[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01180499A - Stainless steel tubular element having improved wear resistance - Google Patents

Stainless steel tubular element having improved wear resistance

Info

Publication number
JPH01180499A
JPH01180499A JP63002635A JP263588A JPH01180499A JP H01180499 A JPH01180499 A JP H01180499A JP 63002635 A JP63002635 A JP 63002635A JP 263588 A JP263588 A JP 263588A JP H01180499 A JPH01180499 A JP H01180499A
Authority
JP
Japan
Prior art keywords
sleeve
nitriding
depth
stainless steel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63002635A
Other languages
Japanese (ja)
Other versions
JP2657810B2 (en
Inventor
Harts Dominique
ドミニク、ハーツ
Coutellier Jean-Michel
ジャン−ミシェル、クートウリエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fragema
Orano Demantelement SAS
Original Assignee
Fragema
Compagnie Generale des Matieres Nucleaires SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fragema, Compagnie Generale des Matieres Nucleaires SA filed Critical Fragema
Priority to JP63002635A priority Critical patent/JP2657810B2/en
Publication of JPH01180499A publication Critical patent/JPH01180499A/en
Application granted granted Critical
Publication of JP2657810B2 publication Critical patent/JP2657810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: To improve the resistance against wear by performing nitriding of the outer surface of a tubular element made of chrome-nickel stainless steel up to a depth of 15-40 micron. CONSTITUTION: A nitriding device has a sealed surrounding body 26 and a vacuum pump 28 for reducing an inner pressure normally to approximately 30-20 pascal and a flow-in pipe for introducing the mixed gas of nitrogen and hydrogen are provided. The surrounding body 26 has a suspension device for receiving an amount of 1 load consisting of a plurality of sleeves 18 to be treated. The sleeves 18 to be treated are washed and a lower plug 24 is engaged. A thermal buffer body that is constituted of a stainless slug is arranged in each sleeve 18 and a tentative upper plug 32 is fixed to each sleeve 18. Each part is etched in terms of ion in the surrounding body 26. Then, air is swept to achieve a low-pressure nitrogen and hydrogen atmosphere and a voltage is applied between the surrounding body 26 and the sleeves 18 by a generator 34 for heating and nitriding. The depth of nitriding treatment is typically approximately 20-40μm from the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水で冷却および減速される原子炉の高圧・高
温水中で利用されるように設計された、クロム−ニッケ
ル・ステンレス鋼製管状要素に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a chromium-nickel stainless steel tubular product designed for use in the high-pressure, high-temperature water of water-cooled and moderated nuclear reactors. Regarding elements.

〔従来の技術〕[Conventional technology]

この種の原子炉において、冷却水はしばしば硼素生成物
を含有し、それが管状要素に接触するようになっており
、管状要素のいくつかはしばしば、ガイド内をそれに沿
って摺動移動され、それをこするようになっている。
In this type of reactor, the cooling water often contains boron products, which come into contact with the tubular elements, some of which are often moved along by sliding in guides. It is supposed to be rubbed.

これは特に、反応度制御棒クラスタ(集合体)のステン
レス鋼製スリーブにおいて起こる。原子炉の反応度を制
御するため、制御棒は燃料装置に設けられるガイドチュ
ーブに沿って、そして原子炉の内項部に設けられるガイ
ドに沿って移動される。特に原子炉が“負荷追従”(l
oadf’ol 1over)様式で用いられる時の幾
つかの制御棒の移動の周期および振幅は、各炉心再負荷
(co、rereloading )において幾つかの
クラスタを系統的に交換することがしばしば必要となる
程である。
This occurs particularly in stainless steel sleeves of reactivity control rod clusters. To control the reactivity of a nuclear reactor, control rods are moved along guide tubes provided in the fuel system and along guides provided in the inner core of the reactor. In particular, nuclear reactors are “load following” (l
The period and amplitude of movement of several control rods when used in an oadf'ol over mode often requires systematic replacement of several clusters at each core reloading (co, rereloading). That's about it.

