[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01181590A - Semiconductor laser module with external resonator - Google Patents

Semiconductor laser module with external resonator

Info

Publication number
JPH01181590A
JPH01181590A JP443088A JP443088A JPH01181590A JP H01181590 A JPH01181590 A JP H01181590A JP 443088 A JP443088 A JP 443088A JP 443088 A JP443088 A JP 443088A JP H01181590 A JPH01181590 A JP H01181590A
Authority
JP
Japan
Prior art keywords
prism
light beam
semiconductor laser
lens
reflecting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP443088A
Other languages
Japanese (ja)
Inventor
Hidenari Maeda
前田 英成
Yasuaki Tamura
安昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP443088A priority Critical patent/JPH01181590A/en
Publication of JPH01181590A publication Critical patent/JPH01181590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a feedback light beam from being angularly displaced by arranging a prism on an optical path of a collimated light beam so that an optical transmission surface faces a lens and a reflecting plate. CONSTITUTION:A prism 10 is arranged on an optical path of a collimated light beam in a manner that an optical transmission surface faces a lens 2 and a reflecting plate 5. A light emanating from one end surface of a semiconductor laser 1 is converted by the lens 2 into a collimated light beam which enters the prism 10. The incident light is reflected on a reflecting surface of the prism 10 and emanates from the prism 10. While, the collimated light beam from the lens 2 propagates back and reaches a reflecting plate 3. The light beam reaching the reflecting plate 3 is reflected thereon, and propagates through the same optical path of the light which reaches the reflecting plate 3 through the lens 2 and the prism 10, i.e., recoupled with the semiconductor laser 1 through the prism 2 and the lens 10. Hereby, the feedback light beam is prevented from angularly displaced even when there is produced any angular displacement.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、外部共振器付半導体レーザモジュールに関し
、特に外部共振器構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser module with an external resonator, and particularly relates to an improvement in the external resonator structure.

(従来の技術) 従来、外部共振器を備えた半導体レーザモジュールとし
ては、例えば、“「外部共振器型半導体レーザの狭スペ
クトル線幅化と周波数安定化の一検討」通信学会研究会
、0QE85−173.p19〜p24″に開示された
ものが知られており、第2図は従来の半導体レーザモジ
ュールを適用した半導体レーザ装置を示す構成図である
。図中、1は半導体レーザ(LD) 、2.3.4はレ
ンズ、5は例えば金属蒸着ミラー、回折格子等からなる
反射板、6は反射板5の光軸方向の位置を調整するため
の微小変位素子、例えばPZT、7は光ファイバであり
、半導体レーザ1の後方端面、レンズ2、反射板5によ
り外部共振器aが構成されている。第2図において、半
導体レーザ1の後方端面よりの出射光はレンズ2で平行
光ビームとなり、この平行光ビームが反射板5で反射さ
れレンズ2よりの平行光ビームと同一光路を帰還しレン
ズ2を介して半導体レーザ1へ結合される。
(Prior Art) Conventionally, as a semiconductor laser module equipped with an external resonator, for example, "A Study on Narrowing the Spectral Linewidth and Frequency Stabilization of an External Cavity Semiconductor Laser," Telecommunications Research Group, 0QE85- 173. 2 is a configuration diagram showing a semiconductor laser device to which a conventional semiconductor laser module is applied. In the figure, 1 is a semiconductor laser (LD), 2. 3.4 is a lens; 5 is a reflecting plate made of, for example, a metal evaporated mirror or a diffraction grating; 6 is a minute displacement element, such as PZT, for adjusting the position of the reflecting plate 5 in the optical axis direction; and 7 is an optical fiber. , the rear end face of the semiconductor laser 1, the lens 2, and the reflection plate 5 constitute an external resonator a.In Fig. 2, the light emitted from the rear end face of the semiconductor laser 1 becomes a parallel light beam at the lens 2, The parallel light beam is reflected by the reflecting plate 5, returns along the same optical path as the parallel light beam from the lens 2, and is coupled to the semiconductor laser 1 via the lens 2.

