JPH01162818A - Production of polyethylene fiber - Google Patents
Production of polyethylene fiberInfo
- Publication number
- JPH01162818A JPH01162818A JP31984987A JP31984987A JPH01162818A JP H01162818 A JPH01162818 A JP H01162818A JP 31984987 A JP31984987 A JP 31984987A JP 31984987 A JP31984987 A JP 31984987A JP H01162818 A JPH01162818 A JP H01162818A
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- spinning
- solution
- yarn
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 polyethylene Polymers 0.000 title claims abstract description 57
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 54
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 54
- 239000000835 fiber Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 16
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 15
- 230000008961 swelling Effects 0.000 claims abstract description 11
- 238000009987 spinning Methods 0.000 abstract description 18
- 239000002904 solvent Substances 0.000 abstract description 17
- 238000010438 heat treatment Methods 0.000 abstract description 12
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000004705 High-molecular-weight polyethylene Substances 0.000 abstract description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 25
- 238000004132 cross linking Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000002657 fibrous material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 4
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 2
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001891 gel spinning Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- KXFKWHCCWRUPAM-UHFFFAOYSA-N CC.F.F.F.Cl.Cl.Cl Chemical compound CC.F.F.F.Cl.Cl.Cl KXFKWHCCWRUPAM-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Graft Or Block Polymers (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高強度・高弾性率を有し、かつクリープの低い
ポリエチレン繊維の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing polyethylene fibers having high strength, high modulus of elasticity, and low creep.
(従来の技術)
ポリエチレン繊維は軽くて耐薬品性に優れる、比較的安
価であるなど産業用繊維素を才としての優れた性質を有
している。(Prior Art) Polyethylene fibers have excellent properties as industrial cellulose, such as being light, having excellent chemical resistance, and being relatively inexpensive.
近年、産業用繊維素材としてこれを使用する製品の省エ
ネルギー化、高機能化に対応するため軽く、強度、弾性
率の高い繊維素材が要求されてきた。In recent years, there has been a demand for fiber materials that are lightweight, have high strength, and have high modulus of elasticity in order to meet the demands for energy saving and high functionality in products that use these industrial fiber materials.
この要求を満足するポリエチレン繊維を製造する方法と
して、高分子量ポリエチレンの溶液を紡糸し、冷却して
得たゲル状のフィラメントを高倍率に熱延伸する方法が
特開昭55−107506号公報、特開昭58−522
8号公報等に開示されている。As a method for producing polyethylene fibers that satisfy this requirement, a method is disclosed in JP-A-55-107506, in which a solution of high molecular weight polyethylene is spun, cooled, and the obtained gel-like filament is hot-stretched to a high magnification. Kaisho 58-522
This is disclosed in Publication No. 8, etc.
これらの方法で得られる高強度・高弾性率ポリエチレン
繊維は、その特性故に特に高い強度と高い弾性率が要求
される産業用繊維用途、例えはローブ、スリング、各種
ゴム補強材、各種樹脂の補強材およびコンクリート補強
材などに有用註が間待されている。Due to its characteristics, the high-strength, high-modulus polyethylene fibers obtained by these methods can be used for industrial fiber applications that require particularly high strength and high modulus, such as lobes, slings, various rubber reinforcement materials, and reinforcement of various resins. Useful notes are awaited for materials such as wood and concrete reinforcement materials.
しかしながら上記の方法で得られる高強度・高弾性率ポ
リエチレン繊維は高い強度を有して(まいるが、通電の
ポリエチレン繊維と同様に荷重下での伸び、すなわちク
リープが高いという欠点を有する。このため産業用′a
維素材としてこれらの高強度・高弾性率ポリエチレン繊
維を用いた場合、多くの支障を生ずることになる。例え
ば、これらの繊維を用いたローブは荷重により徐々に伸
びてくるという問題を生じる。また、これらの繊維を光
ファイバー等のテンションメンバーとして用いた場合に
は、張力を担うべきテンションメンバーの伸びが時間と
ともに進行する。このため、テンションメンバーに支え
られるべき光ファイバー等に張力がかかるようになり、
そのa能が低下したり、破断に至るようになるなどであ
る。However, although the high-strength, high-modulus polyethylene fibers obtained by the above method have high strength, they have the disadvantage of high elongation under load, that is, high creep, similar to energized polyethylene fibers. For industrial use'a
When these high-strength, high-modulus polyethylene fibers are used as fiber materials, many problems occur. For example, lobes made of these fibers tend to gradually stretch under load. Furthermore, when these fibers are used as tension members for optical fibers and the like, the tension members that are supposed to bear tension progress over time. As a result, tension is applied to the optical fibers, etc. that should be supported by the tension members.