摩擦を受ける管状要素の外面に、その摩耗を減少させる
ためにコーティングを付着させることは既に提案されて
いる。例えば、硬質クロムの電解メツキおよびニッケル
の化学メツキがこれまでに行なわれてきた。
It has already been proposed to apply a coating to the external surface of a tubular element which is subject to friction in order to reduce its wear. For example, electrolytic plating of hard chromium and chemical plating of nickel have been performed in the past.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、電解クロムメツキはもろいし、一方、化学的に
付着されたニッケルは原子炉の主回路を汚染することが
ある。また、ニッケルークロム結合合金が付加された炭
化クロムを含有するコーティングは、放射線被爆下にお
ける挙動が劣る。
However, electrolytic chrome plating is brittle, while chemically deposited nickel can contaminate the reactor's main circuits. Also, coatings containing chromium carbide with added nickel-chromium bond alloys behave poorly under radiation exposure.

従って、本発明の目的は、ステンレス鋼製管状要素の摩
耗に対する耐久性を改善することにある。本発明の他の
目的は、熱サイクルに対する上記管状要素の耐久性を増
大すると共に、水冷原子炉中での放射線被爆下での特性
を維持することにある。
It is therefore an object of the invention to improve the wear resistance of stainless steel tubular elements. Another object of the invention is to increase the durability of the tubular element to thermal cycling while maintaining its properties under radiation exposure in a water-cooled nuclear reactor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、その外面が15〜40ミクロンの深さ
まで窒化されたクロム−ニッケル・ステンレス鋼からな
る管状要素、典型的には原子炉用制御棒シースが提供さ
れる。
In accordance with the present invention, there is provided a tubular element, typically a control rod sheath for a nuclear reactor, made of chromium-nickel stainless steel whose outer surface is nitrided to a depth of 15 to 40 microns.

窒化はイオン化状態で実施されることが有利である。管
状要素は窒素および水素を含有する稀薄(rarif’
1ed)雰囲気内での放電により作り出されるプラズマ
を受けて、イオンの深部拡散をもたらすに十分な高温に
おいて活性窒素イオンが注入される。
Advantageously, the nitridation is carried out in the ionized state. The tubular elements contain nitrogen and hydrogen containing rarif'
1ed) Activated nitrogen ions are implanted at a high enough temperature to cause deep diffusion of the ions in response to a plasma created by a discharge in an atmosphere.

酸化媒体中での耐食性に対して有害な管状要素のマトリ
ックスの脱り6ムによる材料の増感状態を避けるために
、処理層が40μmを越えないように十分に低い処理時
間および温度を採用することが望ましい。実際には、約
500℃の温度で数時間処理することが可能である。
In order to avoid a sensitized state of the material due to desorption of the matrix of the tubular elements, which is detrimental to the corrosion resistance in oxidizing media, treatment times and temperatures low enough are adopted so that the treatment layer does not exceed 40 μm. This is desirable. In practice, it is possible to process for several hours at temperatures of approximately 500°C.

耐摩耗性をさらに増大するために、管状要素はイオン的
に表面不動態化することができる。
To further increase wear resistance, the tubular elements can be ionically surface passivated.

不動態化は、窒化された管状要素を、不動態化厚さが窒
化深さを越えず、かつ1時間より長く選択された時間、
500℃より低温において酸化プラズマ中に維持するこ
とにより行なわれる。
Passivating the nitrided tubular element for a selected period of time, such that the passivation thickness does not exceed the nitridation depth and is greater than 1 hour.
This is done by maintaining it in an oxidizing plasma at a temperature below 500°C.

〔実 施 例〕〔Example〕

以下、添附図面を参照しながら、本発明の特定の実施例
について説明するが、本発明が下記実施例に限定される
ものでないことはもとよりである。
Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to the following embodiments.

第1図は加圧水型原子炉の制御クラスタの一つのロッド
10を示している。ロッド10および他のロッド類は複
数のロッドを同時に垂直移動させるためのスパイダー1
2の腕部に固定されている。
FIG. 1 shows one rod 10 of a control cluster of a pressurized water reactor. Rod 10 and other rods are spiders 1 for vertically moving multiple rods simultaneously.
It is fixed to the arm of 2.

ロッド類はガイドチューブ14内を摺動し、該ガイドチ
ューブ14は燃料装置に属すると共に端部ノズル16に
連結されている。
The rods slide within a guide tube 14 that belongs to the fuel system and is connected to an end nozzle 16.

