[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01178763A - Solenoid-controlled fuel injection valve - Google Patents

Solenoid-controlled fuel injection valve

Info

Publication number
JPH01178763A
JPH01178763A JP33318387A JP33318387A JPH01178763A JP H01178763 A JPH01178763 A JP H01178763A JP 33318387 A JP33318387 A JP 33318387A JP 33318387 A JP33318387 A JP 33318387A JP H01178763 A JPH01178763 A JP H01178763A
Authority
JP
Japan
Prior art keywords
fuel
diffusion element
valve
orifice
annular gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33318387A
Other languages
Japanese (ja)
Inventor
Toru Ishikawa
亨 石川
Akira Terasaki
寺崎 赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33318387A priority Critical patent/JPH01178763A/en
Publication of JPH01178763A publication Critical patent/JPH01178763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To improve the atomization capacity of fuel by installing a second fuel diffusion element in the inner part of a first fuel diffusion element installed at the downstream side of a valve seat. CONSTITUTION:Fuel passing through between a valve body 10 and a valve seat 12 flows into an orifice 17 at the time of valve opening of a fuel injection valve 1 and, after fuel metering and swirling force to the fuel are given by this orifice 17, it is sprayed to a ring void 18. The sprayed fuel is atomozed as repeating its collisions with an inner circumferential surface of a first diffusion element 6 and an outer circumferential surface of a second fuel diffusion element 15 while swirling in the ring void 18 and then it is sprayed at a specified spray angle from an outlet 6a of an injection nozzle 6. With the presence of these fuel diffusion elements 6, 15 like this, collision frequency of the fuel is sharply increasable so that a fuel diffusive effect by a series of collisions can be sufficiently brought out and, what is more, atomization capacity of the fuel is improvable owing to a synergetic effect of diffusion and swirling energy by these collisions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばエンジン等の燃料供給装置に使用され
る電磁式燃料噴射弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electromagnetic fuel injection valve used, for example, in a fuel supply device such as an engine.

〔従来の技術〕[Conventional technology]

電磁式燃料噴射弁は、一般に電磁コイルの励磁(磁気吸
引)、励磁解除(磁気吸引解除)により弁体を往復動さ
せて、弁開閉し、弁開時に燃料の噴射を行なう。また、
このような燃料噴射弁において、燃料の計量、微粒化を
図る場合には、例えば特開昭60−252164号公報
等に開示されるように弁座の下流側に弁軸に対して偏心
、傾斜させたスワールオリフィスを配して行なっている
。すなわち弁開時にスワールオリフィスにて通過燃料を
計量し、且つ旋回力を付与してスワールオリフィスから
出る燃料を噴射ノズル内部で旋回させ、この燃料の旋回
力及び旋回燃料を積極的に拡散素子(例えはノズル内壁
)に衝突させて、燃料を膜状に分散させて燃料の微粒化
を図っている。
Generally, an electromagnetic fuel injection valve opens and closes the valve by reciprocating the valve body by energizing (magnetic attraction) and de-energizing (magnetic attraction release) an electromagnetic coil, and injects fuel when the valve is open. Also,
In such a fuel injection valve, in order to measure and atomize the fuel, it is necessary to install an eccentric or inclined part with respect to the valve shaft on the downstream side of the valve seat, as disclosed in, for example, Japanese Patent Application Laid-Open No. 60-252164. This is done by arranging a swirl orifice. That is, when the valve is opened, the fuel passing through the swirl orifice is metered, and a swirling force is applied to swirl the fuel coming out of the swirl orifice inside the injection nozzle. (inner wall of the nozzle) to disperse the fuel into a film and atomize the fuel.

〔発明が解決しようとする請題〕[Problem to be solved by the invention]

ところで、前述した如きスワールオリフィスを利用した
従来の燃料噴射方式では、衝突による燃料微粒化の効果
は、燃料がスワールオリフィスを出た直後のみてあり、
微粒化へ寄与する効果は、衝突によるものよりも膜状に
分散した燃料の旋回エネルギーの方がはるかに大きい。
By the way, in the conventional fuel injection method using the swirl orifice as described above, the effect of fuel atomization due to collision occurs only immediately after the fuel leaves the swirl orifice.
The effect of contributing to atomization is much greater from the swirling energy of the fuel dispersed in a film than from collisions.