このような光帰還現象は、半導体レーザ1自身の共振器
長よりも長い共振器長を有する外部共振器aを形成する
ことになり、外部共振器aは半導体レーザ1の出射光の
光学的性質を決定する大きな要因となるため、出射光の
スペクトル線幅を低減する等の光通信に最適な現象を引
き起こすことが可能となる。しかし、光学的に安定した
出射光を得るためには、外部共振器aの光位相が半導体
レーザ1内の共振器の光位相と一致している必要があり
、これらの光位相を一致させるために、反射板5に取り
付けた微小変位素子6により反射板5の位置を光軸方向
に微小変位させることにより、外部共振器aの長さを変
化させて前記光位相の調整を行なっていた。
Such optical feedback phenomenon results in the formation of an external resonator a having a resonator length longer than that of the semiconductor laser 1 itself, and the external resonator a has an optical property of the emitted light of the semiconductor laser 1. Since it is a major factor in determining However, in order to obtain optically stable output light, the optical phase of the external resonator a must match the optical phase of the resonator inside the semiconductor laser 1, and in order to make these optical phases match, In addition, by slightly displacing the position of the reflection plate 5 in the optical axis direction using a minute displacement element 6 attached to the reflection plate 5, the length of the external resonator a was changed to adjust the optical phase.

(発明が解決しようとする課題) しかしながら、上記構成によれば、微小変位素子6を動
作させた場合、第3図に示す角度変位δが生じたときに
帰還光ビームが角度ずれを起こすことになる。このため
、軸ずれには影響を受は難いが、角度ずれには極めて影
響を受は易い光ビームは、大幅に光路がずれて、半導体
レーザ1への光帰還量が減少してしまい、レーザ出射光
の線幅が広がる、いわゆるモードホッピングを起こす等
の問題点があった。
(Problem to be Solved by the Invention) However, according to the above configuration, when the minute displacement element 6 is operated, the feedback light beam will cause an angular shift when the angular displacement δ shown in FIG. 3 occurs. Become. Therefore, the optical path of the light beam, which is not easily affected by axis misalignment but extremely susceptible to angular misalignment, is significantly shifted, and the amount of light returned to the semiconductor laser 1 is reduced, causing the laser beam to There were problems such as the line width of the emitted light becoming wider and so-called mode hopping occurring.

本発明の目的は、上記問題点に鑑み、角度変位が生じた
としても帰還光ビームの角度ずれが生じることがなく、
シたがって半導体レーザへの光帰還量が減少せず、レー
ザ出射光の光学的特性が安定した外部共振器付半導体レ
ーザモジュールを提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to prevent the angular shift of the returned light beam from occurring even if an angular displacement occurs.
Therefore, it is an object of the present invention to provide a semiconductor laser module with an external cavity in which the amount of light returned to the semiconductor laser does not decrease and the optical characteristics of the laser emitted light are stable.

(課題を解決するための手段) 本発明は、上記目的を達成するため、半導体レーザの一
端面からの出射光を平行光ビームにするレンズと、前記
平行光ビームを反射し前記レンズへ帰還させるための反
射板とを備えた外部共振器付半導体レーザモジュールに
おいて、前記平行光ビームの光路に光透過面が前記レン
ズ及び前記反射板と対向する如くプリズムを配設した。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a lens that converts light emitted from one end surface of a semiconductor laser into a parallel light beam, and a lens that reflects the parallel light beam and returns it to the lens. In the semiconductor laser module with an external cavity, the prism is disposed in the optical path of the parallel light beam so that its light transmitting surface faces the lens and the reflector.

(作 用) 本発明によれば、半導体レーザの一端面からの出射光は
レンズにより平行光ビームとなりプリズムに入射し、プ
リズムの反射面で反射されて、プリズムから出射しレン
ズよりの平行光ビームとは逆方向に伝幡して反射板に到
達する。反射板に到達した光ビームは反射され、レンズ
、プリズムを介して反射板に到達した同一光路を伝幡し
、即ちプリズム、レンズを介して半導体レーザに再結合
される。
(Function) According to the present invention, the light emitted from one end surface of the semiconductor laser is converted into a parallel light beam by the lens, enters the prism, is reflected by the reflective surface of the prism, and is emitted from the prism to become a parallel light beam from the lens. It propagates in the opposite direction and reaches the reflector. The light beam reaching the reflector is reflected and propagates through the lens and prism on the same optical path that reached the reflector, ie, is recombined to the semiconductor laser via the prism and lens.

(実施例) 第1図は、本発明による外部共振器付半導体レーザモジ
ュールの一実施例を示す構成図であって、第2図で示し
た前述の従来例と同一構成のものは同一符号をもって表
す。即ち、1は半導体レーザ(LD) 、2はレンズ、
5は反射板、例えば金属蒸着ミラー、6は微小変位素子
、例えばPZTである。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of a semiconductor laser module with an external cavity according to the present invention. Components having the same configuration as the above-mentioned conventional example shown in FIG. 2 are designated by the same reference numerals. represent. That is, 1 is a semiconductor laser (LD), 2 is a lens,
5 is a reflecting plate, for example a metal vapor deposited mirror, and 6 is a minute displacement element, for example PZT.

