を2次元的に走査する
ようにしたが、試料を固定しておき、変調コイルを2次
元的に走査するようにしてもよいことは言うまでもない
。In the above embodiment, the sample was scanned two-dimensionally, but it goes without saying that the sample may be fixed and the modulation coil scanned two-dimensionally.
以上のように本発明によれば、局所磁場変調コイルを用
いて試料または変調コイルを2次元的に走査することに
より、変調コイルの直径で決まる分解能で試料の2次元
電子スピン分布を求めることが可能となり、異種ラジカ
ルのみ選択的に検出すること等が可能となる。As described above, according to the present invention, by scanning the sample or the modulation coil two-dimensionally using the local magnetic field modulation coil, it is possible to obtain the two-dimensional electron spin distribution of the sample with a resolution determined by the diameter of the modulation coil. This makes it possible to selectively detect only different types of radicals.
第1図は本発明の電子スピン共鳴顕微鏡の構成を示す図
、第2図は本発明の局所磁場変調コイルと試料とを示す
図、第3図は各部における検出信号波形を示す図、第4
図はスペクトル波形を示す図、第5図はテスト試料とそ
の検出結果を示す図、第6図は2次元D P P Hス
ポットパターンと検出結果を示す図、第7図は変調コイ
ルと周囲の磁場強度を示す図である。
11・・・制御装置、13・・・XYステージ、15・
・・励磁用電源、17・・・磁場発生装置、19・・・
空洞共振器、23・・・試料、25・・・局所磁場変調
コイル、27・・・変調信号発生器、29・・・高周波
発振器、35・・・狭帯域増幅器、37・・・位相検波
器。
出 願 人 日本電子株式会社
代理人 弁理士 蛭 川 昌 信(外4名)第1図
第2図
工
6 e E−
Intensity +/+pFIG. 1 is a diagram showing the configuration of an electron spin resonance microscope according to the present invention, FIG. 2 is a diagram showing a local magnetic field modulation coil and a sample according to the present invention, FIG. 3 is a diagram showing detection signal waveforms at various parts, and FIG.
Figure 5 shows the spectral waveform, Figure 5 shows the test sample and its detection results, Figure 6 shows the two-dimensional DPP H spot pattern and the detection results, and Figure 7 shows the modulation coil and its surroundings. FIG. 3 is a diagram showing magnetic field strength. 11...control device, 13...XY stage, 15.
...Excitation power supply, 17...Magnetic field generator, 19...
Cavity resonator, 23... Sample, 25... Local magnetic field modulation coil, 27... Modulation signal generator, 29... High frequency oscillator, 35... Narrowband amplifier, 37... Phase detector . Applicant JEOL Co., Ltd. Agent Patent Attorney Masanobu Hirukawa (4 others) Figure 1 Figure 2 6 e E- Intensity +/+p
Claims (1)
波磁界を印加し、電子スピン共鳴に基づく信号を検出す
る電子スピン共鳴装置において、試料表面に対向して配
置された局所磁場変調コイルと、前記検出信号のうち局
所磁場変調周波数の信号を通過させる狭帯域増幅器と、
狭帯域増幅器出力を磁場変調信号で位相検波する位相検
波器と、試料または局所磁場変調コイルを2次元走査す
る走査手段とを備え、試料または局所磁場変調コイルを
2次元走査することにより試料の2次元電子スピン分布
を検出することを特徴とする電子スピン共鳴顕微鏡。In an electron spin resonance apparatus that applies a microwave magnetic field to a sample placed in a sweepable static magnetic field and detects a signal based on electron spin resonance, a local magnetic field modulation coil and a local magnetic field modulation coil placed opposite the sample surface are used. , a narrowband amplifier that passes a signal having a local magnetic field modulation frequency among the detection signals;
It is equipped with a phase detector that detects the phase of the narrowband amplifier output using a magnetic field modulation signal, and a scanning means that scans the sample or the local magnetic field modulation coil two-dimensionally. An electron spin resonance microscope characterized by detecting dimensional electron spin distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63020983A JPH01195354A (en) | 1988-01-29 | 1988-01-29 | Electron spin resonance microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63020983A JPH01195354A (en) | 1988-01-29 | 1988-01-29 | Electron spin resonance microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01195354A true JPH01195354A (en) | 1989-08-07 |
Family
ID=12042389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63020983A Pending JPH01195354A (en) | 1988-01-29 | 1988-01-29 | Electron spin resonance microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01195354A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508947A (en) * | 2011-03-22 | 2014-04-10 | ペプリク・ナムローゼ・フェンノートシャップ | Separation of active multiple electron spin signals in electron paramagnetic resonance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253245A (en) * | 1987-04-10 | 1988-10-20 | Seiko Instr & Electronics Ltd | Magnetic resonance measuring instrument |
-
1988
- 1988-01-29 JP JP63020983A patent/JPH01195354A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253245A (en) * | 1987-04-10 | 1988-10-20 | Seiko Instr & Electronics Ltd | Magnetic resonance measuring instrument |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508947A (en) * | 2011-03-22 | 2014-04-10 | ペプリク・ナムローゼ・フェンノートシャップ | Separation of active multiple electron spin signals in electron paramagnetic resonance |
US9551773B2 (en) | 2011-03-22 | 2017-01-24 | Pepric Nv | Isolating active electron spin signals in EPR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7351194B2 (en) | Arrangement for influencing magnetic particles | |
US7778681B2 (en) | Method of determining the spatial distribution of magnetic particles | |
Hinshaw | Image formation by nuclear magnetic resonance: The sensitive‐point method | |
US4021726A (en) | Image formation using nuclear magnetic resonance | |
EP0056691B1 (en) | Nuclear magnetic resonance detection method and apparatus | |
JPH11218403A (en) | Magnetic probe | |
WO2021200144A1 (en) | Physical state measurement device | |
WO2015184761A1 (en) | Ultrahigh resolution magnetic resonance imaging method and apparatus | |
US4280096A (en) | Spectrometer for measuring spatial distributions of paramagnetic centers in solid bodies | |
CN113281688A (en) | Magnetic particle imaging apparatus and method for generating a magnetic field | |
US5914599A (en) | Compensation for inhomogeneity of the field generated by the RF coil in a nuclear magnetic resonance system | |
US6049206A (en) | Compensation for inhomogeneity of the field generated by the RF coil in a nuclear magnetic resonance system | |
JP4343418B2 (en) | Electron paramagnetic resonance imaging device using microwave bridge repeater. | |
US5160890A (en) | Magnetic resonance examination apparatus using a dielectric resonator | |
US6133733A (en) | Magnetic resonance imaging | |
JPH0337931B2 (en) | ||
EP0042255A1 (en) | Method and apparatus for nuclear magnetic resonance | |
JPH01195354A (en) | Electron spin resonance microscope | |
Schaff et al. | Mechanically detected nuclear magnetic resonance at room temperature and normal pressure | |
JP3345527B2 (en) | Nuclear magnetic resonance equipment | |
JPS622261B2 (en) | ||
JPH01195355A (en) | Difference detection type electron spin microscope | |
JP2915096B2 (en) | Electron spin resonance imaging system with multiple modulated magnetic fields | |
EP0845108B1 (en) | Magnetic resonance imaging | |
JP2002107316A (en) | Electron paramagnetic resonance imaging system using high amplitude modulator |