JPH01163006A - Drying and crystallizing device for powdery and granular material - Google Patents
Drying and crystallizing device for powdery and granular materialInfo
- Publication number
- JPH01163006A JPH01163006A JP62314919A JP31491987A JPH01163006A JP H01163006 A JPH01163006 A JP H01163006A JP 62314919 A JP62314919 A JP 62314919A JP 31491987 A JP31491987 A JP 31491987A JP H01163006 A JPH01163006 A JP H01163006A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- drying
- granular material
- powdery
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008187 granular material Substances 0.000 title claims abstract description 69
- 238000001035 drying Methods 0.000 title claims description 54
- 239000000463 material Substances 0.000 claims abstract description 38
- 238000001816 cooling Methods 0.000 claims abstract description 37
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 17
- 239000000057 synthetic resin Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims description 83
- 238000002425 crystallisation Methods 0.000 claims description 44
- 230000008025 crystallization Effects 0.000 claims description 44
- 238000012545 processing Methods 0.000 claims description 40
- 238000002845 discoloration Methods 0.000 abstract description 5
- 238000007664 blowing Methods 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000004080 punching Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000012254 powdered material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/08—Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
- B29B2009/165—Crystallizing granules
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、粉粒体の乾燥・結晶化装置、詳しくは、主と
して合成樹脂から成る粉粒体の乾燥・結晶化装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for drying and crystallizing powder and granules, and more particularly, to an apparatus for drying and crystallizing powder and granules mainly made of synthetic resin.
(従来の技術)
一般にポリカーボネートやポリエステルテレフタレート
など温度上昇により粘着性が生じて融若する湿潤性樹脂
材料を用いて成形を行なう場合において、樹脂材料の含
水量が一定値以上あると、成形条件が難かしくなるばか
りか、成形品の物性が低下するので、通常は樹脂材料を
70℃〜180℃の温度で乾燥して含水量を一定値以下
に押えており、例えばポリカーボネートの場合には、o
、oi%以下、又はポリエステルテレフタレート(以下
PET樹脂という)の場合には、0.005%以下の含
水量にする必要があったのである。(Prior art) Generally, when molding is performed using a wettable resin material such as polycarbonate or polyester terephthalate, which becomes sticky and melts when the temperature rises, if the water content of the resin material exceeds a certain value, the molding conditions may change. Not only is this difficult, but the physical properties of the molded product deteriorate, so resin materials are usually dried at a temperature of 70°C to 180°C to keep the water content below a certain value. For example, in the case of polycarbonate, o
, oi% or less, or in the case of polyester terephthalate (hereinafter referred to as PET resin), it was necessary to have a water content of 0.005% or less.
特に、結晶性合成樹脂であるPET樹脂の粉粒体を乾燥
させる場合、一般の合成樹脂はその融点より20〜30
℃程度低い温度で粘着性を帯びるのに対して、PET樹
脂ではその融点より大幅に低い温度、例えば融点255
℃のPET樹脂では、その融点より150℃程度低い温
度即ち100℃程度で粘着性を帯びることになる。しか
し、PET樹脂の場合、100℃以上の加熱でも粉粒体
の表面、は粘着性を帯びてくるが、同時に前記PET樹
脂の結晶化が進行することになり、結晶化率が20%程
度で粉粒体表面の粘着が低減し、それ以後は粘着性を示
さなくなるのである。In particular, when drying the powder of PET resin, which is a crystalline synthetic resin, the general synthetic resin has a temperature of 20 to 30% lower than its melting point.
Whereas PET resin becomes sticky at temperatures much lower than its melting point, e.g.
C. PET resin becomes sticky at a temperature about 150.degree. C. lower than its melting point, that is, about 100.degree. However, in the case of PET resin, even when heated to 100°C or higher, the surface of the powder becomes sticky, but at the same time the crystallization of the PET resin progresses, and the crystallization rate is about 20%. The adhesion of the powder surface is reduced and no longer shows adhesion.
また、結晶化に要する時間は、乾燥に要する時間より遥
かに少ない。従って、PET樹脂からなる粉粒体を、成
形時に要求される前記した含水no、0005%以下に
なるまで乾燥する場合に必要な時間より粉粒体の結晶化
に要する時間が乾燥に要する時間に比較して非常に短か
いことから、先ず結晶化処理した後乾燥処理を行う所謂
二段階処理を行っているのである。つまり、先ず粉粒体
を結晶化させることにより、粉粒体の表面が粘着性を帯
びる温度を高くして、後処理である乾燥処理をできるだ
け高い温度で行えるようにして、乾燥処理に要する時間
を短縮し、かくして全体としてのPET樹脂の乾燥に要
する時間を短かくしているのである。′
しかして、従来前記合成樹脂材料から成る粉粒体を乾燥
したり、結晶化したりする装置としては、下部に排出口
をもったホッパー内の底部に、パンチングメタルを設け
、このパンチングメタJしの下方より熱風を供給すると
共に、前記ホッパーの中心部に上下方向に向う回転軸に
取付けたアジテータ−によりホッパー内の樹脂材料を攪
拌して樹脂材料を乾燥させたり結晶化させたりする乾燥
・結晶化装置が提供されている。Also, the time required for crystallization is much less than the time required for drying. Therefore, the time required for crystallization of the powder or granule is longer than the time required to dry the powder or granule made of PET resin until the water content reaches 0005% or less, which is required during molding. Since the length is relatively short, a so-called two-stage process is performed in which the crystallization process is first performed and then the drying process is performed. In other words, by first crystallizing the powder, the temperature at which the surface of the powder becomes sticky is raised, and the drying process, which is the post-processing, can be performed at as high a temperature as possible, and the time required for the drying process is increased. This shortens the time required for drying the PET resin as a whole. 'However, conventional equipment for drying or crystallizing the powdered material made of the synthetic resin material has been equipped with a punching metal at the bottom of a hopper with a discharge port at the bottom. Hot air is supplied from below, and the resin material inside the hopper is agitated by an agitator attached to a rotating shaft facing vertically in the center of the hopper to dry or crystallize the resin material. equipment is provided.