各ロッドは、クロム−ニッケル・ステンレス鋼、しばし
ばAISI304鋼からなるシースまたはスリーブ18
を備えており、上記AIS■304鋼の主成分は次の通
りである。Ni:8.50〜11重量%、Cr:17〜
19重量%、炭素:最大8重量%、Mn:最大2重量%
。残りは避けられない不純物を除いて鉄である。中性子
吸収材からなるペレット20(またはスラグ)がスリー
ブ内に堆積されている。スリーブ18は、同様にステン
レス鋼からなる上部プラグ22および下部プラグ24に
より密封閉鎖されている。 −例として、スリーブ18
は9〜25m+sの外径、および約0 、4 mm 〜
1 、 5 mmの肉厚を有することができる。スリー
ブは径が大きくなればなる程厚肉にすればよい。
Each rod has a sheath or sleeve 18 made of chrome-nickel stainless steel, often AISI 304 steel.
The main components of the AIS ■304 steel are as follows. Ni: 8.50~11% by weight, Cr: 17~
19% by weight, carbon: max. 8% by weight, Mn: max. 2% by weight
. The rest is iron, with the exception of unavoidable impurities. Pellets 20 (or slugs) of neutron absorbing material are deposited within the sleeve. The sleeve 18 is hermetically closed by an upper plug 22 and a lower plug 24, also made of stainless steel. - As an example, sleeve 18
has an outer diameter of 9 to 25 m+s, and approximately 0,4 mm to
It can have a wall thickness of 1.5 mm. The larger the diameter of the sleeve, the thicker the sleeve should be.

一般に同様にステンレス鋼からなるガイドチューブ14
上を摩擦摺動する時のシース18の摩耗および引裂きを
低減するため、15〜40μm1典型的には20〜40
μmの深さの表面窒化処理が行なわれる。
Guide tube 14, generally also made of stainless steel
15-40 μm 1 typically 20-40 μm to reduce wear and tear on the sheath 18 during frictional sliding thereon.
A surface nitriding process is performed to a depth of μm.

窒化は第2図に概略的に示される装置において行なわれ
る。第2図の装置は密閉された包囲体26を備えており
、これには、内部の圧力を通常は30〜200パスカル
の値まで減少させるための真空ポンプ28と、窒素およ
び水素の混合体を導入するための流入パイプとが設けら
れている。包囲体26は処理される複数のスリーブから
なる1装填量を受容する懸架装置を包含している。操作
順序は以下のように行なわれる。
The nitriding is carried out in an apparatus shown schematically in FIG. The apparatus of FIG. 2 comprises a sealed enclosure 26, which includes a vacuum pump 28 to reduce the internal pressure to a value typically between 30 and 200 Pascals, and a mixture of nitrogen and hydrogen. An inlet pipe is provided for the introduction. Enclosure 26 includes a suspension system for receiving a charge of sleeves to be processed. The sequence of operations is as follows.

処理されるスリーブは洗浄されて、その下部プラグ24
が嵌合される。ステンレス鋼のスラグから構成され得る
熱緩衝体が各スリーブ18内に配置されてから、仮の上
部プラグ32が各スリーブに固定される。該プラグはコ
ーティング中のスリーブを保持するために用いられる。
The sleeve to be processed is cleaned and its lower plug 24
are fitted. A thermal buffer, which may be comprised of a stainless steel slug, is placed within each sleeve 18 before a temporary top plug 32 is secured to each sleeve. The plug is used to hold the sleeve during coating.

スリーブ18は包囲体26内に置かれ、その上部プラグ
32に近接する部分は、この領域におけるステンレス鋼
の窒化を避けるためにマスキングすることが有利である
The sleeve 18 is placed within the enclosure 26 and its portion adjacent to the upper plug 32 is advantageously masked to avoid nitriding of the stainless steel in this area.

各部分は、包囲体26内で、約30Paの圧力下におい
てイオン的にエツチングされる。次いで、包囲体は掃気
されて、低圧(総圧力は200P aを越えず、また窒
素分圧はたとえば40〜60Pa)の窒素および水素雰
囲気が発生される。300v〜100OVの電圧が、発
電機34により、金属製包囲体26と処理されるスリー
ブ18との間に印加される。放電によるガス状混合体の
解離により形成へれる活性窒素イオンが、スリーブ18
の表面にイオン衝撃により打ち込まれる。
Each portion is ionically etched within the enclosure 26 under a pressure of approximately 30 Pa. The enclosure is then purged to generate a low pressure nitrogen and hydrogen atmosphere (total pressure not exceeding 200 Pa and nitrogen partial pressure, for example 40-60 Pa). A voltage between 300v and 100OV is applied by a generator 34 between the metal enclosure 26 and the sleeve 18 being treated. Activated nitrogen ions formed by the dissociation of the gaseous mixture by the electrical discharge enter the sleeve 18.
is implanted into the surface by ion bombardment.

