JPH01172792A - Radiation detector and is manufacture - Google Patents
Radiation detector and is manufactureInfo
- Publication number
- JPH01172792A JPH01172792A JP62332334A JP33233487A JPH01172792A JP H01172792 A JPH01172792 A JP H01172792A JP 62332334 A JP62332334 A JP 62332334A JP 33233487 A JP33233487 A JP 33233487A JP H01172792 A JPH01172792 A JP H01172792A
- Authority
- JP
- Japan
- Prior art keywords
- scintillator
- photodiode
- layer
- electrode
- radiation detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 239000010410 layer Substances 0.000 claims description 20
- 239000000853 adhesive Substances 0.000 claims description 15
- 230000001070 adhesive effect Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000012790 adhesive layer Substances 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、X線CT装置等に利用される放射線検出器お
よびその製造方法に関し、特に隣接チャネル間のクロス
トークがなく、高いSIN比で検出感度が高く、実装時
における特性劣化がなく、実装の容易な放射線検出器お
よびその製造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a radiation detector used in an X-ray CT device, etc., and a method for manufacturing the same, and in particular, to a radiation detector that has no crosstalk between adjacent channels and has a high SIN ratio. The present invention relates to a radiation detector with high detection sensitivity, no characteristic deterioration during mounting, and easy mounting, and a method for manufacturing the same.
CT″fA置用固体横用固体検出素子なものとしては、
シンチレータとフォトダイオードを組合せたものがある
。近年非晶質材料の応用研究の進歩により、−上記フォ
トダイオードとして非晶質シリコンフォトダイオードを
用いることが可能になりつつある。この種の技術に関連
する文献としては。Solid-state detection elements for solid-state horizontal use for CT″fA are as follows:
There are some that combine a scintillator and a photodiode. Due to recent advances in applied research on amorphous materials, it is becoming possible to use an amorphous silicon photodiode as the photodiode. Literature related to this type of technology is as follows.
例えば、特開昭62−71881号公報、同62−43
585号公報、同62−235588号公報等を挙げる
ことができる。For example, JP-A-62-71881, JP-A-62-43
No. 585, No. 62-235588, and the like can be mentioned.
また、結晶フォトダイオードを用いた固体検出器として
は1.特開昭60−263456号公報に開示されたも
のがある。In addition, as a solid-state detector using a crystal photodiode, 1. There is one disclosed in Japanese Unexamined Patent Publication No. 60-263456.
一例として、上記特開昭62−71881号公報に開示
されているCT装置用固体検出素子について述べれば、
この固体検出素子においては、少なくともシンチレータ
の放射線入射面に対向する面に光電変換素子を形成した
放射線検出素子を多数密着して円形状に配列するとして
いる。As an example, the solid state detection element for CT apparatus disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 62-71881 will be described as follows.
In this solid-state detection element, a large number of radiation detection elements each having a photoelectric conversion element formed on at least the surface facing the radiation incident surface of the scintillator are arranged in a circular shape in close contact with each other.
上記従来技術では、多数素子を精度良く効率的に実装す
る点について配慮がなされておらず、放射線検出素子を
多数密着して円形状に配列するようにしているため、隣
接素子間の位置ずれが些こり易いという重大な問題があ
った。*た、製造工程に高度の熟練技術を要することか
ら、製造コストが著しく高くなるという問題があった。In the above-mentioned conventional technology, no consideration is given to the accurate and efficient mounting of multiple elements, and a large number of radiation detection elements are arranged in close contact in a circular shape, resulting in misalignment between adjacent elements. There was a serious problem that was easily overlooked. *Also, since the manufacturing process requires highly skilled technology, there is a problem in that the manufacturing cost becomes extremely high.
本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来の放射線検出器における上述の如き
問題を解消し、多数の素子を精度良く、かつ、効率的に
実装可能とする放射線検出器およびその製造方法を提供
することにある。The present invention has been made in view of the above circumstances, and its purpose is to solve the above-mentioned problems in conventional radiation detectors and to enable accurate and efficient mounting of a large number of elements. An object of the present invention is to provide a radiation detector and a method for manufacturing the same.