10はプリズムで、光透過面10aがレンズ2及び反射
板5の反射面5aと対向する如く配設されており、半導
体レーザ1の後方端面、レンズ2、プリズム10及び反
射板5により外部共振器Aが構成されている。また、プ
リズム10の反射面の交差部外側には、プリズム10を
光軸方向に変位させるための微小変位素子6が取り付け
てあり、光軸方向のプリズム10の位置を微調整できる
ようになっている。
Reference numeral 10 denotes a prism, which is disposed such that its light transmitting surface 10a faces the lens 2 and the reflecting surface 5a of the reflecting plate 5. A is configured. Further, a minute displacement element 6 for displacing the prism 10 in the optical axis direction is attached to the outside of the intersection of the reflective surfaces of the prism 10, so that the position of the prism 10 in the optical axis direction can be finely adjusted. There is.

このような構成による半導体レーザモジュールでは、半
導体レーザ1の後方端面よりの出射光は、レンズ2によ
り平行光ビームとなり、この平行光ビームはプリズム1
0の透過面10aに入射し、例えばプリズム10の反射
面10・bで反射され、さらに反射面10cで反射され
て、前記平行光ビームと逆方向に透過面10gより平行
光ビームとして出射し反射板5に到達す、る。反射板5
に到達した平行光ビームは反射面5aで反射されて、帰
還光ビームとして同一光路を経て再び半導体レーザ1の
後方端面に結合されることになる。このように、半導体
レーザ1の後方端面からプリズム10を介して反射板5
までの距離を共振器長として外部共振器Aは機能し°て
いる。また、プリズム10に取り付けた微小変位素子6
を動作させることにより、例えばプリズム10が光軸方
向に第1図中dで示した距離だけ変位したとき、外部共
振器Aの共振器長は2dの距離分変位する。従って、微
小変位素子6の可能変位長がd゛であるとすると、この
外部共振器Aは前記可能変位長の2倍の2d−の範囲内
で、外部共振器Aにおける光位相と半導体レーザ1内の
共振器の光位相との調整が可能となっている。
In the semiconductor laser module having such a configuration, the light emitted from the rear end face of the semiconductor laser 1 is converted into a parallel light beam by the lens 2, and this parallel light beam is passed through the prism 1.
0, is reflected by the reflective surface 10/b of the prism 10, is further reflected by the reflective surface 10c, and is emitted as a parallel light beam from the transmitting surface 10g in the opposite direction to the parallel light beam and is reflected. Reach board 5. Reflector plate 5
The parallel light beam that has reached is reflected by the reflecting surface 5a and is coupled to the rear end facet of the semiconductor laser 1 again through the same optical path as a return light beam. In this way, from the rear end face of the semiconductor laser 1, the reflection plate 5 is
The external resonator A is functioning with the distance up to the resonator length as the resonator length. In addition, a minute displacement element 6 attached to the prism 10
For example, when the prism 10 is displaced in the optical axis direction by a distance indicated by d in FIG. 1, the resonator length of the external resonator A is displaced by a distance of 2d. Therefore, if the possible displacement length of the micro-displacement element 6 is d', this external resonator A is capable of adjusting the optical phase of the external resonator A and the semiconductor laser 1 within a range of 2d-, which is twice the possible displacement length. It is possible to adjust the optical phase of the internal resonator.

次にプリズム10に角度変位δが生じた場合の外部共振
器A内の平行光ビームの光路について第4図を参照しな
がら説明する。まず、第4図において実線で示すように
角度変位がない場合には、光路■を伝播してきた光ビー
ムはプリズム10を介し、光路■を伝播して反射板5に
到達し、反射板5で反射され再び同一光路、即ち光路■
、プリズム10を介して光路■に帰還される。ここで、
第4図において二点鎖線で示すように、プリズム10に
角度変位δが生じた場合、光路■を伝播してきた光ビー
ムはプリズム10を伝播して前記光路■とずれた光路■
を伝播して反射板5に到達し、反射板5で反射されるが
、プリズム10を介した光ビームは光路は相違しても平
行であるため、反射板5で反射された光ビームは往路と
同一光路、即ち光路■、プリズム10を伝社して光路■
に帰還されることになる。従って角度変位δが生じたと
しても、半導体レーザ1からプリズム10の透過面10
aまでの光路は、往路、復路とも一致する。
Next, the optical path of the parallel light beam inside the external resonator A when the angular displacement δ occurs in the prism 10 will be explained with reference to FIG. First, when there is no angular displacement as shown by the solid line in FIG. It is reflected and returns to the same optical path, i.e. the optical path■
, are returned to the optical path (2) via the prism 10. here,
As shown by the two-dot chain line in FIG. 4, when an angular displacement δ occurs in the prism 10, the light beam propagating along the optical path ■ propagates through the prism 10 and deviates from the optical path ■.
reaches the reflecting plate 5, and is reflected by the reflecting plate 5. However, the light beams that have passed through the prism 10 are parallel even though their optical paths are different, so the light beam reflected by the reflecting plate 5 is The same optical path as , that is, the optical path ■, and the optical path ■ by transmitting the prism 10
will be returned to. Therefore, even if an angular displacement δ occurs, the transmission surface 10 of the prism 10 is
The optical path up to a coincides with both the outgoing path and the incoming path.

