JPH01180927A - Manufacture of piston - Google Patents
Manufacture of pistonInfo
- Publication number
- JPH01180927A JPH01180927A JP545088A JP545088A JPH01180927A JP H01180927 A JPH01180927 A JP H01180927A JP 545088 A JP545088 A JP 545088A JP 545088 A JP545088 A JP 545088A JP H01180927 A JPH01180927 A JP H01180927A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- powder
- layer
- ceramic powder
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 30
- 239000000919 ceramic Substances 0.000 claims abstract description 21
- 239000011812 mixed powder Substances 0.000 claims abstract description 10
- 238000005242 forging Methods 0.000 claims abstract description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 7
- 238000000465 moulding Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 4
- 239000007858 starting material Substances 0.000 abstract 1
- 238000005336 cracking Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001234 light alloy Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、アルミニウム合金を基とした複合材料を素材
とするピストンの製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a piston made of a composite material based on an aluminum alloy.
[従来の技術]
自動車等の内燃機関のピストンは、従来より軽量化を目
的としてアルミニウム合金等の軽合金材料を鍛造して製
造することが多い。しかし、前記軽合金材料によるピス
トンは、一般に強度が低いため、高温高圧に晒され割れ
等が発生することが多かった。そこで、近年繊維強化金
属のような金属複合材料を用い、強度の向上を図る試み
がなされているが、該材料は延性に乏しいため、鍛造の
ような塑性加工が容易には行われない。このため、例え
は特開昭56−16636号公報には、マトリックスを
超塑性合金としたアルミナ質繊維強化金属基複合材料が
開示され、また特開昭59−82156号公報には、軽
合金材料を半溶融状態にして加工する方法が開示されて
いる。[Prior Art] Pistons for internal combustion engines such as automobiles are often manufactured by forging light alloy materials such as aluminum alloys for the purpose of weight reduction. However, pistons made of light alloy materials generally have low strength, and are often exposed to high temperatures and pressures, resulting in cracks and the like. Therefore, in recent years, attempts have been made to improve the strength by using metal composite materials such as fiber-reinforced metals, but since these materials have poor ductility, plastic working such as forging cannot be easily performed. For this reason, for example, JP-A-56-16636 discloses an alumina fiber-reinforced metal matrix composite material in which the matrix is a superplastic alloy, and JP-A-59-82156 discloses a light alloy material. A method of processing the semi-molten state is disclosed.
しかしながら上記従来技術のうち、マトリックスを変更
する方法は、目的とする部材にとって材料特性上好まし
くなく、また半溶融状態にして加工する方法は、型の消
耗が早く、高い熱エネルギーを要し、さらに生産性が低
い等の問題を有する。However, among the above-mentioned conventional techniques, the method of changing the matrix is unfavorable for the material properties of the target member, and the method of processing in a semi-molten state consumes the mold quickly, requires high thermal energy, and There are problems such as low productivity.
従来より、塑性加工においては、例えば圧延による耳割
れを防くため、プレフォーム(またはとレッl−)の周
囲に延性金属を溶接等により付加することは公知である
。しかしながら、これを繊維強化金属の如き複合材料に
そのまま適用した場合、該複合材料と延性金属の界面に
おける特性変化が太き(、このため界面分離や割れに至
ることが多い。BACKGROUND ART Conventionally, in plastic working, it has been known to add a ductile metal around a preform (or edge) by welding or the like in order to prevent edge cracking due to rolling, for example. However, when this method is directly applied to a composite material such as a fiber-reinforced metal, the properties at the interface between the composite material and the ductile metal change significantly (this often leads to interfacial separation and cracking).
本発明は、このような問題点を考慮してなされたもので
あり、その目的とするところは、成形性を向上させ、し
かも成形されたピストンか十分な強度等を有するピスト
ンの製造方法を提供することである。The present invention has been made in consideration of these problems, and its purpose is to provide a method for manufacturing a piston that improves moldability and has sufficient strength. It is to be.