本発明の上述、の目的は、少なくとも、複数のシンチレ
ータと該シンチレータの各々に密着形成された複数のフ
ォトダイオードおよび前記シンチレータ群を支持する基
板を有、する、複数素子が一体化された放射線検出器に
おいて、前記基板は前記シンチレータおよび前記フォト
ダイオードとに実質的な絶縁接着材により固着されてお
り、また、前記各シンチレータ間、には、光もしくは放
射線を遮蔽するための遮蔽板が存在し、該遮蔽板の端部
は少なくとも前記絶縁接着材層まで達し、かつ、前記フ
ォトダイオードには接しないように構成されたことを特
徴とする放射線検出器、および、シンチレータ上に、少
なくとも1.透明電極、非晶質半導体層および電極を形
成し、これを絶縁接着材により基板に固着する放射線検
出器の製造方法において、前記シンチレータとしてシン
チレータウェハを用い、該シンチレータウェハ上に、少
なくとも、前記透明電極、非晶質半導体層および電極を
パターン形成し、これを絶縁接着材により基板に固着し
た後、前記シンチレータウェハ側から所定の深さまで切
込みを入れ、前記シンチレータ。The above-mentioned object of the present invention is to provide a radiation detection device in which a plurality of elements are integrated, which comprises at least a plurality of scintillators, a plurality of photodiodes formed in close contact with each of the scintillators, and a substrate supporting the scintillator group. In the device, the substrate is fixed to the scintillator and the photodiode with a substantially insulating adhesive, and a shielding plate for shielding light or radiation is present between each scintillator, A radiation detector characterized in that an end of the shielding plate reaches at least the insulating adhesive layer and does not touch the photodiode, and at least 1. In the method for manufacturing a radiation detector, in which a transparent electrode, an amorphous semiconductor layer, and an electrode are formed and fixed to a substrate using an insulating adhesive, a scintillator wafer is used as the scintillator, and at least the transparent After patterning an electrode, an amorphous semiconductor layer, and an electrode, and fixing them to a substrate with an insulating adhesive, a cut is made to a predetermined depth from the scintillator wafer side to form the scintillator.
透明電極、非晶質半導体層および電極を所定の大きさに
切断するとともに、該切込み内に光もしくは放射線を遮
蔽するための遮蔽板を挿入することを特徴とする放射線
検出器の製造方法によって達成される。Achieved by a radiation detector manufacturing method characterized by cutting a transparent electrode, an amorphous semiconductor layer, and an electrode into predetermined sizes, and inserting a shielding plate for shielding light or radiation into the cut. be done.
本発明に係わる放射線検出器においては、シンチレータ
ウェハ上に、少なくとも、透明電極、非晶質半導体層お
よび電極をパターン形成し、これを絶縁接着材により基
板に固着した後、前記シンチレータウェハ側から所定の
深さまで切込みを入れ、前記シンチレータ、透明電極、
非晶質半導体層および電極を所定の大きさに切断すると
ともに該切込み内に光もしくは放射線を遮蔽するための
遮蔽板を挿入するようにして放射線検出器を製造してい
るので、多数のシンチレータを、予め規則的に整列した
形で取扱うことができ、効率的な実装が可能となるもの
である。In the radiation detector according to the present invention, at least a transparent electrode, an amorphous semiconductor layer, and an electrode are patterned on a scintillator wafer, and after this is fixed to a substrate with an insulating adhesive, a predetermined pattern is formed from the scintillator wafer side. The scintillator, the transparent electrode,
Radiation detectors are manufactured by cutting the amorphous semiconductor layer and electrodes into predetermined sizes and inserting a shielding plate for shielding light or radiation into the cut, so a large number of scintillators can be used. , which can be handled in a regularly arranged form in advance, allowing for efficient implementation.
〔実施例〕
以下1本発明の実施例を図面に基づいて詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図は5本発明の一実施例である2チヤンネルの放射
線検出素子の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of a two-channel radiation detection element which is an embodiment of the present invention.