又、前記パンチングメタルを用いることなく、前記ホブ
パー中心部に上下方向に向かう熱風供給管を取付けて、
該供給管の下端を前記ホッパー内ば下向きに開口させて
、ホッパー内に熱風を供給するようにした乾燥・結晶化
装置も提供されている。Moreover, without using the punching metal, a hot air supply pipe directed in the vertical direction is installed in the center of the hob par,
There has also been provided a drying/crystallization apparatus in which the lower end of the supply pipe is opened downward into the hopper to supply hot air into the hopper.
(発明が解決しようとする問題点)
ところで一般に多孔質又は積層構造をなしている多量の
水分を含む食品等の乾燥は、食品等の内部から表面へ水
が毛細管現象によって移動し、表面で蒸発する恒率乾燥
であるので、表面温度の上昇を抑えることができるが、
合成樹脂材料等均一構造をなす物質の乾燥は、物質内部
から表面への水の拡散移動によって行なわれる減率乾燥
であるので、表面温度の上昇を抑える程多量の水分の蒸
発は期待できないのである。従って、減率乾燥において
は、乾燥温度の高い方が水の拡散を促進して乾燥速度が
早くなるのであって、例えばナイロン−6のバッチ式乾
燥槽における熱風乾燥によれば、含水ff1lo、0O
Opp■のナイロン−8を11000pp乾燥する場合
、熱風温度90℃で約13時間要するが、100℃では
7時間、110℃では4時間という如(、送風温度を高
くすれば早く乾燥することができるのである。又、PE
T樹脂の結晶化を行う場合でも同様で、例えば熱風温度
120℃で約2時間を要するが、170℃ではわずか1
0分程度で済むのである。(Problems to be Solved by the Invention) Generally speaking, when drying foods that have a porous or layered structure and contain a large amount of water, water moves from the inside of the food to the surface by capillary action and evaporates on the surface. Since it is a constant rate drying method, it is possible to suppress the rise in surface temperature.
Drying of materials with a uniform structure, such as synthetic resin materials, is a lapse rate drying process in which water diffuses and moves from the inside of the material to the surface, so we cannot expect a large amount of water to evaporate to suppress the rise in surface temperature. . Therefore, in lapse rate drying, a higher drying temperature promotes water diffusion and increases the drying speed.
When drying 11,000 pp of Opp ■ nylon-8, it takes about 13 hours at a hot air temperature of 90°C, but it takes 7 hours at 100°C and 4 hours at 110°C (but it can be dried faster by increasing the air blowing temperature. Also, PE
The same is true when crystallizing T resin; for example, it takes about 2 hours at a hot air temperature of 120°C, but only 1 hour at 170°C.
It takes about 0 minutes.
しかし乾燥温度を高くするには限度がある。However, there is a limit to how high the drying temperature can be raised.
即ち、合成樹脂材料から成る粉粒体を乾燥する熱風の温
度を融点温度に対しある一定の温度より高くすると、粉
粒体の表面が軟化して互いに融普し、均一な熱風による
乾燥ができなかったり、又、表面が酸化して着色し、成
型材料として使用できなくなったりするから、熱風温度
を上げることによって乾燥時間を大幅に短かくすること
はできなかったのである。In other words, when the temperature of the hot air used to dry powder and granules made of synthetic resin material is set higher than a certain temperature relative to the melting point, the surfaces of the powder and granules soften and fuse with each other, making it possible to uniformly dry the particles with hot air. Otherwise, the surface would become oxidized and colored, making it unusable as a molding material, so it was not possible to significantly shorten the drying time by increasing the temperature of the hot air.
又、PET樹脂からなる粉粒体を短時間で結晶化する場
合も同様で、融点に対し一定以上の高い温度で加熱する
と融若の問題が生ずるし、また、熱風による加熱は、粉
粒体外部からの加熱であるから、粉粒体の表面側におい
て結晶化が先に進み、粉粒体内部から表面への水分の拡
散を阻止し、水分を内部に封じ込むことになり、後に行
う乾燥において、乾燥速度が抑制される要因となるので
ある。尚、粉粒体の結晶化を均一にしようとすれば、結
晶化温度を低くすればよいが、結晶化に長時間を要する
問題があった。The same is true when crystallizing powder or granules made of PET resin in a short period of time; heating at a temperature higher than a certain level above the melting point will cause problems with melting, and heating with hot air will Since heating is applied from the outside, crystallization proceeds first on the surface side of the powder, preventing moisture from diffusing from the inside of the powder to the surface, trapping moisture inside, and reducing the drying process that takes place later. This is a factor that suppresses the drying rate. Incidentally, in order to uniformly crystallize the powder, the crystallization temperature may be lowered, but there is a problem in that crystallization takes a long time.
又、融むの問題に対しては撹拌羽根を用い、その回転速
度を高速とし、融着しようとする粉粒体を分離させるよ
うにする方法があるが、粉粒体が微細化してダストが発
生する問題があって、前記融着の問題は解決できないの
である。In addition, to solve the problem of melting, there is a method of using stirring blades and increasing the rotation speed to separate the powder and granules that are trying to fuse, but this method causes the powder and granules to become fine and dust Due to the problems that occur, the problem of fusion cannot be solved.
本発明は以上の如き問題に鑑みて発明したもので、マイ
クロ波による加熱は被加熱体の内部から加熱であること
に注目して、主として合成樹脂材料から成る粉粒体を、
バッチ式或いは連続式処理槽内において前記マイクロ波
による粉粒体の内部加熱による水分の粉粒体表面への拡
散促進及びPET樹脂における粉粒体の内部からの結晶
化と、前記処理槽内への冷却風の供給とによって、粉粒
体の表面温度を低下させることにより、粉粒体表面の軟
化による固まりや粉粒体表面における酸化による変色を
招くことなく、従来の熱風による乾燥又は結晶化に比較
して短時間に主として合成樹脂材料から成る粉粒体の乾
燥又は結晶化及び乾燥結晶化を行なえる乾燥の結晶化装
置を提供しようとするものである。The present invention was invented in view of the above-mentioned problems, and it focuses on the fact that heating by microwaves heats the object to be heated from the inside.