本発明のピストンの製造方法は、
アルミニウム合金の粉末または繊維を母材とし、これに
セラミンク粉末を配合率10vf%未満および10ない
し25vf%で混合し、次に各々の混合粉を1層として
粉末成形した2層体を加圧加熱してプリフォームを製造
し、そして該プリフォームを素材として、熱間鍛造によ
り前記セラミ、り粉末の配合率が高い層側をピストン頂
部側とし、該配合率が低い側をスカート部側として形状
付与することを特徴とする。The piston manufacturing method of the present invention uses aluminum alloy powder or fiber as a base material, mixes ceramic powder with a blending ratio of less than 10 vf% and 10 to 25 vf%, and then forms a layer of each mixed powder into powder. A preform is manufactured by pressurizing and heating the molded two-layer body, and using the preform as a raw material, hot forging is performed so that the layer side with a higher blending ratio of the ceramic powder is the top side of the piston, and the blending ratio is It is characterized by being shaped with the lower side as the skirt portion side.
本明細書において、セラミック粉末に関して使用するν
f%とは、母材の体積に対する該粉末の占める体積の割
合を示す。In this specification, ν is used in relation to ceramic powders.
f% indicates the ratio of the volume occupied by the powder to the volume of the base material.
また前記セラミック粉末は、平均粒径4μを越えると、
鍛造時に割れを生じやすくなるだけてなく、強度向上効
果が無くなるため、平均粒径4μ以下であることが好ま
しい。Moreover, when the ceramic powder has an average particle size of more than 4μ,
It is preferable that the average grain size is 4 μm or less, because not only will cracks easily occur during forging, but the strength improvement effect will be lost.
さらにこのセラミック↓分束は、八1□O* 、SiC
およびSiO□からなる群の中の1種または2種以上で
あることが好ましく、特にSiCがマトリックスとの結
合に優れるため好ましい。Furthermore, this ceramic ↓ bundle is 81□O*, SiC
It is preferable to use one or more of the group consisting of SiO□ and SiO□, and SiC is particularly preferable because it has excellent bonding with the matrix.
また、本発明の方法は、まず2層体からなるプレフォー
ムを製造するが、このときセラミック粉末の配合率を一
方の層を10νf%未満としたのは、これを越えると鍛
造時に割れを生じるためで、さらに望ましくは他方の層
との成形性の差を少なくするために3vf%以上とする
ことが好ましい。さらに他方の層のセラミンク粉末の配
合率を10ないし25vf%としたのは、この部分が成
形されてビスI−ン頂部側となるため、強度および耐摩
耗性を得るため10vf%以上とし、25vf%を越え
ると、一方の層との成形性の差が著しくなるため25v
f%以下としたものである。In addition, in the method of the present invention, a preform consisting of two layers is first manufactured, but at this time, the blending ratio of ceramic powder in one layer is less than 10 νf%, because if it exceeds this, cracks will occur during forging. In order to further desirably reduce the difference in moldability with the other layer, it is preferable that the content is 3 vf% or more. Furthermore, the blending ratio of the ceramic powder in the other layer was set to 10 to 25 vf% because this part is molded and becomes the top side of the screwdriver, so in order to obtain strength and wear resistance, the blending ratio of the ceramic powder was set at 10 to 25 vf%. If it exceeds 25v, the difference in formability with one layer becomes significant.
f% or less.
本発明のピストンの製造方法は、プリフォームを2層構
造とし、該プリフォームの加圧される側を、セラミック
粉末の配合率を低くして延性を有する層としたことによ
り、熱間鍛造時の割れの発生を防ぎ得、従って加工性を
向上させることができる。The piston manufacturing method of the present invention has a preform with a two-layer structure, and the pressurized side of the preform has a ductile layer with a low blending ratio of ceramic powder. The occurrence of cracks can be prevented, and therefore workability can be improved.
また、プリフォームは粉末成形時に2層体とし、しかも
各層が共通の組成からなるマトリックスを有するため、
界面に剥離等を生じることかない。In addition, the preform is made into a two-layered body during powder molding, and each layer has a matrix with a common composition.
No peeling occurs at the interface.
さらに本発明の方法は、高温強度を要するピストンの頂
部および耐摩耗性を要するビスI・ンリング溝部にセラ
ミンク粉末の配合率の高いアルミニウム複合材料を、そ
れ以外の部位には配合率の低い複合材料を配してピスト
ンを製造できる。このため、ピストンに要求される十分
な強度を与えることができる。Furthermore, the method of the present invention uses an aluminum composite material with a high blending ratio of ceramic powder for the top of the piston, which requires high-temperature strength, and the screw I ring groove, which requires wear resistance, and a composite material with a low blending ratio of ceramic powder for other parts. Pistons can be manufactured by arranging. Therefore, sufficient strength required for the piston can be provided.