本実施例に示す放射線検出素子のシンチレータ2は1例
えば、Gd2O□S系セラミックシンチレータ、CdW
O,結晶シンチレータで、1素子の大きさは、例えば、
30mmX 3mmX 1mmである。The scintillator 2 of the radiation detection element shown in this embodiment is, for example, a Gd2O□S ceramic scintillator, a CdW
O, crystal scintillator, the size of one element is, for example,
The size is 30mm x 3mm x 1mm.
上記シンチレータ2の下面には、必要に応じて保護膜3
(例えば、Si○2透明膜)を形成し、この保護膜3上
に、シンチレータの発光を検知するためのa−8iフオ
トダイオードを形成する。すなわち、透明電極4(例え
ば、ITO,Sn○21 S n○2/IT02層膜)
を形成し、更に、p型a−8i層5゜j型a−3i層6
.n型a−5i層7を順次形成し、最後に電極8を形成
する。電気信号は、上記透明電極4と電極8から得る。A protective film 3 is provided on the bottom surface of the scintillator 2 as necessary.
(For example, a Si○2 transparent film) is formed, and on this protective film 3, an a-8i photodiode for detecting light emission from the scintillator is formed. That is, the transparent electrode 4 (for example, ITO, Sn○21 S n○2/IT02 layer film)
Furthermore, a p-type a-8i layer 5゜j-type a-3i layer 6
.. An n-type a-5i layer 7 is formed in sequence, and finally an electrode 8 is formed. Electric signals are obtained from the transparent electrode 4 and electrode 8.
このフォトダイオード部、特に半導体部5〜7および電
極8は、シンチレータを分離する遮蔽板1とは、絶縁接
着材層9を介して接しており、電気的、空間的に両者は
隔っている。このため、遮蔽板1の組込み時にフォトダ
イオードを損傷することがなく、実装時の素子特性劣化
が起こりにくい構造となっている。信号電流に遮蔽板1
を介して雑音電流が混入しないという利点もある。The photodiode section, particularly the semiconductor sections 5 to 7 and the electrode 8, are in contact with the shielding plate 1 that separates the scintillator via an insulating adhesive layer 9, and are electrically and spatially separated from each other. . Therefore, the photodiode is not damaged when the shielding plate 1 is assembled, and the structure is such that deterioration of element characteristics during mounting is unlikely to occur. Shielding plate 1 for signal current
Another advantage is that no noise current is introduced through the circuit.
また、遮蔽板1は、シンチレータ2および絶縁接着材層
9の一部分に形成された溝11に挿入・固着されており
、各シンチレータから発する光が隣接するチャネルのフ
ォトダイオードに到達しないようにしである。これによ
り、隣接チャネル間のクロストークを防ぐことができる
。Further, the shielding plate 1 is inserted into and fixed to a groove 11 formed in a part of the scintillator 2 and the insulating adhesive layer 9, and prevents light emitted from each scintillator from reaching the photodiode of an adjacent channel. . This can prevent crosstalk between adjacent channels.
遮蔽板1の構造としては、例えば、タングステンやモリ
ブデンの薄板(厚さ50〜150μm)が良く、必要に
応じて光反射膜を該薄板表面に形成しても良い。上記溝
11の間は、遮蔽板1の厚さに比べてわずかに(例えば
、10〜20μm)広くする。The structure of the shielding plate 1 may be, for example, a thin plate of tungsten or molybdenum (50 to 150 μm thick), and a light reflecting film may be formed on the surface of the thin plate if necessary. The space between the grooves 11 is made slightly wider (for example, 10 to 20 μm) than the thickness of the shielding plate 1.
絶縁接着材層9(例えば、エポキシ樹脂等)は、上記シ
ンチレータ2およびフォトダイオード群を基板10に固
着する目的のものであり、これによりこれらの検出素子
群は、一体化構造となっているものである。絶縁接着材
層9の他の目的は、フォトダイオードに用いである半導
体層5〜7の保護膜として作用することである。すなわ
ち、絶縁接着材層9により、半導体層5〜7の大気放置
時に起こる特性劣化を防ぐことができる。The insulating adhesive layer 9 (for example, epoxy resin, etc.) is for the purpose of fixing the scintillator 2 and the photodiode group to the substrate 10, so that these detection element groups have an integrated structure. It is. Another purpose of the insulating adhesive layer 9 is to act as a protective film for the semiconductor layers 5 to 7 used in photodiodes. That is, the insulating adhesive layer 9 can prevent characteristic deterioration that occurs when the semiconductor layers 5 to 7 are left in the atmosphere.