Promotion of diffusion of moisture to the surface of the powder or granule by internal heating of the powder or granule by the microwave in a batch or continuous processing tank, and crystallization of the PET resin from the inside of the powder or granule into the processing tank. By supplying a cooling air of It is an object of the present invention to provide a drying crystallization apparatus capable of drying or crystallizing a powder mainly made of a synthetic resin material and dry crystallizing it in a short time compared to the conventional method.
(問題点を解決するための手段)
本発明は図面の実施例に示した如く、合成樹脂材料から
なる粉粒体の乾燥・結晶化装置であって、材料入口(1
1)と材料出口(12)とを備えた処理槽(1)と、該
処理4!(1)内の粉粒体にマイクロ波を放射するマイ
クロ波装置(3)と該マイクロ波装置(3)から放射さ
れるマイクロ波で加熱された粉粒体の表面温度より低温
の冷却風を供給し、粉粒体の表面温度を低下させる冷却
風供給装置(5)とを備えていることを特徴とするもの
である。(Means for Solving the Problems) As shown in the embodiments of the drawings, the present invention is an apparatus for drying and crystallizing powder and granules made of a synthetic resin material, which includes a material inlet (1
1) and a treatment tank (1) with a material outlet (12), and the treatment 4! (1) A microwave device (3) that radiates microwaves to the powder and granules in the microwave device (3) and a cooling air whose temperature is lower than the surface temperature of the powder and granules heated by the microwaves emitted from the microwave device (3). It is characterized by being equipped with a cooling air supply device (5) that supplies cooling air and lowers the surface temperature of the powder or granular material.
(作用)
しかして以上の粉粒体の乾燥・結晶化装置では、材料入
口(11)より処理槽(1)内に装入する主として合成
樹脂より成る粉粒体にマイクロ波装置(3)からマイク
ロ波を放射して、前記粉粒体をその内部から加熱しなが
ら、冷却風供給装置(5)から前記マイクロ波によって
加熱する粉粒体の表面温度より低温の冷却風を供給する
ことによって、前記粉粒体の表面温度を低下させて、し
かも前記粉粒体表面の水分を除去するから、前記粉粒体
の表面における軟化及び溶融を避けて、粉粒体相互の粘
着を防ぎ、かつ、粉粒体表面の酸化による変色を招くこ
となく粉粒体内部からの加熱によって、従来の熱風にょ
る粉粒体の表面からの加熱による乾燥・結晶化に比較し
て速やかに粉粒体を乾燥・結晶化することができるので
ある。(Function) However, in the drying/crystallization apparatus for powder and granular materials described above, the microwave device (3) is used to charge the powder and granular materials mainly made of synthetic resin into the processing tank (1) from the material inlet (11). By radiating microwaves to heat the powder or granular material from inside, while supplying cooling air from the cooling air supply device (5) at a temperature lower than the surface temperature of the powder or granular material heated by the microwave, Since the surface temperature of the granular material is lowered and moisture on the surface of the granular material is removed, softening and melting on the surface of the granular material is avoided, and adhesion of the granular materials to each other is prevented, and By heating from inside the powder without causing discoloration due to oxidation on the powder or granule surface, the powder or granule can be dried more quickly than conventional drying and crystallization by heating from the surface of the powder or granule using hot air.・It can be crystallized.
(実施例)
以下本発明にか\る粉粒体の乾燥・結晶化装置の実施例
を示すが、本発明はこれに限定されるものではない。(Example) Examples of the apparatus for drying and crystallizing powder and granular materials according to the present invention will be shown below, but the present invention is not limited thereto.
先ず第1図に示す実施例において、該図中(1)は相対
向する側壁の上下方向中間部に材料入口(11)と材料
出口(12)を備え、かつマイクロ波を反射する金属製
の処理槽であって、該処理槽(1)の底面に複数の送風
孔(13)・・・を設けて後記する送風管(52)に接
続すると共に上部天井に空気排出孔(14)を設けて、
大気に開放している。又、前記処理槽(1)の天井部中
央付近には、下向きに開孔する導波管(32)を設けて
、その基部にマイクロ波放射出力を制御するコントロー
ラ(31)を備えて、マイクロ波を放射するマイクロ波
装置(3)を設けるのである。First, in the embodiment shown in FIG. 1, (1) in the figure is a metal material that has a material inlet (11) and a material outlet (12) in the vertical middle part of opposing side walls, and that reflects microwaves. The processing tank (1) is provided with a plurality of ventilation holes (13) on the bottom surface and connected to a ventilation pipe (52) to be described later, and an air discharge hole (14) is provided on the upper ceiling. hand,
It is open to the atmosphere. Further, near the center of the ceiling of the treatment tank (1), a waveguide (32) opening downward is provided, and a controller (31) for controlling the microwave radiation output is provided at the base of the waveguide (32). A microwave device (3) that emits waves is provided.
又(4)はフラットコンベヤで、マイクロ波が透過する
材料で作られ、多数の空気を通す孔をもった無端杖の帯
状体(41)を有しており、該帯状体(41)は材料入
口(11)から前記処理槽(1)の内部を通って材料出
口(12)へ、また、該出口(12)から前記処理槽(
1)の下部外方を通って、前記材料入口(11)に戻る
ように一つの駆動輪(42)と、複数の回転輪(43)
・・・とを介して配置するのである。Further, (4) is a flat conveyor, which is made of a material through which microwaves can pass and has an endless cane strip (41) with a large number of holes through which air passes; From the inlet (11) through the inside of the processing tank (1) to the material outlet (12), and from the outlet (12) to the processing tank (1).
one driving wheel (42) and a plurality of rotating wheels (43) passing through the lower part of 1) and returning to the material inlet (11);
. . .
又、前記送風管(52)は、吸込口を大気に開放した送
風捜(51)と共に冷却風供給装置(5)を構成してお
り、前記送風機(51)の送風によって、冷却風の前記
処理槽(1)内への送風が前記送風管(52)に接続さ
れた多数の送風孔(13)から行なわれ、前記空気排出
孔(14)から前記処理槽(1)の外部へ排出するので
ある。Further, the blow pipe (52) constitutes a cooling air supply device (5) together with a blower (51) whose suction port is open to the atmosphere, and the cooling air is processed by the air blowing from the blower (51). Air is blown into the tank (1) through a large number of air holes (13) connected to the air pipe (52), and is discharged to the outside of the processing tank (1) through the air exhaust hole (14). be.