〔実施例]
次に、図面を参照して本発明の詳細な説明するが、本発
明はこれに限定されるものではない。[Example] Next, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
実施例1
Si7重量%(以下、%)、Cu1%、Mg5%および
残部アルミニウムよりなる鍛造素材よりびびり切削法に
て、径60μ、長さ3mmのアルミニウム合金繊維を得
た。Example 1 Aluminum alloy fibers with a diameter of 60 μm and a length of 3 mm were obtained by chatter cutting from a forged material consisting of 7% by weight Si (hereinafter referred to as %), 1% Cu, 5% Mg, and the balance aluminum.
該繊維を母材とし、これと平均粒径2μのSiC粉末と
を、振動ミルにより200Orpm、振幅9mmにて4
0分間混合粉砕し、5vf%SiCおよび15vf%S
iC混合粉を各々製造した。This fiber was used as a base material, and SiC powder with an average particle size of 2μ was mixed with a vibrating mill at 200 rpm and an amplitude of 9 mm.
Mix and grind for 0 min, 5vf%SiC and 15vf%S
Each iC mixed powder was manufactured.
次にこれらの混合粉を200 ’C大気中で予熱した後
に、第1図に示すように200°Cに予熱したφ93の
金型7に投入した。この際、ます5vf%SiC混合扮
(第11畜)1を入れ、加圧パンチ8の自重にて表面を
ならし、さらに15vf%SiC混合粉(第2層)2を
、前記第1層との含有比が1:1となるように入れた後
、3 ton/cm2で10秒間加圧した。Next, these mixed powders were preheated to 200°C in the atmosphere, and then put into a φ93 mold 7 that had been preheated to 200°C, as shown in FIG. At this time, add 5vf% SiC mixed powder (No. 11) 1, smooth the surface with the weight of pressure punch 8, and then add 15vf% SiC mixed powder (second layer) 2 to the first layer. were added so that the content ratio was 1:1, and then pressurized at 3 ton/cm2 for 10 seconds.
さらにこの予圧体を550°Cに予熱し、500°Cに
予熱したφ93の金型7を用い3 ton/cm2で1
0秒間本加圧し、φ93X42の2層からなるプリフォ
ーム3を得た。Furthermore, this preload body was preheated to 550°C, and using a φ93 mold 7 preheated to 500°C, it was heated to 1 at 3 ton/cm2.
Main pressure was applied for 0 seconds to obtain a preform 3 consisting of two layers of φ93×42.
次いで、このプリフォーム3を450 ’Cに予熱した
後に、第2図に示すように300°Cに予熱した金型9
および加圧パンチ10にて、約8ton/cm2でピス
トン形状に鍛造した。このとき、前記セラミンク粉末の
配合率が高い第2層2をピストン頂部4側とし、該配合
率が低い第1層1をスカート部5側として形状付与した
。Next, after preheating this preform 3 to 450'C, a mold 9 preheated to 300C is used as shown in FIG.
Then, it was forged into a piston shape using a pressure punch 10 at about 8 ton/cm2. At this time, the second layer 2 having a higher blending ratio of the ceramic powder was placed on the piston top 4 side, and the first layer 1 having a lower blending ratio was placed on the skirt portion 5 side.
これにより製造したピストン6には、端部の割れおよび
2層界面の剥離が生じなかった。In the piston 6 manufactured in this way, cracking at the end and peeling at the interface between the two layers did not occur.
実施例2
アルミニウム合金の粉末を空気アトマイジング法により
100μ以下の粉末として使用し、5vf%八1□03
混合粉(第1層)と15vf%AlO3混合粉(第2層
)の含有比を1:2とした以外は実施例1と同様の操作
によりピストンを製造した。これによっても、端部の割
れおよび2層界面の剥離が生じなかった。Example 2 Aluminum alloy powder was used as powder of 100μ or less by air atomizing method, and 5vf%81□03
A piston was manufactured in the same manner as in Example 1, except that the content ratio of mixed powder (first layer) and 15 vf% AlO3 mixed powder (second layer) was 1:2. Even in this case, cracking at the edges and peeling at the interface between the two layers did not occur.
比較例
15vf%SiC混合扮のみで、実施例1と同様の操作
を行いピストンを製造したが、これには端部に割れが生
じた。Comparative Example 1 A piston was manufactured using only the 5vf% SiC mixture and performing the same operations as in Example 1, but cracks occurred at the ends.