This may result in a decrease in its aqueous performance or even lead to breakage.
そこで、上記のような高強度・高弾性率ポリエチレン繊
維のクリープ特性を改善できれば産業用繊維素材として
、その用途が大きく広がると考えられる。Therefore, if the creep characteristics of high-strength, high-modulus polyethylene fibers as described above can be improved, their use as industrial fiber materials will be greatly expanded.
ポリエチレンのクリープ特性を改善する方法としては架
橋処理を行うことが知られている。Crosslinking treatment is known as a method for improving the creep properties of polyethylene.
特開昭60−59172号公報にはポリエチレンの延伸
糸に、また特開昭60−240433号公報には延伸前
または延伸中のゲル状フィルムまたはテープに放射線を
照射し架橋処理を施す方法が記載されている。しかしな
がら、これらの方法では放射線を照射する際に架橋だけ
でなく分子鎖の切断も同時に起こり、強度の低下が避け
られない。JP-A No. 60-59172 describes a method of applying radiation to a drawn polyethylene yarn, and JP-A No. 60-240433 describes a method of subjecting a gel-like film or tape to crosslinking treatment by irradiating radiation before or during stretching. has been done. However, in these methods, when irradiating with radiation, not only crosslinking but also molecular chain scission occurs at the same time, resulting in an unavoidable decrease in strength.
また、ジェー・デボア、エイチ・ジエー・ファンデンベ
ルグ、及びエイ・ジエー・ペニングス;ポリマー第25
巻513〜519ページ[J、 de Boer、
H,J、van de Berg。Also, J. DeBoer, H.J. Vandenberg, and A.J. Pennings; Polymer No. 25
Volume 513-519 [J, de Boer,
H, J. van de Berg.
A、J、Pennings: POLYMER,V。A. J. Pennings: POLYMER, V.
1.25.P、513〜519]には乾燥したケル状繊
維に溶剤に溶かした架橋剤を含浸させ溶剤をとばした後
延伸と同時に架橋処理を施す方法力弓己載されている。1.25. P, 513-519] describes a method in which dried Kel-like fibers are impregnated with a crosslinking agent dissolved in a solvent, the solvent is blown off, and then a crosslinking treatment is performed simultaneously with stretching.
さらに特開昭61−293229号公報には耐熱性の改
良が目的であるが、ポリエチレンのゲル状物に架橋剤を
含浸させ成形する方法が記載されている。ところがこれ
らの方法においては、延伸あるいは成形中に架橋が進む
ため配向、結晶化が阻害されて、やはり高強度・高弾性
率を得ることが困難である。Further, JP-A-61-293229 describes a method of impregnating a polyethylene gel with a crosslinking agent and molding the material, the purpose of which is to improve heat resistance. However, in these methods, crosslinking progresses during stretching or molding, which inhibits orientation and crystallization, making it difficult to obtain high strength and high elastic modulus.
従って、上記のような方法で得られる架橋ポリエチレン
繊維は一般に機械的特性が多くの産業用繊維用途におい
て充分とならない。Therefore, crosslinked polyethylene fibers obtained by the above-described method generally do not have sufficient mechanical properties for many industrial fiber applications.
(本発明が解決しようとする問題点)
本発明の目的は産業用繊維素材として有用な高強度、高
弾性率を有し、かつクリープの低いポリエチレン繊維の
製造方法を提供することにある。(Problems to be Solved by the Present Invention) An object of the present invention is to provide a method for producing polyethylene fibers that have high strength, high elastic modulus, and low creep and are useful as industrial fiber materials.
(問題点を解決するための手段)
本発明は、2以上のビニル基を有する有機化合物を混合
した重量平均分子量が70万以上のポリエチレンの溶液
を該ポリエチレンの膨潤温度以上の温度で熱処理した後
、紡糸し、得られた未延伸糸を熱延伸することを特徴と
するポリエチレン繊維の製造方法を提供するものである
。(Means for Solving the Problems) The present invention provides a solution of polyethylene having a weight average molecular weight of 700,000 or more mixed with an organic compound having two or more vinyl groups, after heat treatment at a temperature equal to or higher than the swelling temperature of the polyethylene. The present invention provides a method for producing polyethylene fibers, which comprises spinning the resulting undrawn yarn and hot drawing the resulting undrawn yarn.