尚(53)’は送風機(51)からの送風の温度を調整
するために使用する電気ヒータであって、乾燥する材料
に応じて前記冷却風の温度コントロールを行なうのであ
る。Note that (53)' is an electric heater used to adjust the temperature of the air blown from the blower (51), and controls the temperature of the cooling air depending on the material to be dried.
(6)は乾燥又は結晶化した粉粒体を貯蔵する貯蔵ホッ
パーであって、その下部にロータリーフィーダ(61)
を備えている。更に、(82)は前記貯蔵ホッパー(6
)内の粉粒体の水分を自動的に測定する自動連続水分測
定装fi(83)のセンサーである。(6) is a storage hopper for storing dried or crystallized powder and granules, and a rotary feeder (61) is installed at the bottom of the storage hopper.
It is equipped with Furthermore, (82) said storage hopper (6
) This is a sensor of the automatic continuous moisture measuring device fi (83) that automatically measures the moisture content of powder and granular materials in ).
又、前記フラットコンベヤ(4)を前記処理槽(1)内
と該槽(1)の外に配置して、粉粒体の移動を行うてい
るが、粉粒体の移動手段はこれに限るものではない。Further, the flat conveyor (4) is arranged inside and outside the processing tank (1) to move the powder and granules, but the means for moving the powder and granules is limited to this. It's not a thing.
前記実施例は以上の如く構成するもので、乾燥又は結晶
化及び乾燥・結晶化に用いることができるのであって、
使用に際しては、原料ホッパー(21)に貯蔵する合成
樹脂材料からなる粉粒体をスクリューフィーダ(22)
によって前記コンベヤ(4)に供給すると、該コンベヤ
(4)の駆動によって順次前記処理槽(1)内に入り、
前記マイクロ波装置ff (3)から放射するマイクロ
波が導波管(32)を介して前記処理槽(1)に導入さ
れて、前記コンベヤ(4)の粉粒体をその内部から加熱
することになる。The above embodiment is configured as described above and can be used for drying or crystallization and drying/crystallization.
In use, the powder made of synthetic resin material stored in the raw material hopper (21) is transferred to the screw feeder (22).
When supplied to the conveyor (4), the conveyor (4) is driven to sequentially enter the processing tank (1),
Microwaves emitted from the microwave device ff (3) are introduced into the processing tank (1) via a waveguide (32) to heat the powder and granular material on the conveyor (4) from inside. become.
一方、前記処理槽(1)の底に設ける多数の送風孔(1
3)・・・を介して送風機(51)と送風管(52)等
よりなる冷却風供給装置(5)から冷却風を前記処理槽
(1)内に送風して、マイクロ波によって内部から加熱
されている粉粒体の表面の温度を内部の温度より低くす
るのである。しかして粉粒体の内部における水分の表面
への拡散又は粉粒体内部からの結晶化を促進しながら、
しかも、粉粒体の表面の温度を抑えて表面の軟化による
粉粒体の粘着を防ぐと共に、表面酸化による変色を防い
で、しかも、前記冷却風が粉粒体表面の水分を除去する
から、迅速な粉粒体の乾燥又は結晶化を可能にするので
ある。On the other hand, a large number of ventilation holes (1) are provided at the bottom of the processing tank (1).
3) Cooling air is blown into the processing tank (1) from a cooling air supply device (5) consisting of an air blower (51), an air pipe (52), etc. via... and heated from the inside by microwaves. The temperature at the surface of the powdered material is lower than the internal temperature. Therefore, while promoting the diffusion of moisture inside the powder to the surface or crystallization from inside the powder,
In addition, the temperature of the surface of the powder is suppressed to prevent the powder from sticking due to surface softening, and discoloration due to surface oxidation is prevented.Moreover, since the cooling air removes moisture on the surface of the powder, This enables rapid drying or crystallization of the powder.
このようにして乾燥又は結晶化する粉粒体は、前記コン
ベヤ(4)で順次前記処理槽(1)′ の材料出口(1
2)から落下して、該材料出口(12)の下方に設けた
貯蔵ホッパー(8)に貯蔵され、必要に応じて該ホッパ
ー(6)の下部に設けたロータリーフィーダ(61)か
ら空気輸送によって成形機又は、別に設ける乾燥機へと
輸送されるのである。尚、前記冷却風は粉粒体の水分除
去を行なうことになるから、冷却風として脱湿空気を使
用するのが好ましい。The powder and granules dried or crystallized in this way are sequentially transported by the conveyor (4) to the material outlet (1) of the processing tank (1)'.
2) and stored in a storage hopper (8) provided below the material outlet (12), and if necessary, pneumatically transported from a rotary feeder (61) provided at the bottom of the hopper (6). It is transported to a molding machine or a separate dryer. Note that since the cooling air removes moisture from the powder, it is preferable to use dehumidified air as the cooling air.
又、前記マイクロ波で内部から加熱されると共に、冷却
風で表面を冷却される粉粒体の表面温度を、連続的に検
出する温度センサー(15)を設け、この検出結果に基
づいて冷却風供給装ra′(5)からの冷却風の風量、
温度及びマイクロ披裂r11(3)のマイクロ波放射出
力等を制御することにより、更に一層乾燥又は結晶化効
率の良い前記粉粒体の乾燥又は結晶化を行なうことが可
能となるのである。Furthermore, a temperature sensor (15) is provided that continuously detects the surface temperature of the powder, which is heated from the inside by the microwave and whose surface is cooled by the cooling air. Volume of cooling air from supply device ra' (5),
By controlling the temperature and the microwave radiation output of the micro-arytenoids r11(3), it becomes possible to dry or crystallize the powder with even higher drying or crystallization efficiency.