以上説明したように、本発明のピストンの製造方法は、
高温強度を要するピストンの頂部および耐摩耗性を要す
るピストンリング溝部にセラミック粉末の配合率の高い
アルミニウム複合材料をそれ以外の部位には配合率の低
い複合材料を配してピストンを製造することを可能とし
たものである。このため、熱間鍛造時に割れを生じるこ
となく、高強度および軽量のピストンを提供することが
できる。As explained above, the piston manufacturing method of the present invention includes:
The piston is manufactured by placing an aluminum composite material with a high blending ratio of ceramic powder in the top of the piston, which requires high-temperature strength, and in the piston ring groove, which requires wear resistance, and by placing a composite material with a lower blending ratio in other parts. This made it possible. Therefore, a high-strength and lightweight piston can be provided without cracking during hot forging.
また、粉末成形時に2層体とし、しかも各層が共通の組
成からなるマトリックスを有するため、界面に剥離等を
生じることもない。Further, since the powder is formed into a two-layered product during powder molding, and each layer has a matrix having a common composition, peeling or the like does not occur at the interface.
第1図は、本発明のピストンの製造方法の一実施例にお
けるプリフォームの製造を示す説明図、
第2図は、本発明のピストンの製造方法の一実施例にお
けるピストンの形状付与を示す説明図である。
図中、
1・・・第1層 2・・・第2層3・・・プリ
フォーム 4・・・ピストン頂部5・・・スカート部
6・・・ピストン−136=FIG. 1 is an explanatory diagram showing the production of a preform in an embodiment of the piston production method of the present invention. FIG. 2 is an explanatory diagram showing the provision of a shape to a piston in an embodiment of the piston production method of the present invention. It is a diagram. In the figure, 1... First layer 2... Second layer 3... Preform 4... Piston top 5... Skirt part 6... Piston -136=
Claims (1)
セラミック粉末を配合率10vf%未満および10ない
し25vf%で混合し、次に各々の混合粉を1層として
粉末成形した2層体を加圧加熱してプリフォームを製造
し、そして該プリフォームを素材として、熱間鍛造によ
り前記セラミック粉末の配合率が高い層側をピストン頂
部側とし、該配合率が低い側をスカート部側として形状
付与することを特徴とするピストンの製造方法。Aluminum alloy powder or fiber is used as a base material, ceramic powder is mixed with this at a blending ratio of less than 10 vf% and 10 to 25 vf%, and then each mixed powder is formed as one layer and a two-layer body is powder-molded and heated under pressure. A preform is manufactured by using the preform as a raw material, and the layer side with a higher blending ratio of the ceramic powder is formed as the top side of the piston, and the layer side with a higher blending ratio of the ceramic powder is shaped as the skirt side by hot forging. A method for manufacturing a piston, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP545088A JPH01180927A (en) | 1988-01-13 | 1988-01-13 | Manufacture of piston |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP545088A JPH01180927A (en) | 1988-01-13 | 1988-01-13 | Manufacture of piston |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01180927A true JPH01180927A (en) | 1989-07-18 |
Family
ID=11611548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP545088A Pending JPH01180927A (en) | 1988-01-13 | 1988-01-13 | Manufacture of piston |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01180927A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0864660A2 (en) | 1997-02-12 | 1998-09-16 | Yamaha Hatsudoki Kabushiki Kaisha | Piston for internal combustion engine and method for producing same |
US5972071A (en) * | 1997-07-17 | 1999-10-26 | Yamaha Hatsudoki Kabushiki Kaisha | Aluminum alloy for piston and method for producing piston |
US5992015A (en) * | 1996-05-20 | 1999-11-30 | Yamaha Hatsudoki Kabushiki Kaisha | Process for forming composite piston |
US6032570A (en) * | 1998-04-10 | 2000-03-07 | Yamaha Hatsudoki Kabushiki Kaisha | Composite piston for machine |
US6205836B1 (en) | 1998-07-09 | 2001-03-27 | Yamaha Hatsudoki Kabushiki Kaisha | Method for manufacturing piston by forging and forging die |
US6240827B1 (en) | 1997-04-10 | 2001-06-05 | Yamaha Hatsudoki Kabushiki Kaisha | Composite piston for reciprocating machine |
US6363608B1 (en) | 1997-04-10 | 2002-04-02 | Yamaha Hatsudoki Kabushiki Kaisha | Method of manufacturing piston |
JP2005533931A (en) * | 2002-07-25 | 2005-11-10 | スネクマ・モトウール | Reinforced composite machine part and method for manufacturing the same |