本発明でいうポリエチレンとは、少量の例えば10モル
%以下のプロピレン、ブチレン、ペンテン、ヘキセン、
4−メチルペンテンなどの他のアルケンあるいはエチレ
ンと共重合しうるビニルモノマー等の1種あるいは2種
以上が共重合されたものであってもよい。In the present invention, polyethylene refers to a small amount of propylene, butylene, pentene, hexene, for example, 10 mol% or less,
One or more types of vinyl monomers copolymerizable with other alkenes such as 4-methylpentene or ethylene may be copolymerized.
本発明の方法に用いるポリエチレンの分子量は重量平均
分子量が70万以上、好ましくは150万以上、さらに
好ましくは200万以上とする必要がある。The weight average molecular weight of the polyethylene used in the method of the present invention needs to be 700,000 or more, preferably 1,500,000 or more, and more preferably 2,000,000 or more.
一般に分子量が高いほど繊維内部に分子鎖末端等の欠陥
部が少なくなり、強度が高くなるが、産業用繊維素材と
してなんら問題なく使用できるポリエチレン繊維を得る
ためには重量平均分子量が70万以上のポリエチレンを
用いる必要がある。In general, the higher the molecular weight, the fewer defects such as molecular chain ends inside the fiber, and the higher the strength. It is necessary to use polyethylene.
本発明の方法では、まず2以上のビニル基を有する有機
化合物を混合した重量平均分子量が70万以上であるポ
リエチレンの溶液を調製する。In the method of the present invention, first, a solution of polyethylene having a weight average molecular weight of 700,000 or more is prepared by mixing an organic compound having two or more vinyl groups.
ポリエチレンの溶液を形成するために使用する溶剤とし
ては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水
素、ハロゲン化炭化水素およびこれらの混合物が挙げら
れるがこれらに限定されるものではない。通常ポリエチ
レンはこれらの溶剤をもってしても60℃以下では溶解
せず、100°C以上に加熱することが多いため低沸点
の溶剤は好ましくない。好適な溶剤としてはデカリン、
キシレン、テトラリン、ノナン、デカン、n−バラフイ
ン、灯油、パラフィンオイルなどが挙げられる。Solvents used to form the solution of polyethylene include, but are not limited to, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and mixtures thereof. . Normally, even with these solvents, polyethylene does not dissolve at temperatures below 60°C and is often heated above 100°C, so low boiling point solvents are not preferred. Suitable solvents include decalin,
Examples include xylene, tetralin, nonane, decane, n-varafine, kerosene, paraffin oil, and the like.
才た、パラフィンワックスおよびナフタレンなどの常温
で固体のものも使用し得る。Materials that are solid at room temperature, such as solid, paraffin wax and naphthalene, may also be used.
ポリエチレン溶液のポリエチレン)弱度には特に限定は
なく溶解時の均一性、紡糸時の吐出安定性、曳糸性、糸
条走行性および延伸時の製糸性などの面から適切な溶液
粘度となるように選択されるが、1〜15重量%の範囲
が適当である。There is no particular limit to the weakness of the polyethylene solution, and the solution viscosity will be appropriate from the viewpoints of uniformity during dissolution, ejection stability during spinning, spinnability, thread runnability, and spinnability during drawing. However, a range of 1 to 15% by weight is appropriate.
本発明で用いる2以上のビニル基を有する有機化合物は
ポリエチレン溶液中のポリエチレンをポリエチレンの膨
潤温度以上の温度における熱処理で架橋することのでき
るものであればよく、特に限定はないが、ジアリールフ
タレート、トリアリールイソシアヌレート、ジビニルベ
ンゼン、エチレンジメタクリレート、無水メタクリル酸
などの上記ポリエチレンの溶剤に溶解しろるものが好ま
しい。The organic compound having two or more vinyl groups used in the present invention is not particularly limited as long as it can crosslink polyethylene in a polyethylene solution by heat treatment at a temperature higher than the swelling temperature of polyethylene, but diaryl phthalate, Those that can be dissolved in the above-mentioned polyethylene solvents, such as triaryl isocyanurate, divinylbenzene, ethylene dimethacrylate, and methacrylic anhydride, are preferred.