次に、第2図は他の実施例を示し、該図中(1)はマイ
クロ波が透過する材料で形成した縦型の円筒形をなす処
理槽であり、該処理槽(1)の上部に材料入口(11)
と空気排出孔(14)を設けると共に、下部にロータリ
ーフィーダ(61)を備えた材料出口(12)を設ける
のである。(16)はマイクロ波を反射する金属で形成
した円筒体であって、該円筒体(16)の下部を前記処
理槽(1)に沿わせて下方に延長させ、前記円筒体(1
B)と該円筒体(16)を上下に貫通する前記処理槽(
1)の外周面とによって、前記処理槽(1)の上下方向
中央部の周りに所定長さををする環核空間(17)を設
けて、基端にコントローラ(31)を備えたマイクロ波
装置(3)を持つ導波管(32)を前記円筒体(16)
の−側に接続して、前記環状空間(17)に開口させて
いる。Next, FIG. 2 shows another embodiment, in which (1) is a vertical cylindrical processing tank made of a material that transmits microwaves, and the upper part of the processing tank (1) is Material entrance (11)
and an air exhaust hole (14), and a material outlet (12) with a rotary feeder (61) at the bottom. (16) is a cylindrical body formed of a metal that reflects microwaves, and the lower part of the cylindrical body (16) extends downward along the processing tank (1).
B) and the processing tank (
1), a ring core space (17) having a predetermined length is provided around the vertical center of the processing tank (1), and a microwave equipped with a controller (31) at the base end is provided. A waveguide (32) with a device (3) is connected to the cylinder (16).
It is connected to the - side of the annular space (17) and opens into the annular space (17).
又(52)は前記処理槽(1)に冷却風を送る送風管で
あって、前記円筒体(16)の下部延長部において、前
記処理槽(1)内に突入させ、その先端に前記処理槽(
1)の中心部で下方に円錐杖に開放する開口部(54)
を設けるのである。更に、前記送風管(52)の他端を
前記処理槽(1)上部に設ける空気排出孔(14)にヒ
ータ(53)、脱湿装置(56)、送風機(51)及び
フィルター(55)を介して接続し、冷却風供給装置(
5)を構成するのである。(34)は温度センサーで、
前記マイクロ波1i?ff1(3)のコントーラ(31
)に接続する。Further, (52) is a blower pipe for sending cooling air to the processing tank (1), which is inserted into the processing tank (1) at the lower extension part of the cylindrical body (16), and the tip of the pipe is configured to send cooling air to the processing tank (1). Tank (
1) an opening (54) that opens downward into the conical cane in the center;
We will set up the following. Furthermore, a heater (53), a dehumidifier (56), a blower (51), and a filter (55) are connected to the air exhaust hole (14) provided at the top of the processing tank (1) at the other end of the blast pipe (52). Connect through the cooling air supply device (
5). (34) is a temperature sensor,
Said microwave 1i? ff1 (3) controller (31
).
又(57)は前記ロータリーフィーダ(61)の近くに
設ける送風孔であって、バルブ(58)を介して前記送
風管(52)に接続し、前記処理槽(1)下部に滞留す
る粉粒体の水分を運ぶ空気を送るものである。Further, (57) is a ventilation hole provided near the rotary feeder (61), which is connected to the ventilation pipe (52) via a valve (58), and is used to remove powder particles staying at the bottom of the processing tank (1). It sends air that carries water in the body.
更に、(82)は自動連続水分測定装置(θ3)のセン
サーであって、前記処理槽(1)下部に滞留する粉粒体
の水分を検出するものである。Further, (82) is a sensor of an automatic continuous moisture measuring device (θ3), which detects the moisture of the powder and granular material staying at the bottom of the processing tank (1).
上記のように構成して、前記材料入口(11)より主と
して合成樹脂材料より成る粉粒体を前記処理槽(1)内
に装入して、前記マイクロ波装置(3)から放射するマ
イクロ波を前記導波管(32)により前記処理槽(1)
の周りに設ける環状空間(17)に導き、一方冷却風供
給装置(5)の開口部(54)から冷却風を送風して、
前記粉粒体をマイクロ波でその内部から加熱すると共に
、粉粒体を流動化させて流動厄を形成させ、斯くするこ
とによって強制的に攪拌しながら、均一なマイクロ波に
よる粉粒体内部からの加熱と粉粒体の表面温度の低下を
可能にして、粉粒体の表面の軟化による固まりや、酸化
による変色を防ぎながら、粉粒体の水分除去又は粉粒体
内部からの結晶化を行ない、前記冷却風は空気排出孔(
14)から排出され、フィルター(55)、送風機(5
1)、脱湿装置(56)及び電気ヒータ(53)を経て
送風管(52)の開口部(54)から再び前記処理槽(
1)内に戻るのである。前記処理槽(1)下部に滞留す
る粉粒体は送風孔(57)からの送風によって表面温度
の上昇による円管をすることな(、適宜操作されるロー
タリーフィーダ(61)によって排出され連続乾燥又は
結晶化が可能となるのである。又、前記温度センサー(
34)の検出結果に基づいて、前記マイクロ波装置(3
)からのマイクロ波放射出力を制御して、装入する粉粒
体に応じた最適加熱温度にすると共に、前記自動連続水
分測定装置(63)のセンサー(62)によって前記処
理槽(1)下部に滞留する粉粒体の水分を測定して、こ
の水分の値が一定になるように、前記コントローラ(3
1)及び冷却風の風量、温度、湿度並びに粉粒体の滞留
量を制御することによって、効率的な乾燥又は結晶化を
行なえることになるのである。With the above structure, powder and granules mainly made of synthetic resin material are charged into the processing tank (1) through the material inlet (11), and microwaves are emitted from the microwave device (3). into the processing tank (1) by the waveguide (32).
into an annular space (17) provided around the cooling air supply device (5), while blowing cooling air from the opening (54) of the cooling air supply device (5).
The powder and granules are heated from the inside using microwaves, and the powder and granules are fluidized to form a fluidized mass. By doing so, while forcibly stirring, the powder and granules are uniformly heated from the inside by microwaves. By heating the powder and lowering the surface temperature of the powder, it prevents agglomeration due to softening of the surface of the powder and discoloration due to oxidation, while removing moisture from the powder or crystallizing from inside the powder. The cooling air is passed through the air exhaust hole (
14), filter (55) and blower (5).
