JPH01172496A - Improved electroviscous fluid - Google Patents
Improved electroviscous fluidInfo
- Publication number
- JPH01172496A JPH01172496A JP32994787A JP32994787A JPH01172496A JP H01172496 A JPH01172496 A JP H01172496A JP 32994787 A JP32994787 A JP 32994787A JP 32994787 A JP32994787 A JP 32994787A JP H01172496 A JPH01172496 A JP H01172496A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- oily medium
- fine
- hollow
- dielectric particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 71
- 239000010419 fine particle Substances 0.000 claims abstract description 9
- 238000010292 electrical insulation Methods 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 8
- 239000011148 porous material Substances 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract description 6
- 239000007864 aqueous solution Substances 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 5
- 229920002545 silicone oil Polymers 0.000 abstract description 5
- 229920002125 Sokalan® Polymers 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 4
- 239000004584 polyacrylic acid Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 238000012695 Interfacial polymerization Methods 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 abstract description 2
- 238000003980 solgel method Methods 0.000 abstract description 2
- 239000011796 hollow space material Substances 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000003921 oil Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- FWLHAQYOFMQTHQ-UHFFFAOYSA-N 2-N-[8-[[8-(4-aminoanilino)-10-phenylphenazin-10-ium-2-yl]amino]-10-phenylphenazin-10-ium-2-yl]-8-N,10-diphenylphenazin-10-ium-2,8-diamine hydroxy-oxido-dioxochromium Chemical compound O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.Nc1ccc(Nc2ccc3nc4ccc(Nc5ccc6nc7ccc(Nc8ccc9nc%10ccc(Nc%11ccccc%11)cc%10[n+](-c%10ccccc%10)c9c8)cc7[n+](-c7ccccc7)c6c5)cc4[n+](-c4ccccc4)c3c2)cc1 FWLHAQYOFMQTHQ-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- JTBKFHQUYVNHSR-UHFFFAOYSA-N propan-2-yloxyalumane Chemical compound CC(C)O[AlH2] JTBKFHQUYVNHSR-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- -1 silica Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/001—Electrorheological fluids; smart fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D37/00—Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
- F16D37/008—Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being carried by a fluid, to vary viscosity when subjected to electric change, i.e. electro-rheological or smart fluids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電圧制御により粘性変化可能な電気粘性流体
、特に微粒子の沈降を抑え長期安定性に優れた電気粘性
流体に関するものであり、クラッチ、バルブ、ショック
アブソーバ−等のアクチュエーターに利用される。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrorheological fluid whose viscosity can be changed by voltage control, particularly an electrorheological fluid which suppresses sedimentation of fine particles and has excellent long-term stability. Used in actuators such as valves, shock absorbers, etc.
シリカ、デンプン、イオン交換樹脂等の含水微粒子ヲ、
トランス油、塩化パラフィン、シリコーン油等の電気絶
縁性油状媒体に分散させた流は電圧印加により瞬間かつ
可逆的に大きく粘度変化する。この現象はウィンズロ−
効果として古くから知られ、クラッチ、バルブ、振動素
子等への応用が検討されている。Water-containing fine particles such as silica, starch, ion exchange resin, etc.
The viscosity of a stream dispersed in an electrically insulating oily medium such as transformer oil, chlorinated paraffin, silicone oil, etc. changes significantly instantaneously and reversibly upon application of a voltage. This phenomenon is explained by Winslow
This effect has been known for a long time, and its application to clutches, valves, vibration elements, etc. is being considered.
電気粘性流体は、このウィンズロ−効果を応用するもの
が主流であり、この効果を高める方法として、これまで
微粒子を中心に多くの提案がなされている0例えば、マ
イカ、ヒル石などのJul造間に金属イオンと極性物質
の水溶液を含有させた粒子(特公昭49−5117号公
fり 、強酸性あるいは強塩基性の含水イオン交換樹脂
粒子(特開昭50−92278号公報)、ポリアクリル
酸のような酸性基をもつ高吸水性の樹脂粒子(特開昭5
3−93186号公報)等の含水微粒子を用いる方法、
また、チタン酸カルシウムなどの強誘電体粒子(J、
Appl、 Physics、 3B(1)67 (1
967) )、ポリ (アセン−キノン)やアニリンブ
ラックなどの有機半導体粒子(特開昭61−21620
2号公報)等の非含水粒子を用いる方法が挙げられる。The mainstream of electrorheological fluids is those that apply this Winslow effect, and as a method to enhance this effect, many proposals have been made so far, mainly using fine particles. Particles containing an aqueous solution of metal ions and polar substances (Japanese Patent Publication No. 49-5117), strongly acidic or strongly basic water-containing ion exchange resin particles (Japanese Patent Application Laid-open No. 50-92278), polyacrylic acid Highly absorbent resin particles with acidic groups such as
3-93186), a method using water-containing fine particles,
In addition, ferroelectric particles such as calcium titanate (J,
Appl, Physics, 3B(1)67 (1
967)), organic semiconductor particles such as poly(acene-quinone) and aniline black (Japanese Patent Application Laid-Open No. 61-21620)
Examples include a method using non-water-containing particles such as Publication No. 2).