KR101277120B1 (en) * | 2011-04-13 | 2013-06-20 | 동양피스톤 주식회사 | Manufacturing method of forged piston |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130411A (en) * | 1980-02-27 | 1981-10-13 | British Intern Konbisuchiyon E | Sintered body of composite substance and method |
-
1988
- 1988-01-13 JP JP545088A patent/JPH01180927A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130411A (en) * | 1980-02-27 | 1981-10-13 | British Intern Konbisuchiyon E | Sintered body of composite substance and method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5992015A (en) * | 1996-05-20 | 1999-11-30 | Yamaha Hatsudoki Kabushiki Kaisha | Process for forming composite piston |
US6209446B1 (en) | 1996-05-20 | 2001-04-03 | Yamaha Hatsudoki Kabushiki Kaisha | Piston for internal combustion engine and process of making same |
EP0809050B1 (en) * | 1996-05-20 | 2003-08-13 | Yamaha Hatsudoki Kabushiki Kaisha | Method of making a piston for an internal combustion engine |
EP0864660A2 (en) | 1997-02-12 | 1998-09-16 | Yamaha Hatsudoki Kabushiki Kaisha | Piston for internal combustion engine and method for producing same |
EP0864660A3 (en) * | 1997-02-12 | 1999-09-29 | Yamaha Hatsudoki Kabushiki Kaisha | Piston for internal combustion engine and method for producing same |
US6240827B1 (en) | 1997-04-10 | 2001-06-05 | Yamaha Hatsudoki Kabushiki Kaisha | Composite piston for reciprocating machine |
US6363608B1 (en) | 1997-04-10 | 2002-04-02 | Yamaha Hatsudoki Kabushiki Kaisha | Method of manufacturing piston |
US5972071A (en) * | 1997-07-17 | 1999-10-26 | Yamaha Hatsudoki Kabushiki Kaisha | Aluminum alloy for piston and method for producing piston |
US6032570A (en) * | 1998-04-10 | 2000-03-07 | Yamaha Hatsudoki Kabushiki Kaisha | Composite piston for machine |
US6205836B1 (en) | 1998-07-09 | 2001-03-27 | Yamaha Hatsudoki Kabushiki Kaisha | Method for manufacturing piston by forging and forging die |
JP2005533931A (en) * | 2002-07-25 | 2005-11-10 | スネクマ・モトウール | Reinforced composite machine part and method for manufacturing the same |
KR101277120B1 (en) * | 2011-04-13 | 2013-06-20 | 동양피스톤 주식회사 | Manufacturing method of forged piston |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106967900B (en) | A kind of titanium-based metal glass particle reinforced aluminum matrix composites and preparation method thereof | |
JP2942834B2 (en) | Fly ash-containing metal composite and method for producing the same | |
JPH01180927A (en) | Manufacture of piston | |
US6070323A (en) | Piston for internal combustion engine and material therefore | |
US5666637A (en) | Method of manufacturing connecting rod | |
JPS63132743A (en) | Manufacture of piston | |
US4740428A (en) | Fiber-reinforced metallic member | |
JPH0581654B2 (en) | ||
JP3128041B2 (en) | Cylinder block and its manufacturing method | |
JPS6376834A (en) | Manufacture of lightweight bolt | |
JPH07216480A (en) | Fiber reinforced al alloy | |
JPH0790414A (en) | Air suction and exhaust valve made of ti-al intermetallic compound excellent in wear resistance and its production | |
JPH08269591A (en) | Aluminum alloy powder molding partially containing ceramic particles and its production | |
JPS6256550A (en) | Al alloy material having low coefficient of linear expansion | |
JP2003096524A (en) | Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy | |
JP3234380B2 (en) | Heat resistant aluminum powder alloy | |
JPS6256551A (en) | Al alloy material having low coefficient of linear expansion | |
JP3230903B2 (en) | Heat resistant aluminum powder metal alloy | |
JPS62235439A (en) | Fiber reinforced composite al alloy material | |
JPH0790420A (en) | Fiber reinforced al alloy | |
JPH03149B2 (en) | ||
JPH01104456A (en) | Production of composite reinforced metal member | |
JPH04183959A (en) | Piston for diesel engine and manufacture thereof | |
JPH10180396A (en) | Production of composite reinforced piston | |
CN111390184A (en) | Preparation method of high-strength engine connecting rod |