従って、従来の燃料衝突構造によれば、次のような場合
には、それ以」二の燃料微粒化を望むことが技術的に難
しかった。
Therefore, according to the conventional fuel impingement structure, it is technically difficult to achieve further atomization of the fuel in the following cases.

すなわち、近年、使用燃料圧力の」二昇、電磁式燃料噴
射弁の小形化、小噴射量インジェクタ等の開発に伴ない
スワールオリフィスの径小化が図られつつあるが、オリ
フィス径を小さくする程、オリフィスを通過する燃料の
圧損が大きくなり、その分、旋回エネルギー、衝突エネ
ルギーが小さくなる。従ってこのような場合に何らの配
慮がなければ、燃料微粒化性能が低下するといった改善
すべき点があった。
In other words, in recent years, the diameter of the swirl orifice has been reduced due to the increase in the fuel pressure used, the miniaturization of electromagnetic fuel injection valves, and the development of small injection amount injectors. , the pressure drop of the fuel passing through the orifice increases, and the swirling energy and collision energy decrease accordingly. Therefore, in such a case, if no consideration was given, there would be a problem that the fuel atomization performance would deteriorate, which should be improved.

本発明は以上の点に鑑みてなされたものであり、その目
的とするところは、燃料の微粒化性能を向上させ、特に
、使用燃料圧力の」二昇、電磁式燃料噴射弁の小形化、
小噴射量インジェクタ化等に伴なうスワールオリフィス
径の縮小化があっても、微粒化性能を悪化させることが
なく良好な燃料微粒化を図り得る燃料噴射弁を提供する
ことにある。
The present invention has been made in view of the above points, and its purpose is to improve the atomization performance of fuel, particularly to increase the fuel pressure used, to reduce the size of electromagnetic fuel injection valves, and to improve the atomization performance of fuel.
An object of the present invention is to provide a fuel injection valve that can achieve good fuel atomization without deteriorating atomization performance even if the diameter of a swirl orifice is reduced due to the use of small injection amount injectors.

〔課題を解決するための手段〕[Means to solve the problem]

」1記目的は次の手段を採用することで達成される。以
下、本発明の内容の理解を容易にするため、第1図の実
施例の符号を引用して本発明を説明する。
” Objective 1 will be achieved by adopting the following means: Hereinafter, in order to facilitate understanding of the content of the present invention, the present invention will be described with reference to the reference numerals of the embodiment shown in FIG.

すなわち、本発明は、電磁コイル4の励磁、励磁解除に
より弁体10が往復動して力量閉動作を行なう電磁式の
燃料噴射弁であって、弁座12の下流側には、ブ↑開時
に通過する燃料を計量しつつ旋回力を与えるスワールオ
リフィス17及び噴射ノズル6を配してなるものにおい
て、弁座12の下流側に中空筒形の第1の燃料拡散素子
6を設けると共に、この第1の燃料拡散素子6の内部に
筒形突起状の第2の燃料拡散素子15を噴射ノズル出口
6a側に向けて垂設して、この第1.第2の燃料拡散素
子6,15の内外周面間に環状の空隙18を形成し、且
つスワールオリフィス17を、その出口が環状空隙18
に面する状態で第2の燃料拡散素子15に配設して、ス
ワールオリフィス17の出口から環状空隙18に噴出し
た燃料が環状空隙18で旋回しつつ第1の燃料拡散素子
6の内周面と第2の、燃料拡散素子15の外周面とに繰
返し衝突するように設定してなる。
That is, the present invention is an electromagnetic fuel injection valve in which the valve body 10 reciprocates by excitation and de-excitation of the electromagnetic coil 4 to perform a force closing operation. In this device, a swirl orifice 17 and an injection nozzle 6 are disposed to meter the passing fuel and give a swirling force, and a hollow cylindrical first fuel diffusion element 6 is provided on the downstream side of the valve seat 12. A second fuel diffusion element 15 in the form of a cylindrical projection is vertically provided inside the first fuel diffusion element 6 toward the injection nozzle outlet 6a side. An annular gap 18 is formed between the inner and outer circumferential surfaces of the second fuel diffusion elements 6 and 15, and a swirl orifice 17 is formed at the outlet of the annular gap 18.
The fuel ejected from the outlet of the swirl orifice 17 into the annular gap 18 swirls in the annular gap 18 while facing the inner peripheral surface of the first fuel diffusion element 6. and the outer peripheral surface of the second fuel diffusion element 15 so as to repeatedly collide with each other.