本実施例によれば、外部共振器Aのレンズ2と反射板5
との光路に微小変位素子6を取り付けたプリズム10を
配設したことにより、例え、微小変位素子6の動作時に
プリズム10に角度変位が生じたとしても、反射板5で
反射された帰還光ビームの角度ずれを生じることがなく
、従って、半導体レーザ1への光帰還量の低下を招く恐
れがないため、光学的特性の安定した半導体レーザ装置
を実現できる。また、外部共振器Aの可能変位長が微小
変位素子の可能変位長の2倍になるので、低価格の微小
変位素子を適用することができ、装置自体の低価格を図
れる。
According to this embodiment, the lens 2 of the external resonator A and the reflector 5
By arranging the prism 10 to which the minute displacement element 6 is attached in the optical path, even if an angular displacement occurs in the prism 10 when the minute displacement element 6 is operated, the return light beam reflected by the reflection plate 5 will be prevented. Since there is no angular shift and therefore there is no risk of reducing the amount of light returned to the semiconductor laser 1, it is possible to realize a semiconductor laser device with stable optical characteristics. Further, since the possible displacement length of the external resonator A is twice that of the minute displacement element, a low-cost minute displacement element can be used, and the cost of the device itself can be reduced.

尚、前記プリズム10として3面を反射面としてた四面
体プリズム、即ちコーナキューブプリズムを用いること
により、第4図で説明した角度変位方向と垂直な方向に
角度変位が生じたとしても前述のと同様の作用を得るこ
とができ、3次元的角度変位に対しても対応可能となる
By using a tetrahedral prism with three reflecting surfaces, that is, a corner cube prism, as the prism 10, even if an angular displacement occurs in a direction perpendicular to the angular displacement direction explained in FIG. A similar effect can be obtained, and it is also possible to deal with three-dimensional angular displacement.

また、反射板として金属蒸着ミラーを例にあげたが、こ
れに限定されるものではなく、例えば金属蒸着ミラーの
代わりに干渉膜ミラーを用いると光ビームの反射率を向
上することができ、回折格子を用いると光ビームの波長
選択が可能となる。
In addition, although a metal-deposited mirror is used as an example of a reflecting plate, it is not limited to this. For example, if an interference film mirror is used instead of a metal-deposited mirror, the reflectance of the light beam can be improved, and the diffraction The use of gratings allows wavelength selection of the light beam.