2以上のビニル基を有する有機化合物の混合量は該化合
物の種類、熱処理温度等によって異なり特に限定はない
が、ポリエチレンに対して1〜25重量%、特に好まし
くは2〜20ffiffi%の範囲が適切である。The amount of the organic compound having two or more vinyl groups varies depending on the type of compound, heat treatment temperature, etc., and is not particularly limited, but it is suitably in the range of 1 to 25% by weight, particularly preferably 2 to 20% by weight, based on polyethylene. It is.
2以上のビニル基を有する有機化合物の混合量が少ない
とポリエチレンの架橋が起こりにくく、クリープ抑制効
果が小さくなる。また、2以上のビニル基を有する有機
化合物の混合量が多いと架橋の程度が強くなり過ぎるた
めに溶液の粘度が高くなり紡糸が困難となったり、延伸
による配向、結晶化が阻害され高強度、高弾性率の延伸
糸を得にくくなる。If the mixing amount of the organic compound having two or more vinyl groups is small, crosslinking of polyethylene will be difficult to occur, and the creep suppressing effect will be reduced. In addition, if the mixing amount of an organic compound having two or more vinyl groups is too large, the degree of crosslinking will be too strong and the viscosity of the solution will become high, making spinning difficult, and orientation and crystallization by stretching will be inhibited, resulting in high strength. , it becomes difficult to obtain a drawn yarn with a high elastic modulus.
2以上のビニル化合物を有する有機化合物をポリマ溶液
に混合する方法としては、ポリマと同時に溶剤に添加し
て混合してもよいし、紡糸までの適当な時期にポリエチ
レンの溶液に混合してもよい。An organic compound containing two or more vinyl compounds can be mixed into the polymer solution by adding it to the solvent at the same time as the polymer, or by mixing it into the polyethylene solution at an appropriate time before spinning. .
なお、本発明の方法においては有機過酸化物を2以上の
ビニル基を有する有機化合物と同時に使用することがで
きる。しかしこの場合は、有機過酸化物は2以上のビニ
ル基を有する有機化合物と同量あるいはそれ以下とする
のが適切である。なぜなら、有機過酸化物の量が多いと
架橋の程度が強くなりすぎて、延伸時の配向、結晶化が
阻害されることがあるからである。In addition, in the method of the present invention, an organic peroxide can be used simultaneously with an organic compound having two or more vinyl groups. However, in this case, it is appropriate that the amount of organic peroxide be equal to or less than the amount of the organic compound having two or more vinyl groups. This is because if the amount of organic peroxide is large, the degree of crosslinking becomes too strong, which may inhibit orientation and crystallization during stretching.
本発明においては2以上のビニル基を有する有機化合物
を混合したポリマ溶液を調製した後、紡糸までに溶液を
用いたポリエチレンの膨潤温度以上の温度で熱処理する
必要がある。In the present invention, after preparing a polymer solution containing a mixture of organic compounds having two or more vinyl groups, it is necessary to heat-treat the solution at a temperature higher than the swelling temperature of the polyethylene used in the solution before spinning.
この熱処理ごこより2以上のビニル基を有する有機化合
物を反応させ、ポリエチレンを架橋するのであるが、温
度を膨潤温度以上とすれば、架(喬がポリエチレンの分
子の広がった状態で進行する。During this heat treatment, an organic compound having two or more vinyl groups is reacted to crosslink the polyethylene, but if the temperature is set above the swelling temperature, the crosslinking will proceed with the polyethylene molecules spread out.
このためバルクの場合と比較して各ポリエチレンの分子
は近傍の分子との接点が少なくり、架橋の程度を軽度に
てきる。従って、熱処理温度をポリエチレンの膨潤温度
以上とすれは、紡糸に用いるポリエチレン溶液の粘度は
架橋を施されていないポリエチレンの溶液より若干高く
なるものの、適当な曳糸性を保持し、通常の紡糸及びそ
れに続く延伸が可能である。Therefore, compared to the bulk case, each polyethylene molecule has fewer contact points with neighboring molecules, and the degree of crosslinking is reduced. Therefore, if the heat treatment temperature is set higher than the swelling temperature of polyethylene, the viscosity of the polyethylene solution used for spinning will be slightly higher than that of a non-crosslinked polyethylene solution, but it will maintain appropriate spinnability and will be used for normal spinning and spinning. Subsequent stretching is possible.