〔作用〕[Effect]

このような構成よりなる本発明によれば、燃料噴射弁の
開弁時には、弁体10と弁座12間を通過する燃料がオ
リフィス17に流入し、オリフィス17にて燃料の計量
と燃料に対して旋回力の付与がなされて、環状空隙18
に燃料が射出される。
According to the present invention having such a configuration, when the fuel injection valve is opened, the fuel passing between the valve body 10 and the valve seat 12 flows into the orifice 17, and the orifice 17 measures and controls the fuel. A turning force is applied to the annular gap 18.
Fuel is injected.

そして、環状空隙18に射出した燃料は、環状空隙18
で旋回しつつ、第1の燃料拡散素子6の内周面と第2の
燃料拡散素子15の外周面とに衝突を繰り返しながら微
粒化されて、噴射ノズル6の出口6aから規定の噴霧角
度で噴射される。以」二のように本発明では、第]−2
第2の燃料拡散素子6.15の存在によって燃料の衝突
回数を従来よりも大幅に増加させることができるので、
衝突による燃料の拡散効果を充分に引出すことができ、
この衝突による拡散と旋回エネルギーの両者の相乗作用
によって燃料の微粒化性能を向」ニさせることができる
Then, the fuel injected into the annular gap 18 is
While rotating, the particles are atomized while repeatedly colliding with the inner peripheral surface of the first fuel diffusion element 6 and the outer peripheral surface of the second fuel diffusion element 15, and are atomized from the outlet 6a of the injection nozzle 6 at a specified spray angle. Injected. In the present invention, as shown in ``2'' below,
Due to the presence of the second fuel diffusion element 6.15, the number of fuel collisions can be significantly increased compared to the conventional one.
It is possible to fully utilize the fuel diffusion effect caused by collision,
The synergistic effect of the diffusion and swirling energy caused by this collision can improve the atomization performance of the fuel.

〔実施例〕〔Example〕

本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例たる電磁式燃料噴射弁の縦断
面図、第2図は本実施例の要部断面図、第3図は第2図
のA−A矢視図である。
FIG. 1 is a longitudinal cross-sectional view of an electromagnetic fuel injection valve according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of this embodiment, and FIG. 3 is a view taken along the line A-A in FIG. .

第1図において、1はボ1−ムフイード方式の電線式燃
料噴射弁で、燃料噴射弁]の本体は、コータ2.コア3
.電磁コイル4.弁付可動体5.噴射ノズル6等で構成
される。
In FIG. 1, reference numeral 1 denotes a bom-feed type electric wire type fuel injection valve, and the main body of the fuel injection valve is a coater 2. core 3
.. Electromagnetic coil 4. Movable body with valve 5. It is composed of an injection nozzle 6 and the like.

コア3及び電磁コイル4はヨーク2の内部に同心円状に
配置され、またヨーク2の中央下部側に弁付可動体5.
バルフボデイ13及び噴射ノズル6が組込まれている。
The core 3 and the electromagnetic coil 4 are arranged concentrically inside the yoke 2, and a movable body 5 with a valve is located at the lower center of the yoke 2.
A bulb body 13 and an injection nozzle 6 are incorporated.

弁付可動体5は、リング7、プランジャ8.ロッド9を
塑性流動を利用した結合、または溶接。
The movable body 5 with a valve includes a ring 7, a plunger 8. The rod 9 is joined using plastic flow or welded.