これら微粒子を用いた電気粘性流体は各々特徴ある電気
粘性特性を示すものの、いずれも固体粒子を絶縁性油状
媒体に分散させたものであることから、無機質粒子は勿
論のこと有機質粒子を用いたものでも、油状媒体との密
度差の問題から粒子沈降が生じ易く、実用上の大きな問
題の一つとなっている0本発明者らは、この粒子沈降の
問題に対し、様々の方向から実用的な防止方法を検討し
た結果、本発明が最も有効なることを確認した。Each of these electrorheological fluids using microparticles exhibits characteristic electrorheological properties, but since all of them are solid particles dispersed in an insulating oily medium, not only inorganic particles but also organic particles can be used. However, due to the difference in density with the oily medium, particle sedimentation tends to occur, which is one of the major practical problems. As a result of examining prevention methods, it was confirmed that the present invention is the most effective.
粒子の沈降には粒径、油状媒体と粒子の密度差、油状媒
体の粘度が大きく影響する。電気粘性流体ではウィンズ
ロ−効果の面で粒径には限界がありあまり小さくできな
い。粘度についても多くの場合あまり高くはできず、ま
た温度依存性も大きい。The sedimentation of particles is greatly influenced by the particle size, the difference in density between the oily medium and the particles, and the viscosity of the oily medium. In electrorheological fluids, there is a limit to the particle size due to the Winslow effect, and it cannot be made very small. The viscosity cannot be made very high in many cases, and it is also highly temperature dependent.
そこで本発明者らは粒子と媒体の密度差に着目し、これ
を減少させる方法として多くのアイディアをもとに実験
し、本発明が最も高い効果を得られることをIIi!認
した。すなわち、本発明は誘電体微粒子を電気絶縁性に
優れた油状媒体に分散せしめた電気粘性流体において、
誘電体微粒子に媒体を空洞部に浸透させない中空体を使
用することにある。Therefore, the present inventors focused on the density difference between the particles and the medium, and conducted experiments based on many ideas for ways to reduce this difference, and found that the present invention can obtain the highest effect! Approved. That is, the present invention provides an electrorheological fluid in which dielectric fine particles are dispersed in an oily medium with excellent electrical insulation.
The purpose is to use hollow bodies that do not allow the medium to penetrate into the cavities of the dielectric particles.
本発明にいう誘電体微粒子とは、そのもの自体の表面あ
るいは加工された表面が外部電界の印加により分極し粒
子間に静電引力により架橋を形成し、ウィンズロ−効果
を示す粒子をいい、例えば、シリカ、アルミナ、シリカ
−アルミナ、スピネル、ジルコニア、酸化チタン、酸化
バナジウムなどの金属酸化物、アルミニウム、ケイ素、
ニッケル、銅、黒鉛などの金属あるいは炭素(これらは
いづれも表面絶縁化され使用)、チタン酸カルシウム、
チタン酸ストロンチウムなどの強誘電体物質、ポリフッ
化ビニリデン、ポリアミド、イオン交換樹脂などの合成
高分子(これらはいずれも必要に応じ改質あるいは表面
処理され使用)等が挙げられる。これらの粒子の形状は
できるだけ丸みを帯びた球状や楕円球状のものがよく、
特に真球状のものが望ましい0粒径としては1μmから
100μmが好ましいが、1μmより小さいと電気粘性
効果が発現し難く、また100μmより大きいと粒子の
摩耗や破壊が生じ易くなる。The dielectric fine particles referred to in the present invention refer to particles whose surfaces themselves or processed surfaces are polarized by application of an external electric field to form bridges between the particles due to electrostatic attraction, thereby exhibiting the Winslow effect, such as: Metal oxides such as silica, alumina, silica-alumina, spinel, zirconia, titanium oxide, vanadium oxide, aluminum, silicon,
Metals such as nickel, copper, and graphite, or carbon (all of which are used with surface insulation), calcium titanate,
Examples include ferroelectric substances such as strontium titanate, synthetic polymers such as polyvinylidene fluoride, polyamide, and ion exchange resins (all of which are used after being modified or surface-treated as necessary). The shape of these particles is preferably as rounded as possible, spherical or ellipsoidal.