1), the processing tank (
1) Go back within. The powder and granules staying in the lower part of the processing tank (1) are discharged by the rotary feeder (61) which is operated as appropriate, and are continuously dried. Or crystallization becomes possible.Also, the temperature sensor (
Based on the detection result of the microwave device (34),
) to set the optimum heating temperature according to the powder and granular material to be charged, and the lower part of the processing tank (1) is controlled by the sensor (62) of the automatic continuous moisture measuring device (63). The controller (3) measures the moisture content of the powder and granules remaining in the
1) Efficient drying or crystallization can be performed by controlling the volume of cooling air, temperature, humidity, and amount of granular material retained.
尚、冷却風供給装置(5)は風の循環経路を構成してい
るが、前記空気排出孔(14)を大気に開放することに
よって、循環経路を構成しなくてもよいのであって、大
気から空気を前記送風機(51)に取入れるようにして
もよいのである。Although the cooling air supply device (5) constitutes a wind circulation path, by opening the air exhaust hole (14) to the atmosphere, it is not necessary to constitute a circulation path, and the air Air may be introduced into the blower (51) from above.
そこで、合成樹脂材料の1例としてペレットサイズ2.
5■■φ×2.5■■史で、かつ処理前の含水量216
00 pI)IN乾燥目標含水量(1000±200
) ppmのナイロン−6を、第1図に示した実施例の
乾燥・結晶化装置に10kg/hrで供給し、室温の冷
却風を30m’/hrの割合で送風を行なって表−1に
示す結果を得た。Therefore, as an example of synthetic resin material, pellet size 2.
5■■φ×2.5■■ history and moisture content before treatment 216
00 pI) IN dry target moisture content (1000±200
) ppm of nylon-6 was supplied at a rate of 10 kg/hr to the drying/crystallization apparatus of the example shown in Figure 1, and cooling air at room temperature was blown at a rate of 30 m'/hr. The following results were obtained.
以下、余白次頁に続く。Below, the margin continues on the next page.
表 −−1
*粉粒体の処理槽内に滞留した時間
上足表−1は、マイクロ波による粉粒体の内部からの加
熱と、冷却風による粉粒体の表面温度を低下させること
によって、従来の熱風による乾燥よりも大幅に短かい時
間で乾燥することができることを示す1例である。Table-1 *The time the powder and granules stay in the processing tank Table 1 shows the amount of time that the powder and granules stay in the processing tank by heating the powder and granules from inside using microwaves and lowering the surface temperature of the powder and granules using cooling air. This is an example showing that drying can be done in a significantly shorter time than conventional drying using hot air.
第3図は結晶化を目的としたバッチ式の実施例を示すも
ので、処理槽(1)は断面円形とし、その下端部を円錐
状にして、その最下端部に、冷却風供給装置(5)から
の冷却風を前記処理槽(1)内に送風する送風孔(13
)を備えている。更に前記処理槽(1)の上部には、材
料入口(11)と空気排出孔(14)とを設けると共に
、上下方向に延び、かつ、一端に複数の羽根(17)を
備えた回転軸(16)を回転自由に設けて、他端を図示
しない駆動装置に連結し、該駆動装置の駆動によって、
前記材料入口(11)から前記処理槽(1)に装入する
PET樹脂からなる粉粒体を必要に応じて撹拌できるよ
うにしている。又(19)はマイクロ波が透過できる合
成樹脂からなる隔離壁であり、(32)は前記処理槽(
1)の−側に接続する導波管であって、該導波管(32
)の前記処理槽(1)との接続部に設ける前記隔壁(1
9)はマイクロ波を透過させるが、前記処理槽(1)に
装入する粉粒体の前記導波管(32)内への入り込みを
防いでいる。また、前記導波管(32)の基部には前記
コントローラ(31)”と前記マイクロ波装置(3)と
を設けている。又、(10)は前記処理槽(1)におけ
る円錐状部の上端部に設けたパンチングメタルよりなる
仕切り板であって、前記送風孔(13)からの冷却風を
通過させると共に、粉粒体の下方への落下を阻止してい
る。Figure 3 shows a batch type embodiment for the purpose of crystallization, in which the processing tank (1) has a circular cross section, its lower end is conical, and a cooling air supply device ( 5) into the processing tank (1).
). Furthermore, a material inlet (11) and an air exhaust hole (14) are provided in the upper part of the processing tank (1), and a rotating shaft ( 16) is provided to be freely rotatable, and the other end is connected to a drive device (not shown), and by driving the drive device,
The granular material made of PET resin charged into the processing tank (1) from the material inlet (11) can be stirred as necessary. Further, (19) is a separation wall made of synthetic resin through which microwaves can pass, and (32) is a separation wall made of synthetic resin that allows microwaves to pass through.
1) is a waveguide connected to the negative side of the waveguide (32
) is provided at the connection part with the processing tank (1).
9) allows microwaves to pass through, but prevents the granular material to be charged into the processing tank (1) from entering the waveguide (32). Further, the controller (31)'' and the microwave device (3) are provided at the base of the waveguide (32). This is a partition plate made of punched metal provided at the upper end, and allows the cooling air from the ventilation hole (13) to pass therethrough, and prevents the powder from falling downward.
又第4図に示す実施例は1つの処理槽で、結晶化樹脂で
あるPET樹脂からなる粉粒体を、連続的に結晶化と共
に乾燥を行えるようにしたものであって、第3図に示し
た処理槽(1)を下方に延長−すると共に1.前記回転
軸(16)も下方に延長して上部には第3図と同様の撹
拌羽根(17)を設けると共に、下方への延長部には複
数の撹拌棒(18)・・・を設けている。尚、前記撹拌
棒(18)・・・による粉粒体の撹拌作動は結晶化のみ
を目的として行なう前記羽根(17)・・・の攪拌作動
より弱くなるようにして、粉粒体の必要以上の撹拌を避
け、前記粉粒体が長時間攪拌作動を受けることによるダ
スト発生を抑えている。The embodiment shown in FIG. 4 is one in which a powder made of PET resin, which is a crystallized resin, can be continuously crystallized and dried in one treatment tank. The shown treatment tank (1) is extended downward and 1. The rotating shaft (16) also extends downward, and the upper portion thereof is provided with a stirring blade (17) similar to that shown in FIG. 3, and the downward extension is provided with a plurality of stirring rods (18)... There is. The stirring operation of the powder and granular material by the stirring rod (18) is made weaker than the stirring action of the blade (17), which is performed only for the purpose of crystallization, so that the stirring operation of the powder and granular material is less than necessary. This prevents dust from being generated when the powder or granules are subjected to long-term stirring operations.