緊迫結合等により一体化し、さらにロッド9にボール(
弁体)10を溶接にて固着してなる。そして、弁付可動
体5全体が燃料通路]1内に所定ス1ヘロークで往復動
てきるように配置され、その−端(プランジャ8)側が
ばね12にて付勢されて、ボール10が電磁コイル4の
オフ時に弁座12に圧接している。弁座12はバルブボ
ディ13内に配され、弁座12の下流側に本実施例の要
部となる中空筒形の第1−の燃料拡散素子(本例では、
噴材ノズルが兼用する)6と第2の燃料拡散素子15が
配設されている。
The rod 9 is integrated with a ball (
Valve body) 10 is fixed by welding. The entire movable body 5 with a valve is disposed in the fuel passage [1] so as to be able to reciprocate at a predetermined stroke, and its negative end (plunger 8) is biased by a spring 12, and the ball 10 is electromagnetically moved. When the coil 4 is off, it is in pressure contact with the valve seat 12. The valve seat 12 is disposed within the valve body 13, and a hollow cylindrical first fuel diffusion element (in this example,
6, which also serves as a fuel injection nozzle, and a second fuel diffusion element 15 are provided.

ここで、燃料拡散素子6,15の構造1作用に先立ち、
電磁式噴射弁1の動作概要について説明する。
Here, prior to the structure 1 action of the fuel diffusion elements 6 and 15,
An overview of the operation of the electromagnetic injection valve 1 will be explained.

噴射弁1の燃料通路系は、電磁コイル4外周とH−り2
内周とによって形成される燃料通路1−6゜プランジャ
8外周とヨーク2の内周によって形成される燃料通路1
]、弁座12のボア部12a。
The fuel passage system of the injection valve 1 includes the outer circumference of the electromagnetic coil 4 and the H-ri 2.
Fuel passage 1 formed by the outer periphery of the plunger 8 and the inner periphery of the yoke 2;
], the bore portion 12a of the valve seat 12.

後述するスワールオリフィス17等で構成される。It is composed of a swirl orifice 17, which will be described later.

しかして、コン1〜ロールユニツ1へ(図示せず)によ
り演算、決定されたデユーティのオン−オフ信号をコネ
クタ20を介して電磁コイル4に印加すると、電磁コイ
ル4に電流が通電した時にコア3、ヨーク2及びプラン
ジャ8が磁気回路を形成し、プランジャ8が図中」1方
へ移動する。また、プランジャ8に図中上方への磁気吸
引力が作用すると、リング7は、コア3の内周に案内さ
れて摺動し、ボール10は、弁座12から離れてボア部
12aを摺動し、ボール10と弁座12との間に微少隙
間が形成されて弁開状態となる。この状態では、ヨーク
2外周からフィルタ21を介して供給された燃料が燃料
通路16,11.ボア部1.2aを経てスワールオリフ
ィス17に至り、その後、後述する如く燃料力補」量、
微粒化されて噴射ノズル口6aから燃料が噴射される。
When the on-off signal of the duty calculated and determined by the controller 1 to the roll unit 1 (not shown) is applied to the electromagnetic coil 4 via the connector 20, when current is applied to the electromagnetic coil 4, the core 3 , the yoke 2 and the plunger 8 form a magnetic circuit, and the plunger 8 moves in one direction in the figure. Furthermore, when a magnetic attraction force acts on the plunger 8 upward in the figure, the ring 7 is guided by the inner periphery of the core 3 and slides, and the ball 10 moves away from the valve seat 12 and slides in the bore portion 12a. However, a minute gap is formed between the ball 10 and the valve seat 12, and the valve is in an open state. In this state, fuel supplied from the outer circumference of the yoke 2 through the filter 21 is supplied to the fuel passages 16, 11. It reaches the swirl orifice 17 through the bore part 1.2a, and then, as described later, the amount of fuel power compensation,
The atomized fuel is injected from the injection nozzle port 6a.

燃料微粒化手段は、第1の燃料拡散素子6.第2の燃料
拡散素子↑5.スワールオリフィス17等を次のように
組込むことにより構成される。
The fuel atomization means includes the first fuel diffusion element 6. Second fuel diffusion element ↑5. It is constructed by incorporating the swirl orifice 17 etc. as follows.

以下、本実施例における改善の目的である燃料の微粒化
手段について第2.第3図に基づき説明する。
Below, we will discuss the fuel atomization means, which is the purpose of improvement in this embodiment, in the second section. This will be explained based on FIG.