スリーブをその全長にわたって、周囲゛温度より高いが
510℃(典型的には、約500℃)より低い温度に維
持して、窒素イオンの拡散をもたらすための手段(図示
しない)が設けられ、この装置は通常のものとすること
ができる。この操作は注入の深さが所望値になるまで続
けられる。しかし実際には、処理時間は6時間を越えな
い。          ″ 包囲体26は再度掃気されて、窒化中とほぼ同じ圧力下
において、酸素を含有する酸化雰囲気を充填される。こ
の場合には活性酸素イオンを含有するプラズマが発生さ
れて、窒化層が限定的に酸化される。この工程は400
〜480℃の温度で、適切な不動態化が達成されるまで
実施される。一般に、持続時間は1時間よりは長く、か
つ窒素イオンにより達成されたものより大きい深さまで
金属を不動態化する時間より短くされる。
Means (not shown) are provided for maintaining the sleeve over its length at a temperature above ambient temperature but below 510°C (typically about 500°C) to effect diffusion of nitrogen ions; The device can be conventional. This operation continues until the desired depth of implantation is achieved. However, in practice, the processing time does not exceed 6 hours. '' The enclosure 26 is again scavenged and filled with an oxidizing atmosphere containing oxygen under approximately the same pressure as during nitriding. In this case, a plasma containing active oxygen ions is generated to confine the nitrided layer. This process is 400
It is carried out at a temperature of ˜480° C. until adequate passivation is achieved. Generally, the duration will be greater than 1 hour and less than the time to passivate the metal to a greater depth than that achieved with nitrogen ions.

次いで、スリーブ18は包囲体26から取出される。仮
の上部プラグ32が取りはずされて、スリーブ18は吸
収性材料を装填されて、最終上部プラグが載置される。
Sleeve 18 is then removed from enclosure 26. The temporary top plug 32 is removed, the sleeve 18 is loaded with absorbent material, and the final top plug is placed.

変形例としては、スリーブはイオン窒化処理前に中性子
吸収材が装填されて閉鎖される゛。
Alternatively, the sleeve is loaded with neutron absorbing material and closed before the ion nitriding process.

本発明は制御棒(ロッド)以外の原子炉内で用いられる
管状要素に適用できる。
The present invention can be applied to tubular elements used in nuclear reactors other than control rods.

本発明は、特に、他の機能を有すると共に、その表面が
摩擦または振動摩耗に耐えなければならないロッドクラ
スタに利用できる。
The invention is particularly applicable to rod clusters which have other functions and whose surfaces must withstand frictional or vibrational wear.

また、内部を摺動する部材の摩擦を受けるような管類の
内面に同様の処理を行なうことも可能である。
It is also possible to perform a similar treatment on the inner surface of tubing that is subject to friction from members sliding inside.

〔発明の作用・効果〕[Action/effect of the invention]

以上のように、本発明のクロム−ニッケル・ステンレス
鋼製管状要素は、15〜40μmの深さにわたって表面
窒化されたものであるため、従来のような電解メツキあ
るいは化学メツキのような問題もなく、高圧及び高温水
中下でも優れた耐摩擦性を示し、また、水冷原子炉中で
の放射線被爆下においてもこのような優れた特性を維持
することができる。従って、中性子吸収材を装填するた
めの制御棒のスリーブ(シース)として極めて有用であ
り、制御棒の出し入れの際のガイドチューブとの摩擦に
おいても優れた耐摩耗性を発揮する原子炉用制御棒が提
供される。また、本発明の方法によれば比較的短時間に
上記のような優れた特性を有する管状要素あるいは制御
棒が製造できる。
As described above, since the chromium-nickel stainless steel tubular element of the present invention is surface nitrided to a depth of 15 to 40 μm, there are no problems associated with conventional electrolytic plating or chemical plating. It exhibits excellent friction resistance even under high pressure and high temperature water, and can maintain such excellent properties even under radiation exposure in a water-cooled nuclear reactor. Therefore, it is extremely useful as a control rod sleeve (sheath) for loading neutron absorbing material, and is a control rod for nuclear reactors that exhibits excellent wear resistance against friction with the guide tube when the control rod is inserted and removed. is provided. Further, according to the method of the present invention, tubular elements or control rods having the above-mentioned excellent properties can be manufactured in a relatively short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により処理されるシースを備える制御
クラスタの1本のロッドを示す部分断面概略図、第2図
は本発明の実施例によるシース処理装置の概略図である
。 18・・・スリーブ(もしくはシース)、20・・・中
性子吸収材、22・・・上部プラグ、24・・・下部プ
ラグ、26・・・包囲体。
FIG. 1 is a partial cross-sectional schematic diagram showing one rod of a control cluster with a sheath treated according to the invention, and FIG. 2 is a schematic diagram of a sheath treatment device according to an embodiment of the invention. 18... Sleeve (or sheath), 20... Neutron absorbing material, 22... Upper plug, 24... Lower plug, 26... Enclosure.