In particular, the zero particle size, which is preferably truly spherical, is preferably from 1 μm to 100 μm, but if it is smaller than 1 μm, it is difficult to exhibit the electrorheological effect, and if it is larger than 100 μm, the particles are likely to wear out or break.
本発明にいう媒体を空洞部に浸透させない中空体の粒子
とは、一つあるいは複数個の空洞をもつ粒子であり、こ
の空洞は油状媒体が浸入しない緻密な壁で囲まれた独立
の空洞である必要がある。In the present invention, the hollow particle that does not allow the medium to penetrate into the cavity is a particle that has one or more cavities, and this cavity is an independent cavity surrounded by a dense wall that does not allow the oily medium to penetrate. There needs to be.
空洞部の粒子に占める適当な比率は、粒子の材質、密度
や粒径、油状媒体の密度、粒子と油状媒体の親和性等に
もよるが通常は20〜80容量%である。この比率が高
すぎると粒子の機械的な強度に劣り、また低すぎると空
洞の効果が少ない。中空体粒子、特にマイクロバルーン
の代表的な製造方法については、化学技術誌MOL、
19 (6) 、 21 (1981)あるいは工業技
術ライブラリー25″マイクロカプセル” (日刊工業
新聞社)に記載された種々の方法が挙げられる。また、
予め発泡剤や空洞形成核剤を混合し粒子成形時あるいは
成形後、複数の空洞や空孔を形成せしめる方法も利用さ
れる。これらの方法の内で粒子の壁面が多孔質となり油
状媒体が中空体内部に浸透するものもあるが、このよう
な多孔質壁の中空体粒子の場合には、表面溶融や表面コ
ーティングにより封孔させる必要がある。The appropriate ratio of the cavity to the particles depends on the material, density and diameter of the particles, the density of the oily medium, the affinity between the particles and the oily medium, and is usually 20 to 80% by volume. If this ratio is too high, the mechanical strength of the particles will be poor, and if this ratio is too low, the effect of cavities will be small. For typical manufacturing methods of hollow particles, especially microballoons, see the chemical technology magazine MOL,
19 (6), 21 (1981) or Industrial Technology Library 25''Microcapsules'' (Nikkan Kogyo Shimbun). Also,
A method is also used in which a foaming agent or a cavity-forming nucleating agent is mixed in advance and a plurality of cavities or pores are formed during or after particle molding. Among these methods, there are methods in which the walls of the particles are made porous and the oily medium penetrates inside the hollow body, but in the case of hollow particles with such porous walls, the pores cannot be sealed by surface melting or surface coating. It is necessary to do so.
また特殊な例として、中空体粒子表面に電気粘性効果を
発現させる物質を積層させる、いわゆる複合粒子として
の使用も可能である。As a special example, it is also possible to use a so-called composite particle in which a substance that exhibits an electrorheological effect is laminated on the surface of the hollow particle.
一方、本発明に使用される油状媒体は、スピンドル油、
トランス油、(塩化)パラフィン、ナフテン油、芳香族
カルボン酸高級アルキルエステル、シリコーン油、フッ
素系油、ポリハロフェニルアルキルエーテル等のが公知
の代表例として挙げられるが、基本的には電気絶縁性、
耐熱性、安定性(非反応性)に優れたものであればいづ
れも使用可能であるが、実用的には更に、低粘度、高沸
点、低蒸気圧、低凝固点、高密度、低粘度温度依存性、
高疎水性、低毒性、低コスト等の性能を有することが好
ましい。On the other hand, the oily medium used in the present invention includes spindle oil,
Typical examples include transformer oil, (chlorinated) paraffin, naphthenic oil, aromatic carboxylic acid higher alkyl ester, silicone oil, fluorine oil, polyhalophenyl alkyl ether, etc., but basically they are electrically insulating. ,
Any material with excellent heat resistance and stability (non-reactivity) can be used, but in practical terms, materials with low viscosity, high boiling point, low vapor pressure, low freezing point, high density, and low viscosity temperature are required. Dependence,
It is preferable to have properties such as high hydrophobicity, low toxicity, and low cost.