次に、サイズ2 = 3 s嘗φ、含水n2180PP
■のペレットから成る未結晶のPET樹脂を、第3図に
示したバッチ式乾燥・結晶化装置と従来例とにより結晶
化を行ったところ、表−2の結果となった。また、それ
ぞれの結晶化処理後にそれぞれ従来の熱風による乾燥装
置を用い、乾燥温度150℃で3時間乾燥を行ったとこ
ろ、下記表−3の如くの結果を得た。Next, size 2 = 3s φ, water content n2180PP
When the uncrystallized PET resin consisting of the pellets of (1) was crystallized using the batch type drying/crystallization apparatus shown in FIG. 3 and the conventional example, the results shown in Table 2 were obtained. Further, after each crystallization treatment, drying was performed for 3 hours at a drying temperature of 150° C. using a conventional hot air drying device, and the results shown in Table 3 below were obtained.
表 2
表 −3
表−2から明らかな通り、本発明にか\る乾燥・結晶化
装置によりPET樹脂を結晶化した場合、従来の低温法
に比較して結晶化に要する時間は高温法と同様短時間(
10分)であり、しかも、従来例の高温法による結晶化
の場合では、乾燥時間瀾了時の含有水分量は73PPm
で目標含水Q50PPm以下に到達しないのであるが、
本発明によれば、低温法と同様目標含水1150PPm
より低い33 PPmにできたのである。Table 2 Table 3 As is clear from Table 2, when PET resin is crystallized using the drying/crystallization apparatus according to the present invention, the time required for crystallization is longer than that of the high temperature method compared to the conventional low temperature method. Similarly, for a short time (
10 minutes), and in the case of crystallization by the conventional high temperature method, the water content at the end of the drying time was 73 PPm.
However, the water content does not reach the target water content Q50PPm or less.
According to the present invention, the target water content is 1150 PPm as in the low temperature method.
This resulted in a lower level of 33 PPm.
尚、サイズ、含水量が同じの未結晶PET樹脂を第4図
に示した乾燥・結晶化装置によって、結晶化と共に乾燥
を行った場合、70分で含有水分を52 PPmにする
ことができたのであって、結晶後従来の熱風による乾燥
装置を用いる場合に比較し、その乾燥時間を著るしく短
縮できるのである。Furthermore, when uncrystallized PET resins of the same size and water content were dried together with crystallization using the drying/crystallization apparatus shown in Figure 4, the water content could be reduced to 52 PPm in 70 minutes. Therefore, the drying time can be significantly shortened compared to the case of using a conventional drying device using hot air after crystallization.
(発明の効果)
以上説明した如く本発明にか\る粉粒体の乾燥・結晶化
g置によれば、従来の熱風による乾燥又は結晶化に代え
てマイクロ波装置(3)から放射するマイクロ波によっ
て粉粒体をその内部から加熱して、粉粒体内部からの水
分の表面への拡散又は、PET樹脂の結晶化においては
粉粒体内部からの結晶化を促しながら、冷却風供給装置
(5)からマイクロ波で加熱された粉粒体の表面温度よ
り低い温度の冷却風を供給して、粉粒体の表面温度を抑
えると共に粉粒体表面の水分を除去することによって、
粉粒体表面の軟化、溶融による粉粒体の粘若及び表面酸
化による変色を招くことがないから、従来の熱風による
乾燥・結晶化装置において見られるパンチングメタルの
目詰りや、粉粒体の固着による不均一乾燥又は結晶化を
懸念することな(、熱風による加熱に比較して大幅に短
かい時間で乾燥又は結晶化することができ、従って、連
続作業による乾燥又は結晶化が可能となるし、又、連続
作業にすることによって、従来の乾燥・結晶化装置の数
を少なくして、余ったスペースを他に利用することがで
きるのである。(Effects of the Invention) As explained above, according to the drying/crystallization apparatus of the present invention, instead of the conventional drying or crystallization using hot air, the microwave radiated from the microwave device (3) A cooling air supply device heats the powder or granule from inside by waves, promoting the diffusion of moisture from inside the powder to the surface or, in the case of crystallization of PET resin, crystallization from the inside of the powder. By supplying cooling air at a temperature lower than the surface temperature of the granular material heated by microwaves from (5), the surface temperature of the granular material is suppressed and moisture on the surface of the granular material is removed.
Since it does not cause softening of the powder surface, viscosity of the powder due to melting, and discoloration due to surface oxidation, clogging of the punching metal that occurs in conventional hot air drying/crystallization equipment and There is no concern about uneven drying or crystallization due to sticking (it can be dried or crystallized in a significantly shorter time than heating with hot air, and therefore drying or crystallization can be performed in a continuous operation). Moreover, by operating continuously, the number of conventional drying and crystallization equipment can be reduced and the remaining space can be used for other purposes.
また、本発明はPET樹脂の場合、その結晶化のみに用
いることもできるが、結晶化と同時に乾燥させることも
できるのである。Furthermore, in the case of PET resin, the present invention can be used only for its crystallization, but it can also be used for drying at the same time as crystallization.
従って、従来例のように結晶化装置と乾燥装置とを別個
に用いる必要はなくなり、之により設備費を低減できる
し、設備スペースも少なくすることができるのである。Therefore, it is no longer necessary to use a crystallization device and a drying device separately as in the conventional example, thereby reducing equipment costs and equipment space.
第1図は本発明の一実施例を示す概略断面説明図、第2
図、第3図及び第4図は他の実施例を示す概略断面説明
図である。
(1)・・・・・・処理槽
(3)・・・・・・マイクロ波装置
(5)・・・・・・冷却風供給v2置FIG. 1 is a schematic cross-sectional explanatory diagram showing one embodiment of the present invention, and FIG.