また、絶縁接着材層9として、シンチレータ光に対して
不透明な接着材を用いると、接着材中にわずかに回り込
む光をも除去できるので、前述のクロストークをより一
層低減できる。Further, if an adhesive material that is opaque to scintillator light is used as the insulating adhesive layer 9, it is possible to remove even a slight amount of light that goes around into the adhesive material, thereby further reducing the above-mentioned crosstalk.
第2図は1本発明の他の実施例を示すものであり、この
例では、遮蔽板1がシンチレータ2.絶縁接着材層9を
完全に分離しており、その先端は基板10内に達してい
る。この構造によれば、隣接素子間のクロス1−一りは
、更に低減できる。FIG. 2 shows another embodiment of the present invention, in which the shielding plate 1 is a scintillator 2. The insulating adhesive layer 9 is completely separated, and its tip reaches into the substrate 10. According to this structure, the number of crosses between adjacent elements can be further reduced.
次に、第1図、第2図に示した実施例の放射線検出素子
の製造方法の一例を、第3図を用いて説明する。Next, an example of a method for manufacturing the radiation detection element of the embodiment shown in FIGS. 1 and 2 will be described with reference to FIG. 3.
まず、第3図(a)に示す如く、−枚のシンチレータウ
ェーハ2aに多数(図では2個)のa−3iフオトダイ
オードを形成する。次に、第3図(b)に示す如く、絶
縁接着材9により基板10と上記シンチレータウェーハ
2aを接着する。これにより、シンチレータウェーハ2
aは、機械的強度が著しく増加し、次に行う切削加工工
程でシンチレータの破損を防ぐことができる。また、フ
ォトダイオードも、絶縁接着材9により保護される。First, as shown in FIG. 3(a), a large number (two in the figure) of a-3i photodiodes are formed on - scintillator wafers 2a. Next, as shown in FIG. 3(b), the substrate 10 and the scintillator wafer 2a are bonded together using an insulating adhesive 9. As a result, the scintillator wafer 2
(a) has a significantly increased mechanical strength and can prevent damage to the scintillator in the subsequent cutting process. Further, the photodiode is also protected by the insulating adhesive 9.
次工程である切削加工工程後の素子形状の一例を、第3
図(c)に示す。切削は1例えば、ダイヤモンドカッタ
やワイヤソー、バンドソー、ダイシングソーにより、容
易に行うことができる。また、溝11の位置精度は、工
作位置合わせの精度で決まり、5〜10μm程度の精度
は容易に得られる。An example of the element shape after the cutting process, which is the next process, is shown in the third
Shown in Figure (c). Cutting can be easily performed using, for example, a diamond cutter, wire saw, band saw, or dicing saw. Further, the positional accuracy of the groove 11 is determined by the accuracy of machining alignment, and an accuracy of about 5 to 10 μm can be easily obtained.
この溝11に遮蔽板1を挿入固定する。固定方法として
は1例えば、遮蔽板1の両端部を接着剤で固定する方法
がある。また、遮蔽板挿入用溝11に接合剤を流し込む
ことも不可能ではない。このようにして、第1図、第2
図に示した構造の検出素子を製造することができる。The shielding plate 1 is inserted and fixed into this groove 11. As a fixing method, for example, there is a method of fixing both ends of the shielding plate 1 with an adhesive. Furthermore, it is not impossible to pour a bonding agent into the shield plate insertion groove 11. In this way, Figures 1 and 2
A detection element having the structure shown in the figure can be manufactured.
第4図は、本発明の更に他の実施例を示すものである。FIG. 4 shows yet another embodiment of the present invention.