本発明の目的である電気粘性流体中での粒子の沈降に対
して、中空体粒子と油状媒体の密度差は、粒子の粒径、
形状、表面状態、油状媒体の粘度、粒子との親和性、粘
度温度特性等にもよるが、0.8以下、好ましくは0.
4以下となるよう粒子の空洞率あるいは油状媒体の密度
を調整する必要がある。For sedimentation of particles in an electrorheological fluid, which is the object of the present invention, the density difference between the hollow body particle and the oily medium is determined by the particle size,
Although it depends on the shape, surface condition, viscosity of the oily medium, affinity with particles, viscosity temperature characteristics, etc., it is 0.8 or less, preferably 0.8 or less.
It is necessary to adjust the void ratio of the particles or the density of the oily medium so that it is 4 or less.
粒子と油状媒体の混合体積比率は3対95から50対5
0、好ましくは5対95から30対70の範囲で選ばれ
る。混合された電気粘性流体は、電気絶縁性をあまり低
下させない範囲で防錆、酸化防止、電気粘性効果向上環
の目的で添加剤を使用することができる。The mixing volume ratio of particles and oily medium ranges from 3:95 to 50:5.
0, preferably in the range of 5:95 to 30:70. Additives may be used in the mixed electrorheological fluid for the purpose of preventing rust, preventing oxidation, and improving the electrorheological effect as long as the electrical insulation properties are not significantly reduced.
本発明は、最も多くの研究がなされているにもかかわら
ず沈降が大きな障害の一つであったシリカやアルミナな
どの粒子は勿論のこと、更に密度が高く検討すら諦めら
れていた高密度の金属や無機質の粒子の使用を可能とす
るものであり、粒子の選択範囲を大幅に広げ、新しい系
の電気粘性流体の開発に道を拓くものである。The present invention is applicable not only to particles such as silica and alumina, for which sedimentation has been one of the major obstacles despite the most research, but also to particles of high density, which had even been given up on consideration due to their high density. This enables the use of metal and inorganic particles, greatly expanding the range of particle selection and paving the way for the development of new types of electrorheological fluids.
特に本発明は表面絶縁化した金属粒子を使用した電気粘
性流体に、多くの金属粒子の適応を可能とするものであ
りその有用性は大きい。In particular, the present invention is highly useful because it allows many metal particles to be applied to electrorheological fluids using surface-insulated metal particles.
実施例1
ゾル・ゲル法を用い界面重合で得た球状のシリカ中空粒
子(平均粒径4μm、真比重2.1、平均空洞比率45
容量%)をポリアクリル酸10置火%水溶液に浸漬して
中空粒子壁の細孔内部にこの溶液を含浸させた後、絶乾
させ細孔部を該ポリマーで封孔せしめた。次にこの封孔
された中空粒子を大気中で吸水率5重量%に調温した後
、ジメチルシリコーン〔50センチストークス(25℃
)〕に粒子濃度30容量%で分散させた。1日静置後、
一部に生じた浮遊及び沈降した粒子を分別した後、この
流体の電気粘性を測定した結果、従来の含水イオン交換
樹脂に匹敵する粘性変化とともに、この流体は更に3日
間静置した後も殆んど粒子の沈降は見られず安定であっ
た。なお比較としてポリアクリル酸処理を施さないシリ
カ中空粒子は、粒子内部へのジメチルシリコーンの浸透
のため、半日静置しただけで大部分の粒子が沈降した。Example 1 Spherical silica hollow particles obtained by interfacial polymerization using the sol-gel method (average particle diameter 4 μm, true specific gravity 2.1, average void ratio 45)
% by volume) was immersed in a 10% aqueous solution of polyacrylic acid to impregnate the inside of the pores of the hollow particle wall with this solution, and then dried completely to seal the pores with the polymer. Next, after controlling the temperature of the sealed hollow particles in the air to a water absorption rate of 5% by weight, dimethyl silicone [50 centistokes (25°C
)] at a particle concentration of 30% by volume. After standing still for one day,
After separating the suspended and settled particles, the electroviscosity of this fluid was measured. As a result, the fluid showed a change in viscosity comparable to that of conventional water-containing ion-exchange resins, and the fluid remained stable even after being left for 3 days. It was stable, with no sedimentation of particles observed. As a comparison, most of the silica hollow particles that were not treated with polyacrylic acid settled out after being left standing for half a day due to the penetration of dimethyl silicone into the inside of the particles.