本実施例では、既述したように第1の燃料拡散素子6は
噴射ノズルを兼用するもので、中空円筒形を呈してバル
ブボディ13下端側に取付けられている。また、第2の
燃料拡散素子15は、第1の燃料拡散素子6の内径より
も外径を幾分小さくした筒形突起1.5 aにフランジ
15bを設けてなる。そして、フランジ1’5 bを弁
座12の下端面と第1の拡散素子6の−に端面との間に
介装させた状態で、筒形突起15aの外周が第1の拡散
素子6の内周と同心円状となるように、筒形突起]5a
を第1の拡散素子6の内部に向けて垂設する。このよう
にして、第1.第2の燃料拡散素子6゜15の内外周面
間に環状の空隙18が形成される。
In this embodiment, as described above, the first fuel diffusion element 6 also serves as an injection nozzle, has a hollow cylindrical shape, and is attached to the lower end side of the valve body 13. Further, the second fuel diffusion element 15 is formed by providing a flange 15b on a cylindrical projection 1.5a whose outer diameter is somewhat smaller than the inner diameter of the first fuel diffusion element 6. Then, with the flange 1'5b interposed between the lower end surface of the valve seat 12 and the - end surface of the first diffusing element 6, the outer periphery of the cylindrical projection 15a is aligned with the first diffusing element 6. Cylindrical protrusion so as to be concentric with the inner circumference] 5a
is placed vertically toward the inside of the first diffusion element 6. In this way, the first. An annular gap 18 is formed between the inner and outer peripheral surfaces of the second fuel diffusion element 6°15.

また、第2の燃料拡散素子15には、複数個(6個)の
スワールオリフィス17が配設される。これらのスワー
ルオリフィス17は、入口側が弁座12のボア12a一
端に面し、出口側が環状空隙18に面するようにし、且
つ各オリフィス17は、第3図に示すように弁軸Aに対
し偏心した状態で傾斜角Oとなるように設定されている
Further, a plurality of (six) swirl orifices 17 are arranged in the second fuel diffusion element 15 . The inlet side of these swirl orifices 17 faces one end of the bore 12a of the valve seat 12, and the outlet side faces the annular gap 18, and each orifice 17 is eccentric with respect to the valve axis A as shown in FIG. The angle of inclination is set to be O in this state.

しかして、弁開時にボール10と弁シート面12′間の
空隙を通過した燃料は、各スワールオリフィス17に流
入し、スワールオリフィス17によって燃料がM−1量
されつつ旋回力が付加されて、第1.第2の燃料拡散素
子6,15の内外周面間に形成される環状空隙18へ噴
射される。そして、噴射された燃料は、円すい形の膜状
を呈しつつ環状空隙18を旋回し、この過程で第1の燃
料拡散素子6の内周面と第2の燃料拡散素子15の外周
面とに衝突を繰返して通過する。この過程において、燃
料が拡散素子6,15に繰返し衝突することにより、細
かい拡散(微粒化)され、更に膜状の燃料にも旋回エネ
ルギーが加わって、燃料の微粒化が促進され、このよう
にして、燃料が円すい状の規定の噴霧角及び規定の粒径
となってノズル出口6aより内燃機関(図示せず)に噴
射される。
Thus, when the valve is opened, the fuel that has passed through the gap between the ball 10 and the valve seat surface 12' flows into each swirl orifice 17, and the swirl orifice 17 adds a swirling force to the fuel while increasing the amount of fuel by M-1. 1st. The fuel is injected into the annular gap 18 formed between the inner and outer peripheral surfaces of the second fuel diffusion elements 6 and 15. Then, the injected fuel swirls around the annular gap 18 while exhibiting a conical film shape, and in this process, the fuel spreads between the inner circumferential surface of the first fuel diffusion element 6 and the outer circumferential surface of the second fuel diffusion element 15. Pass through repeated collisions. In this process, the fuel repeatedly collides with the diffusion elements 6 and 15, resulting in fine diffusion (atomization), and swirling energy is also applied to the film-like fuel, promoting the atomization of the fuel. The fuel is then injected into an internal combustion engine (not shown) from the nozzle outlet 6a with a conical shape having a prescribed spray angle and a prescribed particle size.