Claims (1)

【特許請求の範囲】 (1)15〜40μmの深さにわたって表面窒化された
、水減速および水冷の原子炉用のクロム−ニッケル・ス
テンレス鋼製管状要素。 (2)クロム−ニッケル・ステンレス鋼からなる外部ス
リーブと、該スリーブ内の中性子吸収材とから成り、前
記スリーブが15〜40μmの深さまで表面窒化処理さ
れている加圧水型原子炉用原子炉制御棒。 (3)ステンレス鋼がAISI340鋼であることを特
徴とする請求項2記載の制御棒。(4)前記スリーブが
最大で窒化深さに等しい深さにわたって表面不動態化さ
れている請求項3記載の制御棒。 (5)クロム−ニッケル・ステンレス鋼製スリーブを用
意し、該スリーブを減圧下で窒素−水素雰囲気中に維持
すると共に、前記雰囲気中に放電を生ぜしめて窒素イオ
ンを発生させることにより、前期スリーブの半径方向外
面を窒化することからなる、水冷・減速される原子炉用
シースの製造方法。 (6)前記窒化を、510℃を越えない温度において6
時間までの持続時間で実施する請求項5記載の方法。 (7)包囲体内での窒化処理前に前記包囲体内でイオン
・エッチングの予備処理を実施する工程を含む請求項5
記載の方法。 (8)窒化処理前に前記スリーブに熱緩衝体を充填して
プラグにより閉鎖するようにした請求項5記載の方法。 (9)窒化処理前に前記スリーブに中性子吸収材を充填
して閉鎖するようにした請求項5記載の方法。 (10)窒化処理の直後に酸化雰囲気中でプラズマを発
生させることにより、最大で窒化深さに等しい深さにわ
たって表面的に不動態化する工程をさらに含む請求項5
記載の方法。
Claims: (1) A chromium-nickel stainless steel tubular element for water-moderated and water-cooled nuclear reactors, surface nitrided to a depth of 15 to 40 μm. (2) A reactor control rod for a pressurized water reactor consisting of an external sleeve made of chromium-nickel stainless steel and a neutron absorbing material within the sleeve, the sleeve being surface nitrided to a depth of 15 to 40 μm. . (3) The control rod according to claim 2, wherein the stainless steel is AISI340 steel. 4. The control rod of claim 3, wherein said sleeve is surface passivated to a depth up to a depth equal to the nitridation depth. (5) A chromium-nickel stainless steel sleeve is prepared, the sleeve is maintained in a nitrogen-hydrogen atmosphere under reduced pressure, and a discharge is generated in the atmosphere to generate nitrogen ions. A method of manufacturing a water-cooled and moderated nuclear reactor sheath comprising nitriding the radially outer surface. (6) The nitriding is carried out at a temperature not exceeding 510°C.
6. The method of claim 5, wherein the method is carried out for a duration of up to hours. (7) Claim 5, further comprising the step of performing a pretreatment of ion etching within the enclosure before the nitriding treatment within the enclosure.
Method described. (8) The method according to claim 5, wherein the sleeve is filled with a thermal buffer and closed with a plug before the nitriding process. (9) The method according to claim 5, wherein the sleeve is filled with a neutron absorbing material and closed before the nitriding treatment. (10) Immediately after the nitriding process, the process further comprises the step of superficially passivating a depth equal to the nitriding depth by generating plasma in an oxidizing atmosphere.
Method described.
JP63002635A 1988-01-11 1988-01-11 Stainless steel tubular elements with improved wear resistance Expired - Lifetime JP2657810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002635A JP2657810B2 (en) 1988-01-11 1988-01-11 Stainless steel tubular elements with improved wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002635A JP2657810B2 (en) 1988-01-11 1988-01-11 Stainless steel tubular elements with improved wear resistance