なお、本発明でいう膨潤温度とは紡糸に用いるポリマと
溶剤の組合せにおいて、ポリマを溶剤中に15分間浸漬
したとき乾燥したポリマに対するポリマに吸収された溶
剤の重量分率(膨潤度)が、400%になる温度のこと
である。In addition, the swelling temperature in the present invention refers to the combination of polymer and solvent used for spinning, and when the polymer is immersed in the solvent for 15 minutes, the weight fraction (swelling degree) of the solvent absorbed by the polymer relative to the dry polymer is, This is the temperature at which the temperature increases to 400%.
上記の熱処理は2以上のビニル基を有する有機化合物が
反応するのに十分な時間続けることが必要であるが、こ
の時間は該化合物の種類、熱処理温度などにより異なり
、事前の実験により適切な時間を容易に決めることがで
きる。The above heat treatment needs to be continued for a sufficient time for the organic compound having two or more vinyl groups to react, but this time varies depending on the type of compound, heat treatment temperature, etc., and the appropriate time can be determined by prior experimentation. can be easily determined.
本発明の方法において、上記のポリエチレン溶液を通常
のギヤポンプと紡糸ノズルを用いて繊維状に吐出させ、
冷却固化させて繊維化するが、この紡糸方法としてはい
わゆる乾式紡糸、湿式紡糸、ノズルから押出された溶液
を一旦気体部分を通過させた後、凝固浴に導き糸条な凝
固させるいわゆる乾湿式紡糸、ノズルから押出された溶
液を冷却して、−旦ゴム状ゲル糸条を形成させるいわゆ
るゲル紡糸、ノズルから押出された溶液を冷却剤と凝固
剤からなる浴に導き、ゲル化、凝固させる特開昭61−
113813号公報に記載の紡糸方法(以下ゲル湿式紡
糸と呼ぶ)などが適用できるが、特にこれらの方法に限
定されるものではない。ただし、高い引張強度のポリエ
チレンフィラメントが得やすいことおよび単糸間融着の
少ないポリエチレンマルチフィラメントが得やすいこと
からゲル湿式紡糸を適用するのが好ましい。なぜならポ
リエチレンマルチフィラメントに単糸間の融着が多いと
フィラメント全体の引張強度が低下するばかりか樹脂と
の接着性が低下したり、加熱時の強力利用率が低下した
りするなどの問題が起こるからである。In the method of the present invention, the above polyethylene solution is discharged in the form of fibers using an ordinary gear pump and a spinning nozzle,
The spinning methods are dry spinning, wet spinning, and dry-wet spinning, in which the solution extruded from a nozzle is passed through a gas section, then introduced into a coagulation bath and coagulated into yarn. , so-called gel spinning, in which the solution extruded from the nozzle is cooled to form a rubbery gel thread, and the solution extruded from the nozzle is introduced into a bath consisting of a cooling agent and a coagulant to gel and coagulate. 1986-
The spinning method described in Japanese Patent No. 113813 (hereinafter referred to as gel wet spinning) can be applied, but the method is not particularly limited to these methods. However, it is preferable to apply gel wet spinning because it is easy to obtain polyethylene filaments with high tensile strength and polyethylene multifilaments with less fusion between single filaments. This is because if there is a lot of fusion between single filaments in polyethylene multifilament, problems such as not only the tensile strength of the entire filament will decrease, but also the adhesiveness with the resin will decrease, and the strength utilization rate during heating will decrease. It is from.
上記方法で紡糸された糸条に溶剤が残存する場合、抽出
剤により残存溶剤を抽出するのが好ましい。糸条中の残
存溶剤を乾燥または熱延伸等の方法で除去すると、溶剤
が蒸発する際に単糸間融着が生じることがあるからであ
る。抽出剤により糸条中の残存溶剤を除去すれば乾燥、
熱延伸を行っても単糸間融着は生じない。When the solvent remains in the yarn spun by the above method, it is preferable to extract the remaining solvent with an extractant. This is because if the residual solvent in the yarn is removed by a method such as drying or hot stretching, fusion between single yarns may occur when the solvent evaporates. If the residual solvent in the yarn is removed using an extractant, drying is possible.
Even if hot stretching is performed, no fusion occurs between single yarns.
な゛お、抽出糸条は乾燥により抽出剤を除去した方が、
後の熱延伸工程において製糸性が良くなるので好ましい
。Note that it is better to remove the extractant by drying the extracted threads.