また、燃料の計量は、複数個のスワールオリフィス17
により行うものである。
In addition, fuel measurement is performed using multiple swirl orifices 17.
This is done by

第4図はスワールオリフィス17の角度Oと微粒化の粒
径の関係を表わし、角度θは、目標の噴霧角、目標粒径
により一義的に決定される。スワールオリフィス17の
本数は、燃料の旋回・分散を向上させるために4〜8本
が適当である。
FIG. 4 shows the relationship between the angle O of the swirl orifice 17 and the atomized particle size, and the angle θ is uniquely determined by the target spray angle and target particle size. The appropriate number of swirl orifices 17 is 4 to 8 in order to improve swirling and dispersion of the fuel.

第5図は環状空隙18のキャップサイズδと粒径の関係
を表わし、第6図は第2燃料拡散素子15の突起長さQ
と粒径の関係を表わす実験データである。しかして、環
状空隙18のギャップサイズδは、δがあまり小さくな
りすぎると燃料の衝突が充分に行なえず、また大きくな
りすぎても衝突の効果が薄れ、微粒化の効果が次第に弱
まるので、空隙18のδを適宜値に設定する必要がある
。このギャップδは、第5図に示すようδ1(δ1はス
ワールオリフィス17の孔径の1.5〜2倍程度)の範
囲内で設定するのが好ましい。また、第2の燃料拡散素
子15の突起長さQは、角度θでスワールオリフィス1
7から噴射された燃料が第1の燃料拡散素子6の内周と
第2の燃料拡散素子15の外周とに複数回衝突して、噴
霧されるようにQを幾何学的に決定する必要がある。こ
れは、第6図に示すようにQICQsは燃料が環状空隙
18で1〜2回旋回できる突起長さ)の範囲内で設定す
るのが好ましい。また、スワールオリフィス17から出
た後、ノズル出口6aから噴射されるまでの燃料のI・
−タルの旋回回数は、3〜4回程度に設定するのが、微
粒化向」二の見地から好ましい。
FIG. 5 shows the relationship between the cap size δ of the annular gap 18 and the particle size, and FIG. 6 shows the protrusion length Q of the second fuel diffusion element 15.
This is experimental data showing the relationship between particle size and particle size. Therefore, if the gap size δ of the annular gap 18 becomes too small, the fuel will not be able to collide sufficiently, and if it becomes too large, the impact effect will be weakened and the atomization effect will gradually weaken. It is necessary to set δ of 18 to an appropriate value. This gap δ is preferably set within the range of δ1 (δ1 is about 1.5 to 2 times the diameter of the swirl orifice 17) as shown in FIG. Further, the protrusion length Q of the second fuel diffusion element 15 is the angle θ of the swirl orifice 1.
It is necessary to determine Q geometrically so that the fuel injected from 7 collides with the inner periphery of the first fuel diffusion element 6 and the outer periphery of the second fuel diffusion element 15 multiple times and is sprayed. be. As shown in FIG. 6, it is preferable that QICQs is set within the range of a protrusion length that allows the fuel to turn once or twice in the annular gap 18. In addition, the I/F of the fuel after exiting from the swirl orifice 17 until being injected from the nozzle outlet 6a is
- It is preferable to set the number of turns of the barrel to about 3 to 4 times from the viewpoint of atomization.

しかして本実施例によれば、第1−1第2の燃料拡散素
子6,15の内外周面で旋回燃料を繰返し衝突させるの
で、衝突回数を従来に較べて大幅に増加させることが可
能となり、衝突と旋回力の相乗作用を充分に引出して、
燃料の微粒化性能を向」ニさせることができる。特に、
本実施例によれば、中空円すい上の小微粒子の噴霧が可
能となり、内蝋機関のアイドル安定性の向上、加速時の
レスポンスが向上する。また、使用燃料圧力上昇、電磁
噴射弁の小形化、燃料車噴射量化に伴なうオリフィス径
の縮小化においても、微粒化の程度を悪化させることの
ない電磁式燃料噴射弁を提供することができる。
However, according to this embodiment, since the swirling fuel is repeatedly collided with the inner and outer circumferential surfaces of the first and second fuel diffusion elements 6 and 15, it is possible to significantly increase the number of collisions compared to the conventional method. , fully exploiting the synergistic effect of collision and turning forces,
The atomization performance of fuel can be improved. especially,
According to this embodiment, it is possible to spray small particles on a hollow cone, thereby improving the idle stability of the internal wax engine and the response during acceleration. Furthermore, it is possible to provide an electromagnetic fuel injection valve that does not worsen the degree of atomization even when the orifice diameter is reduced due to the increase in fuel pressure used, the miniaturization of electromagnetic injection valves, and the increase in the injection amount of fuel vehicles. can.