(発明の効果) 以上説明したように本発明によれば、半導体レーザの一
端面からの出射光を平行光ビームにするレンズと、前記
平行光ビームを反射し前記レンズへ帰還させるための反
射板とを備えた外部共振器付半導体レーザモジュールに
おいて、前記平行光ビームの光路に光透過面が前記レン
ズ及び前記反射板と対向する如くプリズムを配設したの
で、帰還光ビームに角度ずれを生じることがない。従っ
て半導体レーザへの光帰還量の減少を招く恐れもないた
め、出射光のスペクトル線幅の増大やモードホッピング
等が発生することのない、光学的特性の安定した半導体
レーザ装置を実現でき、ひいては、光通信系の信頼性を
大幅に向上することができる利点がある。
(Effects of the Invention) As explained above, according to the present invention, there is provided a lens that converts light emitted from one end surface of a semiconductor laser into a parallel light beam, and a reflection plate for reflecting the parallel light beam and returning it to the lens. In the semiconductor laser module with an external cavity, a prism is disposed in the optical path of the parallel light beam so that its light transmitting surface faces the lens and the reflecting plate, so that an angular shift may not occur in the returned light beam. There is no. Therefore, since there is no risk of reducing the amount of light returned to the semiconductor laser, it is possible to realize a semiconductor laser device with stable optical characteristics without increasing the spectral line width of the emitted light or causing mode hopping, etc. This has the advantage of greatly improving the reliability of optical communication systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による外部共振器付半導体レーザモジュ
ールの一実施例を示す構成図、第2図は従来の外部共振
器付半導体レーザ装置の構成図、第3図は従来装置によ
る角度変位を説明するための図、第4図は本発明におい
て角度変位が生じた場合の光ビームの光路を説明するた
めの図である。 図中、1・・・半導体レーザ(LD) 、2・・・レン
ズ、5・・・反射板、6・・・微小変位素子、10・・
・プリズム、A・・・外部共振器。 特 許 出 願 人  沖電気工業株式会社代理人 弁
理士 吉 1)精 孝
FIG. 1 is a block diagram showing an embodiment of a semiconductor laser module with an external cavity according to the present invention, FIG. 2 is a block diagram of a conventional semiconductor laser device with an external cavity, and FIG. 3 shows the angular displacement of the conventional device. FIG. 4 is a diagram for explaining the optical path of a light beam when angular displacement occurs in the present invention. In the figure, 1... Semiconductor laser (LD), 2... Lens, 5... Reflector, 6... Minute displacement element, 10...
・Prism, A...External resonator. Patent Applicant: Oki Electric Industry Co., Ltd. Agent Patent Attorney: Yoshi 1) Takashi Sei

Claims (1)

【特許請求の範囲】 半導体レーザの一端面からの出射光を平行光ビームにす
るレンズと、前記平行光ビームを反射し前記レンズへ帰
還させるための反射板とを備えた外部共振器付半導体レ
ーザモジュールにおいて、前記平行光ビームの光路に光
透過面が前記レンズ及び前記反射板と対向する如くプリ
ズムを配設した ことを特徴とする外部共振器付半導体レーザモジュール
[Scope of Claims] A semiconductor laser with an external cavity, comprising a lens that converts light emitted from one end surface of the semiconductor laser into a parallel light beam, and a reflector for reflecting the parallel light beam and returning it to the lens. 1. A semiconductor laser module with an external cavity, characterized in that a prism is disposed in the optical path of the parallel light beam so that a light transmitting surface faces the lens and the reflecting plate.
JP443088A 1988-01-12 1988-01-12 Semiconductor laser module with external resonator Pending JPH01181590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP443088A JPH01181590A (en) 1988-01-12 1988-01-12 Semiconductor laser module with external resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP443088A JPH01181590A (en) 1988-01-12 1988-01-12 Semiconductor laser module with external resonator

Publications (1)

Publication Number Publication Date
JPH01181590A true JPH01181590A (en) 1989-07-19

Family

ID=11584028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP443088A Pending JPH01181590A (en) 1988-01-12 1988-01-12 Semiconductor laser module with external resonator

Country Status (1)

Country Link
JP (1) JPH01181590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser
JP2020109856A (en) * 2014-06-05 2020-07-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser
JP2020109856A (en) * 2014-06-05 2020-07-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser device

Similar Documents

Publication Publication Date Title
JP5123421B2 (en) Partially reflective optical components and laser sources incorporating such components
JP4425411B2 (en) Tunable laser source
EP1459111B1 (en) External cavity with retro-reflecting device in particular for tunable lasers
RU2457591C2 (en) Compact laser light source having narrow spectral width
EP1329999B1 (en) Wavelength tunable laser with diffractive optical element
EP1139523A2 (en) Light source for an external cavity laser
US6690709B2 (en) Device and method for reduction of spontaneous emission from external cavity lasers
US20090003403A1 (en) Wavelength tunable ring-resonator
JPH01181590A (en) Semiconductor laser module with external resonator
US6568105B1 (en) External cavity laser type light source
JP3069643B2 (en) Tunable light source
US20020163643A1 (en) Optical interference apparatus and method
CA2290063C (en) External cavity type light source
JP2004511914A (en) Tunable single mode laser device
JP2006073549A (en) External resonator-type wavelength variable optical source
JPS6354235B2 (en)
JPH09129982A (en) External resonator type ld light source
JPH1168233A (en) Variable wavelength laser light source
JP2000164980A (en) External resonator type variable wavelength semiconductor laser light source
US5936982A (en) Variable wavelength laser light source
JPS62136890A (en) Semiconductor laser device
JPS6114482B2 (en)
JPH02280392A (en) Multiple reflection interferometer and stabilized laser light source using former
JPH06252489A (en) External resonator laser
JPH0945983A (en) Variable wavelength semiconductor laser