This is preferable because it improves the spinning properties in the subsequent hot stretching step.
上記方法で得られたポリエチレン未延伸糸は引続き熱延
伸に供される必要がある。The undrawn polyethylene yarn obtained by the above method needs to be subsequently subjected to hot drawing.
通常、架橋処理されたポリマは3次元網目構造をとるた
め、未配向のものでもほとんど延伸できない。ところが
本発明の方法により得られる架橋未延伸糸は架橋の程度
がごくわずかであるために高い延伸倍率を採用すること
ができる。ざらに、延伸による配向、結晶化の阻害の程
度も少ない。Usually, crosslinked polymers have a three-dimensional network structure, so even unoriented polymers can hardly be stretched. However, since the crosslinked undrawn yarn obtained by the method of the present invention has a very slight degree of crosslinking, a high drawing ratio can be employed. In addition, the degree of inhibition of orientation and crystallization due to stretching is also small.
また、このポリエチレン未延伸糸は冷延伸でも延伸する
ことはできるが、この場合、産業用域♀1を素材として
なんら問題なく使用できるような高強度、高弾性率のポ
リエチレン繊維を得ることができない。In addition, although this undrawn polyethylene yarn can be drawn by cold drawing, in this case, it is not possible to obtain polyethylene fibers with high strength and high elastic modulus that can be used as a material for industrial grade ♀1 without any problems. .
このポリエチレン未延伸糸の熱延伸における延伸温度に
は特に限定はないか、80〜160°Cの範囲が好まし
く、さらに好ましくは100〜160°Cである。なお
、延伸時の加熱媒体としては加熱ロール、熱板、加熱気
体浴、加熱液体浴および加熱ビンなどが挙げられるがこ
れらに限定されるものではない。There is no particular limitation on the stretching temperature in the hot stretching of this undrawn polyethylene yarn, but it is preferably in the range of 80 to 160°C, more preferably 100 to 160°C. In addition, examples of the heating medium during stretching include, but are not limited to, a heating roll, a hot plate, a heated gas bath, a heated liquid bath, and a heating bottle.
熱延伸における延伸倍率は高強度・高弾性率が得られる
よう10倍以上、好ましくは20倍以上ざらに好ましく
は25倍以上に設定するのが適当である。なお、延伸は
1段でも多段で行ってもよい。The stretching ratio in hot stretching is suitably set to 10 times or more, preferably 20 times or more, and preferably 25 times or more so as to obtain high strength and high elastic modulus. Note that the stretching may be performed in one stage or in multiple stages.
本発明の方法を適用すると単糸強度30 g/d以上、
単糸ヤング率1000g/d以上で、かつ20℃におい
て破断強力の1/10の荷重下に60日日間−た時のク
リープが2%以下であるポリエチレン繊維が容易に得ら
れ、また単糸強度40g/d以上、単糸ヤング率140
0g/d以上で、かつ20°Cにおいて破断強力の1/
10の荷重下に60日日間−た時のクリープが1%以下
であるポリエチレン繊維を得ることもできる。When the method of the present invention is applied, the single yarn strength is 30 g/d or more,
Polyethylene fibers with a single yarn Young's modulus of 1000 g/d or more and a creep of 2% or less when kept under a load of 1/10 of the breaking strength at 20°C for 60 days can be easily obtained, and the single yarn strength is 40g/d or more, single yarn Young's modulus 140
1/ of the breaking strength at 0 g/d or more and at 20°C
It is also possible to obtain polyethylene fibers having a creep of less than 1% when subjected to a load of 10% for 60 days.
(実施例)
次に実施例により本発明を具体的に説明するが、本発明
はこれに限定されるものではない。なお、引張強度、初
期弾性率およびクリープは次の条件で測定した。(Example) Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. In addition, tensile strength, initial elastic modulus, and creep were measured under the following conditions.
引張強度、初期弾性率測定条件
測定雰囲気:20°C5相対湿度65%装置 :東
洋ボールドウィン社製
テンシロンUTM−4引張試験機
試料 :単糸250mm
引張速度 :300mm/分
初期弾性率:強伸度曲線の原点における傾きから求めた
。Tensile strength and initial elastic modulus measurement conditions Measurement atmosphere: 20°C, 65% relative humidity Equipment: Tensilon UTM-4 tensile tester manufactured by Toyo Baldwin Co., Ltd. Sample: Single yarn 250 mm Tensile speed: 300 mm/min Initial elastic modulus: Strength and elongation curve It was determined from the slope at the origin.