更に、スワールオリフィス17は、ノズル16先端より
も奥まった位置に具備されるので、内燃機関に噴射弁1
を装着した場合でも、使用された時に生じる燃焼ガス中
及び燃料中の炭素化合物の付着からのがれる有利な構造
となり得る。またスワールオリフィス17は、複数個で
形成されるため、スワールオリフィスの1個当りの炭素
化合物の付着による燃料計量精度の悪化が、1個のオリ
フィスにより燃料計量を行う噴射弁に比較し軽微である
利点を有する。
Furthermore, since the swirl orifice 17 is provided at a position deeper than the tip of the nozzle 16, the injector 1 is not connected to the internal combustion engine.
Even when equipped with a fuel cell, it can be an advantageous structure that avoids the adhesion of carbon compounds in the combustion gas and fuel generated during use. Furthermore, since the swirl orifice 17 is formed in multiple pieces, the deterioration in fuel metering accuracy due to adhesion of carbon compounds to each swirl orifice is minor compared to an injection valve that measures fuel with a single orifice. has advantages.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、噴射燃料の微粒化のため
の衝突回数を増加させることができるので、燃料の微粒
化を更に向上させ、特に使用燃料圧力上昇、燃料噴射弁
の小形化、燃料の小噴射量化に対しても微粒化程度を悪
化させず、良好な微粒化を図ることができる。
As described above, according to the present invention, the number of collisions for atomizing the injected fuel can be increased, so that the atomization of the fuel can be further improved, and in particular, the pressure of the fuel used can be increased, the size of the fuel injection valve can be reduced, Even when the injection amount of fuel is reduced, the degree of atomization is not deteriorated, and good atomization can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は上
記実施例の要部断面図、第3図は第2図のA−A断面図
、第4図はスワールオリフィスの角度と燃料微粒化の粒
径の関係を表わす線図、第5図は環状空隙と燃料微粒化
の粒径の関係を表わす線図、第6図は第2燃料拡散素子
の突起長さと燃料微粒化の粒径の関係を示す線図である
。 1・・燃料噴射弁、4・・電磁コイル、6・・第1の燃
料拡散素子(噴射ノズル)、10・・・弁体(ボール)
、12・・・弁座、15・・・第2の燃料拡散素子、1
7・・スワールオリフィス、18・・環状空隙。
Fig. 1 is a longitudinal sectional view showing one embodiment of the present invention, Fig. 2 is a sectional view of the main part of the above embodiment, Fig. 3 is a sectional view taken along line A-A in Fig. 2, and Fig. 4 is a view of the swirl orifice. A diagram showing the relationship between the angle and the particle size of the fuel atomization, Figure 5 is a diagram showing the relationship between the annular gap and the particle size of the fuel atomization, and Figure 6 shows the relationship between the protrusion length of the second fuel diffusion element and the fuel atomization. FIG. 3 is a diagram showing the relationship between grain size and 1... Fuel injection valve, 4... Electromagnetic coil, 6... First fuel diffusion element (injection nozzle), 10... Valve body (ball)
, 12... Valve seat, 15... Second fuel diffusion element, 1
7. Swirl orifice, 18. Annular void.

Claims (3)