この実施例は、先に示した実施例とは異なり、a−3i
フオトダイオードを形成した後、絶縁保護膜12(例え
ば、PIQやSiO□)をコーティングしであることで
ある。この方法によれば、絶縁接着材層9は必ずしも完
全な絶縁材料である必要がなくなる。すなわち、半導体
保護膜と接着材層の二層構造を以って、実質的に絶縁接
着材層の機能をもたせるわけである。This example differs from the previous example in that a-3i
After forming the photodiode, an insulating protective film 12 (for example, PIQ or SiO□) is coated. According to this method, the insulating adhesive layer 9 does not necessarily need to be a completely insulating material. That is, the two-layer structure of the semiconductor protective film and the adhesive layer substantially functions as an insulating adhesive layer.
本実施例の特徴は、a−8i膜が保護膜により保護され
ているので、接着工程を待たずに切削等の機械加工を行
っても、フォトダイオード部の特性劣化を防げる点にあ
る。また、接着材としての選択範囲が広がる等の利点も
ある。The feature of this embodiment is that since the a-8i film is protected by a protective film, deterioration of the characteristics of the photodiode portion can be prevented even if machining such as cutting is performed without waiting for the adhesion process. It also has the advantage of widening the selection range of adhesive materials.
以上述べた如く1本発明によれば、シンチレータウェハ
上に、少なくとも、透明電極、非晶質半導体層および電
極をパターン形成し、これを絶縁接着材により基板に固
着した後、前記シンチレータウェハ側から所定の深さま
で切込みを入れ、前記シンチレータ、透明電極、非晶質
半導体層および電極を所定の大きさに切断するとともに
該切込み内に光もしくは放射線を遮蔽するための遮蔽板
を挿入するようにして放射線検出器を製造するようにし
たので、多数の素子を精度良く、かつ、効率的に実装可
能とする放射線検出器およびその製造方法を実現できる
とい、う顕著な効果を奏するものである。As described above, according to the present invention, at least a transparent electrode, an amorphous semiconductor layer, and an electrode are patterned on a scintillator wafer, and after this is fixed to a substrate with an insulating adhesive, A cut is made to a predetermined depth, and the scintillator, transparent electrode, amorphous semiconductor layer, and electrode are cut to a predetermined size, and a shielding plate for blocking light or radiation is inserted into the cut. Since the radiation detector is manufactured, it is possible to realize a radiation detector and a method for manufacturing the same in which a large number of elements can be mounted accurately and efficiently, which is a remarkable effect.
第1図は本発明の一実施例である2チヤンネルの放射線
検出素子の構造を示す断面図、第2図。
第4図は本発明の他の実施例を示す断面図、第3図(a
)〜(c)は本発明の一実施例である2チヤンネルの放
射線検出素子の製造工程の各段階における素子の構造を
示す断面図である。
1:遮蔽板、2:シンチレータ、3:保護膜、4:透明
電極、5:p型a−8i膜M、6 : i型a−8i層
、7:n型a−8i層、8:電極、9:絶縁接着材(層
)、10:基板、11:溝。
第 1 図
第 2 図
第 3 図
(a)FIG. 1 is a sectional view showing the structure of a two-channel radiation detection element according to an embodiment of the present invention, and FIG. FIG. 4 is a sectional view showing another embodiment of the present invention, and FIG.