クリープ測定条件
測定雰囲気:20°C1相対湿度65%荷重 :破
断強力の1710
なお、ここでいう破断強力とは単糸引張強度と繊度の積
を意味する。また、クリープは次式により求めた。Creep measurement conditions Measurement atmosphere: 20° C. 1 Relative humidity 65% Load: Breaking strength of 1710 Note that the breaking strength here means the product of single yarn tensile strength and fineness. In addition, creep was determined using the following formula.
L2:サンプルに荷重をかけた直後の
長さ(初期長)
L :60日間サンプルに荷重をかけ、荷重がかかった
状態で測定した
長さ
(実施例1)
重量平均分子量が300万の直鎖状高密度ポリエチレン
とこのポリエチレンの10重量%のトリアリルイソシア
スレートを灯油に180°Cの温度で溶解し、同じ温度
で90分間撹拌しながら熱処理を施して5. 0重量%
のポリエチレン溶液を調製した。L2: Length immediately after applying a load to the sample (initial length) L: Length measured after applying a load to the sample for 60 days (Example 1) Straight chain with a weight average molecular weight of 3 million 5. High-density polyethylene and 10% by weight of triallylisocyanate of this polyethylene were dissolved in kerosene at a temperature of 180°C, and heat treated at the same temperature for 90 minutes with stirring.5. 0% by weight
A polyethylene solution was prepared.
なお、ここで用いたポリマと溶剤の組合せにおける膨潤
温度は107°Cであった。Note that the swelling temperature of the combination of polymer and solvent used here was 107°C.
この溶液を170°Cで孔径1mm、孔数10のノズル
から5mmの距廂だけ空気層を通過させた後、上層が水
、下層が三塩化三フッ化エタンて構成された2層構造の
紡糸浴て冷却後、凝固させ集束して凝固糸条を得た。紡
糸浴の温度は10°Cてあり、上層(水)の厚さが80
mm、下層(三塩化三フッ化エタン)の厚さを230m
mとした。After passing this solution through a 5 mm distance of air from a nozzle with a hole diameter of 1 mm and 10 holes at 170°C, a two-layer structure consisting of water in the upper layer and trichlorotrifluoroethane in the lower layer is spun. After cooling in a bath, it was coagulated and bundled to obtain a coagulated thread. The temperature of the spinning bath was 10°C, and the thickness of the upper layer (water) was 80°C.
mm, the thickness of the lower layer (trichloride trifluoride ethane) is 230 m
It was set as m.
また、凝固した糸条は7.5m/分で引取った。Further, the coagulated yarn was taken off at a rate of 7.5 m/min.
前記凝固糸条を引続き5°Cの三塩化三フッ化エタンか
らなる抽出浴を通し、糸条中に残存する灯油を抽出して
、乾燥後、135°Cの熱板を用いて、8倍に延伸して
からワイングーで巻取った。The coagulated thread was then passed through an extraction bath of trichlorotrifluoroethane at 5°C to extract the kerosene remaining in the thread, and after drying, it was heated 8 times using a hot plate at 135°C. After stretching it, I rolled it up with wine goo.
この1段延伸糸をさらに145℃の熱板を用いて6倍に
延伸した結果、糸物性は次のとうりであった。This one-stage drawn yarn was further stretched six times using a hot plate at 145°C, and the yarn physical properties were as follows.
この延伸糸の20℃で破断強力の1/10の荷重下に6
0日間装いたときのクリープは0.48%であった。ま
た、その他の物性は次の通りである。6 under a load of 1/10 of the breaking strength of this drawn yarn at 20°C.
The creep when worn for 0 days was 0.48%. In addition, other physical properties are as follows.
単糸繊度 :1.5d
単糸引張強度 :150g/d
単糸初期弾性率 : 1600g/d(比較例1
)
トリアリルイソシアヌレートを入れないことおよび紡糸
に連続した1段延伸の倍率を12倍とした以外は実施例
1とまったく同様に紡糸、抽出、乾燥し、1段延伸した
糸を得た。この1段延伸糸をさらに145°Cの熱板を
用いて6倍に延伸した。Single yarn fineness: 1.5 d Single yarn tensile strength: 150 g/d Single yarn initial elastic modulus: 1600 g/d (Comparative example 1
) Spinning, extraction, and drying were carried out in exactly the same manner as in Example 1, except that triallylisocyanurate was not added and the magnification of the first-stage drawing subsequent to spinning was 12 times, to obtain a single-stage drawn yarn. This single-stage drawn yarn was further drawn six times using a hot plate at 145°C.