【特許請求の範囲】[Claims] 1. 電磁コイルの励磁、励磁解除により弁体が往復動
して弁開閉動作を行なう電磁式の燃料噴射弁であつて、
弁座の下流側には、弁開時に通過する燃料を計量しつつ
旋回力を与えるスワールオリフイス及び噴射ノズルを配
してなるものにおいて、前記弁座の下流側に中空筒形の
第1の燃料拡散素子を設けると共に、該第1の燃料拡散
素子の内部に筒形突起状の第2の燃料拡散素子を前記噴
射ノズルの出口側に向けて垂設して、この第1、第2の
燃料拡散素子の内外周面間に環状の空隙を形成し、且つ
前記スワールオリフイスを、その出口が前記環状空隙に
面する状態で前記第2の燃料拡散素子に配設して、前記
スワールオリフイスの出口から前記環状空隙に噴出した
燃料が該環状空隙で旋回しつつ前記第1の燃料拡散素子
の内周面と前記第2の燃料拡散素子の外周面とに繰返し
衝突するように設定してなることを特徴とする電磁式燃
料噴射弁。
1. An electromagnetic fuel injection valve in which a valve body reciprocates to open and close the valve by energizing and de-energizing an electromagnetic coil,
A swirl orifice and an injection nozzle are arranged on the downstream side of the valve seat to measure the fuel passing through the valve and apply a swirling force when the valve is opened. A diffusion element is provided, and a second fuel diffusion element in the form of a cylindrical projection is vertically disposed inside the first fuel diffusion element toward the outlet side of the injection nozzle. An annular gap is formed between the inner and outer circumferential surfaces of the diffusion element, and the swirl orifice is disposed in the second fuel diffusion element with an outlet thereof facing the annular gap, and an outlet of the swirl orifice is provided. The fuel ejected into the annular gap from the annular gap is configured so that it repeatedly collides with the inner circumferential surface of the first fuel diffusion element and the outer circumferential surface of the second fuel diffusion element while rotating in the annular gap. An electromagnetic fuel injection valve featuring:
2. 特許請求の範囲第1項において、前記スワールオ
リフイスは、前記第2の燃料拡散素子に複数配設されて
なる電磁式燃料噴射弁。
2. The electromagnetic fuel injection valve according to claim 1, wherein a plurality of the swirl orifices are arranged in the second fuel diffusion element.
3. 特許請求の範囲第1項又は第2項において、前記
第1の燃料拡散素子は、前記燃料噴射ノズルと兼用して
なる電磁式燃料噴射弁。
3. The electromagnetic fuel injection valve according to claim 1 or 2, wherein the first fuel diffusion element also serves as the fuel injection nozzle.
JP33318387A 1987-12-30 1987-12-30 Solenoid-controlled fuel injection valve Pending JPH01178763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33318387A JPH01178763A (en) 1987-12-30 1987-12-30 Solenoid-controlled fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33318387A JPH01178763A (en) 1987-12-30 1987-12-30 Solenoid-controlled fuel injection valve

Publications (1)

Publication Number Publication Date
JPH01178763A true JPH01178763A (en) 1989-07-14

Family

ID=18263230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33318387A Pending JPH01178763A (en) 1987-12-30 1987-12-30 Solenoid-controlled fuel injection valve

Country Status (1)

Country Link
JP (1) JPH01178763A (en)

Similar Documents

Publication Publication Date Title
JP3750768B2 (en) Fluid injection nozzle
US7299997B2 (en) Fuel injector with sauter-mean-diameter atomization spray of less than 70 microns
US6921022B2 (en) Spray pattern control with non-angled orifices formed on dimpled fuel injection metering disc having a sac volume reducer
US6405946B1 (en) Fluid injection nozzle
EP1042604B1 (en) Flat needle for pressurized swirl fuel injector
US6769625B2 (en) Spray pattern control with non-angled orifices in fuel injection metering disc
JPH1047208A (en) Fuel injection valve
WO1988003225A1 (en) High pressure vortex injector
US20040056114A1 (en) Spray pattern control with angular orientation in fuel injector and method
JP3977728B2 (en) Fuel injection valve
JPH03160151A (en) Electromagnetic type fuel injection valve
JPH11200998A (en) Fluid injection nozzle
JP2000038974A (en) Fluid injection nozzle
JPH08177689A (en) Fuel supply device for internal combustion engine
JP3726830B2 (en) Fuel injection nozzle and fuel supply device
JP2002332935A (en) Fuel injection valve and internal combustion engine
JPH01178763A (en) Solenoid-controlled fuel injection valve
JP4100286B2 (en) Fluid injection valve
JPH07317628A (en) Fuel injection valve
JP2004169571A (en) Fuel injection valve
JP2564373B2 (en) Electromagnetic fuel injection valve
JP2599692B2 (en) Electromagnetic fuel injection valve
JP2003155965A (en) Fuel injection device
JP3129188B2 (en) Fuel injection device for internal combustion engine
JPH07246352A (en) Fluid jetting nozzle and its production