) to (c) are cross-sectional views showing the structure of a two-channel radiation detection element at each stage of the manufacturing process, which is an embodiment of the present invention. 1: Shielding plate, 2: Scintillator, 3: Protective film, 4: Transparent electrode, 5: P-type a-8i film M, 6: I-type a-8i layer, 7: N-type a-8i layer, 8: Electrode , 9: Insulating adhesive (layer), 10: Substrate, 11: Groove. Figure 1 Figure 2 Figure 3 (a)
Claims (1)
の各々に密着形成された複数のフォトダイオードおよび
前記シンチレータ群を支持する基板を有する、複数素子
が一体化された放射線検出器において、前記基板は前記
シンチレータおよび前記フォトダイオードとに実質的な
絶縁接着材により固着されており、また、前記各シンチ
レータ間には、光もしくは放射線を遮蔽するための遮蔽
板が存在し、該遮蔽板の端部は少なくとも前記絶縁接着
材層まで達し、かつ、前記フォトダイオードには接しな
いように構成されたことを特徴とする放射線検出器。 2、前記遮蔽板が、前記基板内まで達していることを特
徴とする、特許請求の範囲第1項記載の放射線検出器。 3、シンチレータ上に、少なくとも、透明電極、非晶質
半導体層および電極を形成し、これを絶縁接着材により
基板に固着する放射線検出器の製造方法において、前記
シンチレータとしてシンチレータウェハを用い、該シン
チレータウェハ上に、少なくとも、前記透明電極、非晶
質半導体層および電極をパターン形成し、これを絶縁接
着材により基板に固着した後、前記シンチレータウェハ
側から所定の深さまで切込みを入れ、前記シンチレータ
、透明電極、非晶質半導体層および電極を所定の大きさ
に切断するとともに、該切込み内に光もしくは放射線を
遮蔽するための遮蔽板を挿入することを特徴とする放射
線検出器の製造方法。[Claims] 1. A radiation detector integrated with a plurality of elements, which includes at least a plurality of scintillators, a plurality of photodiodes formed in close contact with each of the scintillators, and a substrate supporting the scintillator group, The substrate is fixed to the scintillator and the photodiode with a substantially insulating adhesive, and a shielding plate for shielding light or radiation is present between each scintillator, and the shielding plate is A radiation detector characterized in that an end portion reaches at least the insulating adhesive layer and does not touch the photodiode. 2. The radiation detector according to claim 1, wherein the shielding plate extends into the substrate. 3. A method for manufacturing a radiation detector, in which at least a transparent electrode, an amorphous semiconductor layer, and an electrode are formed on a scintillator, and these are fixed to a substrate with an insulating adhesive, using a scintillator wafer as the scintillator; After patterning at least the transparent electrode, the amorphous semiconductor layer, and the electrode on the wafer and fixing it to the substrate with an insulating adhesive, a cut is made to a predetermined depth from the scintillator wafer side, and the scintillator, A method for manufacturing a radiation detector, which comprises cutting a transparent electrode, an amorphous semiconductor layer, and an electrode into a predetermined size, and inserting a shielding plate for shielding light or radiation into the cut.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62332334A JP2611295B2 (en) | 1987-12-28 | 1987-12-28 | Radiation detector and manufacturing method thereof |
US07/261,420 US5041729A (en) | 1987-10-28 | 1988-10-24 | Radiation detector and manufacturing process thereof |
DE3836835A DE3836835A1 (en) | 1987-10-28 | 1988-10-28 | RADIATION DETECTOR AND PRODUCTION METHOD DAFUER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62332334A JP2611295B2 (en) | 1987-12-28 | 1987-12-28 | Radiation detector and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01172792A true JPH01172792A (en) | 1989-07-07 |
JP2611295B2 JP2611295B2 (en) | 1997-05-21 |
Family
ID=18253800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62332334A Expired - Lifetime JP2611295B2 (en) | 1987-10-28 | 1987-12-28 | Radiation detector and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611295B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4982096A (en) * | 1988-01-06 | 1991-01-01 | Hitachi Medical Corporation | Multi-element radiation detector |
WO1999066349A1 (en) * | 1998-06-18 | 1999-12-23 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and method for manufacturing the same |
WO1999066348A1 (en) * | 1998-06-18 | 1999-12-23 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and method for producing the same |
JP2003004855A (en) * | 2001-06-26 | 2003-01-08 | Hamamatsu Photonics Kk | Radiation detector |
WO2009041339A1 (en) * | 2007-09-27 | 2009-04-02 | Ishida Co., Ltd. | X-ray line sensor module and x-ray foreign material inspecting apparatus |
WO2009083920A1 (en) * | 2007-12-28 | 2009-07-09 | Koninklijke Philips Electronics N.V. | Electrical isolation of x-ray semiconductor imager pixels |