実施例2
発泡剤を混合し融解雲霧成形したガラスバルーン(平均
粒径30μm、粒子密度0.8、平均空洞率65容量%
)を感応化剤(塩化第1スズ水溶液)で処理し水洗した
後、活性化剤(塩化パラジウム水溶液)で処理し水洗し
、続いて無電解ニッケルメッキ液(塩化ニッケル、次亜
リン酸ナトリウム、酢酸ナトリウムの混合水溶液)に浸
漬し90℃で30分間ゆるやかに攪拌しながら、粒子表
面に厚さ約0.3μmのニッケル層を形成した。次にこ
の粒子をイソプロポキシアルミニウム1重量%のトルエ
ン溶液に浸漬し粒子表面に溶液をうずく付着させた後、
0.5重量%の水を含む多量のエタノール中に入れ軽(
攪拌し粒子表面にアルミニウム酸化物の被膜を形成せし
めた。この粒子を窒素雰囲気下300℃で30分間加熱
処理し被膜強度を向上させた。この一連のアルミニウム
酸化被膜形成の工程を3回繰り返すことにより、厚さ約
0.3μmのアルミニウム酸化物被膜をニッケル被膜上
に形成せしめた。このようにして得られた3N構造粒子
をジメチルシリコーン油に粒子濃度20容量%で分散し
電気粘性流体を得た。粒子の見掛は密度は0.98であ
り、ジメチルシリコーン油との差は0.05以下となり
、ごく一部に浮遊が見られるものの3日静置後も殆んど
粒子の沈降はなく均一分散状態を示した。なお、この流
体は常温だけでなく120℃でも良好な電気粘性効果を
発現した。−方、比較の為、この3層構造粒子をフッ素
系絶縁油(デュポン社“KRYTOX”143AY 、
密度1.88)に分散させたものは半日後には粒子の浮
遊が見られた。Example 2 Glass balloon mixed with a blowing agent and melted and atomized (average particle diameter 30 μm, particle density 0.8, average void ratio 65% by volume)
) was treated with a sensitizer (aqueous solution of stannous chloride) and washed with water, then treated with an activator (aqueous palladium chloride solution) and washed with water, and then treated with an electroless nickel plating solution (nickel chloride, sodium hypophosphite, A nickel layer with a thickness of about 0.3 μm was formed on the surface of the particles by immersing them in a mixed aqueous solution of sodium acetate and stirring gently at 90° C. for 30 minutes. Next, the particles were immersed in a toluene solution containing 1% by weight of isopropoxyaluminum to cause the solution to adhere to the particle surface.
Place it in a large amount of ethanol containing 0.5% by weight of water (
The mixture was stirred to form an aluminum oxide film on the particle surface. The particles were heat-treated at 300° C. for 30 minutes in a nitrogen atmosphere to improve the film strength. By repeating this series of steps for forming an aluminum oxide film three times, an aluminum oxide film with a thickness of about 0.3 μm was formed on the nickel film. The thus obtained 3N structured particles were dispersed in dimethyl silicone oil at a particle concentration of 20% by volume to obtain an electrorheological fluid. The apparent density of the particles is 0.98, and the difference from that of dimethyl silicone oil is less than 0.05.Although some floating is seen in a small part, the particles are uniform with almost no settling even after 3 days of standing. It showed a dispersed state. Note that this fluid exhibited good electrorheological effects not only at room temperature but also at 120°C. - For comparison, these three-layer structure particles were mixed with fluorine-based insulating oil (DuPont "KRYTOX" 143AY,
When the particles were dispersed at a density of 1.88), floating particles were observed after half a day.
特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.