Publications (2)

Publication Number Publication Date
JPH01180499A true JPH01180499A (en) 1989-07-18
JP2657810B2 JP2657810B2 (en) 1997-09-30

Family

ID=11534845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002635A Expired - Lifetime JP2657810B2 (en) 1988-01-11 1988-01-11 Stainless steel tubular elements with improved wear resistance

Country Status (1)

Country Link
JP (1) JP2657810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504487A (en) * 2012-11-07 2016-02-12 アレバ・エヌペ Method for thermochemical treatment of parts while partly covering and corresponding mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035989A (en) * 1983-08-09 1985-02-23 Ricoh Co Ltd Control system of dc motor
JPS60262955A (en) * 1984-06-06 1985-12-26 レイデイオロジカル アンド ケミカル テクノロジ− インコ−ポレ−テツド Inactivation of stainless steel member surface
JPS61295377A (en) * 1985-06-20 1986-12-26 バルツエルス アクチエンゲゼルシヤフト Formation of membrane
JPS6235289A (en) * 1985-08-08 1987-02-16 ウエスチングハウス エレクトリック コ−ポレ−ション Supporter for control rod of nuclear reactor
US4704168A (en) * 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035989A (en) * 1983-08-09 1985-02-23 Ricoh Co Ltd Control system of dc motor
JPS60262955A (en) * 1984-06-06 1985-12-26 レイデイオロジカル アンド ケミカル テクノロジ− インコ−ポレ−テツド Inactivation of stainless steel member surface
US4704168A (en) * 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels
JPS61295377A (en) * 1985-06-20 1986-12-26 バルツエルス アクチエンゲゼルシヤフト Formation of membrane
JPS6235289A (en) * 1985-08-08 1987-02-16 ウエスチングハウス エレクトリック コ−ポレ−ション Supporter for control rod of nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504487A (en) * 2012-11-07 2016-02-12 アレバ・エヌペ Method for thermochemical treatment of parts while partly covering and corresponding mask
US10625300B2 (en) 2012-11-07 2020-04-21 Areva Np Method for thermochemically treating a part while masking a portion and corresponding mask

Also Published As

Publication number Publication date
JP2657810B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4873117A (en) Stainless steel tubular element with improved wear resistance
JP4042362B2 (en) Ni-base alloy product and manufacturing method thereof
JP3960069B2 (en) Heat treatment method for Ni-base alloy tube
KR20010072424A (en) Selective case hardening processes at low temperature
US5328524A (en) Process for the surface oxidation of a part composed of passivatable metal, and fuel assembly elements composed of metal alloy covered with a protective oxide layer
US20200075182A1 (en) Nuclear fuel rod for fast reactors including metallic fuel slug coated with protective coating layer and fabrication method thereof
US4695476A (en) Process for coating the internal surface of zirconium tubes with neutron absorbers
US20180366234A1 (en) Cladding for a fuel rod for a light water reactor
JP4515637B2 (en) Absorber for nuclear reactor
US8699655B2 (en) Method of improving wear and corrosion resistance of rod control cluster assemblies
JPH01180499A (en) Stainless steel tubular element having improved wear resistance
RU2495154C2 (en) Application method onto metal part of complex coating for protection of part against hydrogen corrosion, which consists of many microlayers
JP4634709B2 (en) Method for reducing corrosion of reactor structural materials
JP2012167981A (en) Method for reducing exposure in nuclear power plant, fuel assembly, and nuclear power plant
JP3749731B2 (en) Adjustment of oxide film conductivity to maintain low corrosion potential in high temperature water
US6415010B2 (en) Catalytic hydrogen peroxide decomposer in water-cooled reactors
US9889467B2 (en) Method for thermochemically treating a part while masking a portion and corresponding mask
KR20140093582A (en) Nuclear fuel rod for fast nuclear reactor having metallic fuel slugs coated with protective films and fabrication method thereof
JP2001081542A (en) Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant
Nagano et al. Clarification of stress corrosion cracking mechanism on nickel base Alloys in Steam Generators for their Long Lifetime Assurance
US3880681A (en) Method for the transfer of a gas of high purity
JPH0868885A (en) Clad for fast breeder reactor oxide fuel
JP2005213538A (en) Surface treatment method of heat transfer tube of steam generator for nuclear reactor
JPH095485A (en) Nuclear fuel cladding tube and manufacture thereof
JPH0428869A (en) Production of surface modified zirconium alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11