3, and 4 are schematic cross-sectional explanatory views showing other embodiments. (1)...Processing tank (3)...Microwave device (5)...Cooling air supply v2 position
Claims (1)
て、材料入口(11)と材料出口(12)とを備えた処
理槽(1)と、該処理槽(1)内の粉粒体にマイクロ波
を放射するマイクロ波装置(3)と該マイクロ波装置(
3)から放射されるマイクロ波で加熱された粉粒体の表
面温度より低温の冷却風を供給し、粉粒体の表面温度を
低下させる冷却風供給装置(5)とを備えていることを
特徴とする粉粒体の乾燥・結晶化装置。A drying/crystallization device for powder and granules made of synthetic resin material, including a processing tank (1) equipped with a material inlet (11) and a material outlet (12), and a powder in the processing tank (1). A microwave device (3) that emits microwaves to the body, and the microwave device (
3) A cooling air supply device (5) that supplies cooling air at a temperature lower than the surface temperature of the powder or granule heated by the microwave emitted from the granule to lower the surface temperature of the powder or granule. Characteristic drying and crystallization equipment for powder and granular materials.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22267887 | 1987-09-04 | ||
JP62-222678 | 1987-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01163006A true JPH01163006A (en) | 1989-06-27 |
JPH0737027B2 JPH0737027B2 (en) | 1995-04-26 |
Family
ID=16786209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62314919A Expired - Lifetime JPH0737027B2 (en) | 1987-09-04 | 1987-12-11 | Drying and crystallization equipment for powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0737027B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458829A (en) * | 1992-08-06 | 1995-10-17 | Toyota Jidosha Kabushiki Kaisha | Method for continuously recycling waste parts having a coating thereon |
WO1996022179A1 (en) * | 1995-01-20 | 1996-07-25 | E.I. Du Pont De Nemours And Company | A process and apparatus for forming crystalline polymer pellets |
DE102004063528B4 (en) * | 2004-08-13 | 2007-06-28 | Hyundai Motor Co. | Apparatus for continuously treating a surface of waste gum powder using microwaves |
CN105500551A (en) * | 2016-01-30 | 2016-04-20 | 黄利文 | Chemical equipment for efficiently preparing resin particles |
CN114986743A (en) * | 2022-06-07 | 2022-09-02 | 昆山旭曜包装制品有限公司 | Continuous drying method and processing method for plastic particles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4819104U (en) * | 1971-07-10 | 1973-03-03 | ||
JPS63231908A (en) * | 1987-03-20 | 1988-09-28 | Matsuji Nakagome | Dryer of plastic pellet |
-
1987
- 1987-12-11 JP JP62314919A patent/JPH0737027B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4819104U (en) * | 1971-07-10 | 1973-03-03 | ||
JPS63231908A (en) * | 1987-03-20 | 1988-09-28 | Matsuji Nakagome | Dryer of plastic pellet |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458829A (en) * | 1992-08-06 | 1995-10-17 | Toyota Jidosha Kabushiki Kaisha | Method for continuously recycling waste parts having a coating thereon |
WO1996022179A1 (en) * | 1995-01-20 | 1996-07-25 | E.I. Du Pont De Nemours And Company | A process and apparatus for forming crystalline polymer pellets |
US5633018A (en) * | 1995-01-20 | 1997-05-27 | E. I. Du Pont De Nemours And Company | Apparatus for forming crystalline polymer pellets |
KR100432287B1 (en) * | 1995-01-20 | 2005-09-16 | 이 아이 듀폰 디 네모아 앤드 캄파니 | A process and apparatus for forming crystalline polymer pellets |
DE102004063528B4 (en) * | 2004-08-13 | 2007-06-28 | Hyundai Motor Co. | Apparatus for continuously treating a surface of waste gum powder using microwaves |
CN105500551A (en) * | 2016-01-30 | 2016-04-20 | 黄利文 | Chemical equipment for efficiently preparing resin particles |
CN114986743A (en) * | 2022-06-07 | 2022-09-02 | 昆山旭曜包装制品有限公司 | Continuous drying method and processing method for plastic particles |
Also Published As
Publication number | Publication date |
---|---|
JPH0737027B2 (en) | 1995-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI397463B (en) | Device and proceeding for treatment of plastics material | |
US8304518B2 (en) | Method for thermally treating polyester pellets to obtain a partial crystallization | |
US3997388A (en) | Dehydration of manure | |
US4030205A (en) | Drying system for particles | |
JPH03500501A (en) | Fluidized or spouted bed chambers, treatment columns and two-stage processes | |
JPH10512512A (en) | Equipment for heat-treating bulk materials containing plastic | |
CN108340504A (en) | Integrated treatment all-in-one machine for plastic pellet | |
JPH01163006A (en) | Drying and crystallizing device for powdery and granular material | |
JPS62126965A (en) | Method and apparatus for finely pulverizing moromi | |
CN203824230U (en) | Fluidized-bed-type stirring drying machine | |
JP3563993B2 (en) | Batch type plastic crystallizer | |
CN209569979U (en) | A kind of constant temperature blast drier | |
JP4583176B2 (en) | Method and device for increasing the intrinsic viscosity of polyester materials by solid state polymerization | |
JPH01163007A (en) | Drying and crystallizing device for powdery or granular material | |
JPH01163008A (en) | Drying and crystallizing device for powdery or granular material | |
CA3209644A1 (en) | Installation and process for crystallizing and drying granular polymer material | |
JPH0551839B2 (en) | ||
JPH02225007A (en) | Microwave drying equipment | |
CN219072878U (en) | Granulator capable of adjusting feeding amount | |
CN103968645B (en) | A kind of forced fluidized bed formula drying machine | |
CN220428947U (en) | Plastic granules drying device | |
JP3576072B2 (en) | Continuous type polyethylene terephthalate crystallizer and polyethylene terephthalate molding machine | |
JPH0639098B2 (en) | Drying equipment for powder and granules | |
CN113983802A (en) | Drying equipment for production and processing of silica gel drying agent | |
CN217031900U (en) | Fodder drying equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 13 |