Claims (1)
しめた電気粘性流体において、誘電体微粒子が、空洞部
に媒体が浸透しない中空体からなる粒子であることを特
徴とする電気粘性流体。An electrorheological fluid in which dielectric fine particles are dispersed in an oily medium having excellent electrical insulation properties, wherein the dielectric fine particles are particles consisting of a hollow body in which the medium does not penetrate into cavities.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32994787A JPH01172496A (en) | 1987-12-28 | 1987-12-28 | Improved electroviscous fluid |
US07/209,807 US5607617A (en) | 1987-06-29 | 1988-06-22 | Electroviscous fluids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32994787A JPH01172496A (en) | 1987-12-28 | 1987-12-28 | Improved electroviscous fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01172496A true JPH01172496A (en) | 1989-07-07 |
Family
ID=18227041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32994787A Pending JPH01172496A (en) | 1987-06-29 | 1987-12-28 | Improved electroviscous fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01172496A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291194A (en) * | 1988-09-28 | 1990-03-30 | Tonen Corp | Nonaqueous electroviscous fluid |
US5320770A (en) * | 1992-04-27 | 1994-06-14 | Dow Corning Corporation | Electrorheological (ER) fluid based on amino acid containing metal polyoxo-salts |
US5435932A (en) * | 1991-10-10 | 1995-07-25 | The Lubrizol Corporation | Electrorheological fluids containing eletronically conductive polymers |
JP2009540237A (en) * | 2006-06-15 | 2009-11-19 | 中國科學院物理研究所 | Electrorheological fluid electrode plate with modified surface |
DE102011018177A1 (en) | 2011-04-19 | 2012-10-25 | Raino Petricevic | Paste i.e. electro-rheological polishing paste, for use in e.g. controllable rotary damper, has solid particles wetted by isolation liquid and/or slip agent and surrounded by plastic and/or structure-viscous material |
CN108504427A (en) * | 2018-05-15 | 2018-09-07 | 国网山东省电力公司荣成市供电公司 | A kind of nanometer particle-modified transformer oil and preparation method thereof |
-
1987
- 1987-12-28 JP JP32994787A patent/JPH01172496A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291194A (en) * | 1988-09-28 | 1990-03-30 | Tonen Corp | Nonaqueous electroviscous fluid |
US5435932A (en) * | 1991-10-10 | 1995-07-25 | The Lubrizol Corporation | Electrorheological fluids containing eletronically conductive polymers |
US5320770A (en) * | 1992-04-27 | 1994-06-14 | Dow Corning Corporation | Electrorheological (ER) fluid based on amino acid containing metal polyoxo-salts |
JP2009540237A (en) * | 2006-06-15 | 2009-11-19 | 中國科學院物理研究所 | Electrorheological fluid electrode plate with modified surface |
DE102011018177A1 (en) | 2011-04-19 | 2012-10-25 | Raino Petricevic | Paste i.e. electro-rheological polishing paste, for use in e.g. controllable rotary damper, has solid particles wetted by isolation liquid and/or slip agent and surrounded by plastic and/or structure-viscous material |
CN108504427A (en) * | 2018-05-15 | 2018-09-07 | 国网山东省电力公司荣成市供电公司 | A kind of nanometer particle-modified transformer oil and preparation method thereof |
CN108504427B (en) * | 2018-05-15 | 2021-04-09 | 国网山东省电力公司荣成市供电公司 | Nanoparticle modified transformer oil and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6397694A (en) | Electroviscous fluid | |
Lee et al. | Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles | |
JPH023711A (en) | Electric field reactive fluid | |
JPH01170693A (en) | Electric fluidized fluid | |
US5702630A (en) | Fluid having both magnetic and electrorheological characteristics | |
JPH07103392B2 (en) | Electrorheological fluid | |
JPH01172496A (en) | Improved electroviscous fluid | |
EP0361931A1 (en) | Non-aqueous electro-rheological fluid | |
EP0394049A1 (en) | Electrorheological fluids and preparation of particles useful therein | |
US5695678A (en) | Electrorheological fluid composition containing inorganic/organic composite particles | |
JPH02240197A (en) | Electroviscous fluid | |
JPH01164823A (en) | Electric viscous fluid | |
US5607617A (en) | Electroviscous fluids | |
KR100593483B1 (en) | Electro-fluidic fluid comprising polyaniline / titanium dioxide composite as conductive particles and method for producing same | |
JPH03119098A (en) | Electroviscous fluid | |
JPH03160094A (en) | Easily dispersible electroviscous fluid | |
JPH02235994A (en) | Electroviscous fluid | |
JPH02169695A (en) | Electroviscous fluid | |
US6277306B1 (en) | Electro-rheological fluid having high dielectric breakdown stength and methods of making and storing the electro-rheological fluid | |
JPH03166295A (en) | Electro-viscous fluid having improved dispersibility | |
JPH0393898A (en) | Electrically viscous fluid | |
JP2855354B2 (en) | Electrorheological fluid | |
JPH02284991A (en) | Electrorheological fluid composition, granular material used therein and its manufacture | |
JPH0445196A (en) | Electric viscous fluid | |
JPH05239482A (en) | Electroviscous fluid |