WO2010004453A3 (en) * | 2008-06-16 | 2010-06-10 | Koninklijke Philips Electronics N.V. | Radiation detector and a method of manufacturing a radiation detector |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101864963B1 (en) * | 2016-12-19 | 2018-06-05 | 경희대학교 산학협력단 | Radiation detector and method for manufacturing of the same |
WO2018117485A1 (en) * | 2016-12-19 | 2018-06-28 | 경희대학교산학협력단 | Radiation detector comprising transistor formed on silicon carbide substrate |
-
1987
- 1987-12-28 JP JP62332334A patent/JP2611295B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4982096A (en) * | 1988-01-06 | 1991-01-01 | Hitachi Medical Corporation | Multi-element radiation detector |
USRE39806E1 (en) | 1998-06-18 | 2007-09-04 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and methods of making the same |
WO1999066348A1 (en) * | 1998-06-18 | 1999-12-23 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and method for producing the same |
US6429430B2 (en) | 1998-06-18 | 2002-08-06 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and methods of making the same |
US6469307B2 (en) | 1998-06-18 | 2002-10-22 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and methods of making the same |
WO1999066349A1 (en) * | 1998-06-18 | 1999-12-23 | Hamamatsu Photonics K.K. | Scintillator panel, radiation image sensor, and method for manufacturing the same |
JP2003004855A (en) * | 2001-06-26 | 2003-01-08 | Hamamatsu Photonics Kk | Radiation detector |
WO2009041339A1 (en) * | 2007-09-27 | 2009-04-02 | Ishida Co., Ltd. | X-ray line sensor module and x-ray foreign material inspecting apparatus |
WO2009083920A1 (en) * | 2007-12-28 | 2009-07-09 | Koninklijke Philips Electronics N.V. | Electrical isolation of x-ray semiconductor imager pixels |
US8373134B2 (en) | 2007-12-28 | 2013-02-12 | Koninklijke Philips Electronics N.V. | Electrical isolation of X-ray semiconductor imager pixels |
WO2010004453A3 (en) * | 2008-06-16 | 2010-06-10 | Koninklijke Philips Electronics N.V. | Radiation detector and a method of manufacturing a radiation detector |
JP2011525238A (en) * | 2008-06-16 | 2011-09-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Radiation detector and method for manufacturing the radiation detector |
US8564084B2 (en) | 2008-06-16 | 2013-10-22 | Koninklijke Philips N.V. | Radiation detection and a method of manufacturing a radiation detector |
Also Published As
Publication number | Publication date |
---|---|
JP2611295B2 (en) | 1997-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100407445C (en) | Packaging Structures for Imaging Detectors | |
US5041729A (en) | Radiation detector and manufacturing process thereof | |
EP0087842B1 (en) | Infra-red radiation detectors and their manufacture | |
JPH01172792A (en) | Radiation detector and is manufacture | |
EP0293094A2 (en) | Radiation detector | |
JP3361378B2 (en) | Method for manufacturing semiconductor device | |
US3939555A (en) | Strip type radiation detector and method of making same | |
JP3309618B2 (en) | X-ray CT system | |
JPH01240887A (en) | Radiation detector and manufacture thereof | |
WO2021131758A1 (en) | Semiconductor photodetector | |
JP4335104B2 (en) | Photodiode array and spectrometer | |
JP2002319669A (en) | Backside incident type photodiode and photodiode array | |
JPH05150049A (en) | Radiation detector | |
JP2003004855A (en) | Radiation detector | |
JP6381477B2 (en) | Photodetector | |
US5438200A (en) | Composite photodetector substrate and method of forming the same | |
GB1605321A (en) | Thermal radiation imaging devices and systems | |
JPH01113690A (en) | Radiation detector and manufacture thereof | |
JP2001324572A (en) | Radiation detector and its manufacturing method | |
JPH01303752A (en) | Structure of photosensitive part of solid-state imaging device | |
KR102368900B1 (en) | Multi-color photo detector and method for fabricating the same by integrating with read-out circuit | |
JPS63153857A (en) | Line-like photodetector | |
JP3364989B2 (en) | Avalanche photodiode for split optical sensor | |
JPH1144769A (en) | Semi-conductor radiation detector | |
KR20250018471A (en) | Radiation detectors and radiation detection devices |