得られた延伸糸は強度58g/d、ヤング率1820g
/dと高い物性を示したが、20°Cで破断強力の1/
10の荷重下に60日間装いたときのクリープは4.4
0%と高い値であった。The obtained drawn yarn has a strength of 58 g/d and a Young's modulus of 1820 g.
/d, but the breaking strength was 1/1/2 at 20°C.
Creep is 4.4 when worn for 60 days under a load of 10.
The value was as high as 0%.
(比較例2)
重量平均分子量が15万の直鎖状高密度ポリエチレンと
このポリエチレンの10重量%のトリアリルイソシアヌ
レートな灯油に170°Cの温度で溶解し、90分間撹
拌して15重量%のポリエチレン溶液を調製した。なお
、ここで用いたポリマと溶剤の■合せにおける膨潤温度
は93°Cであった。(Comparative Example 2) Linear high-density polyethylene with a weight average molecular weight of 150,000 and this polyethylene were dissolved in kerosene containing 10% by weight of triallyl isocyanurate at a temperature of 170°C, and stirred for 90 minutes to obtain 15% by weight of the polyethylene. A polyethylene solution was prepared. Note that the swelling temperature in the combination of the polymer and solvent used here was 93°C.
この溶液を実施例1と同様の方法で紡糸し、乾燥した糸
条を延伸せずにワイングーで巻取った。This solution was spun in the same manner as in Example 1, and the dried yarn was wound with a wine goose without being stretched.
次に得られた未延伸糸を135°Cの熱板を用いて30
倍に延伸した。この延伸系はポリマの分子量が低いため
強度13 g/d、ヤング率410g/dという低い物
性であった。また、20°Cで破断強力の1/10の荷
重をかけて放置すると38目でクリープブが5%を超え
てしまった。Next, the obtained undrawn yarn was heated for 30 minutes using a hot plate at 135°C.
Stretched twice. This stretching system had low physical properties such as strength of 13 g/d and Young's modulus of 410 g/d due to the low molecular weight of the polymer. Furthermore, when a load of 1/10 of the breaking strength was applied and left at 20°C, creep exceeded 5% at 38 stitches.
(発明の効果)
以上のように本発明の方法によれば産業用繊維素材とし
て有用な高強度・高弾性率を有し、かつクリープの低い
新規なポリエチレン繊維を得ることができる。(Effects of the Invention) As described above, according to the method of the present invention, it is possible to obtain a novel polyethylene fiber that has high strength and high modulus and has low creep, which is useful as an industrial fiber material.
Claims (1)
均分子量が70万以上のポリエチレンの溶液を該ポリエ
チレンの膨潤温度以上の温度で熱処理した後、紡糸し、
得られた未延伸糸を熱延伸することを特徴とするポリエ
チレン繊維の製造方法。A solution of polyethylene having a weight average molecular weight of 700,000 or more mixed with an organic compound having two or more vinyl groups is heat-treated at a temperature equal to or higher than the swelling temperature of the polyethylene, and then spun,
A method for producing polyethylene fibers, which comprises hot drawing the obtained undrawn yarn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31984987A JPH01162818A (en) | 1987-12-16 | 1987-12-16 | Production of polyethylene fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31984987A JPH01162818A (en) | 1987-12-16 | 1987-12-16 | Production of polyethylene fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01162818A true JPH01162818A (en) | 1989-06-27 |
Family
ID=18114911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31984987A Pending JPH01162818A (en) | 1987-12-16 | 1987-12-16 | Production of polyethylene fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01162818A (en) |
-
1987
- 1987-12-16 JP JP31984987A patent/JPH01162818A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CS235001B2 (en) | Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension | |
JPS6269817A (en) | Filament having high tensile strength and modulus of elasticity | |
JPS6366316A (en) | Filament high in both of modulus and tensile strength | |
JPH02133605A (en) | Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof | |
JPH01104815A (en) | Polyvinyl alcohol fiber and production thereof | |
JPS61108711A (en) | Production of polyvinyl alcohol fiber of high strength and high elastic modulus | |
JPH01162818A (en) | Production of polyethylene fiber | |
Jones et al. | Aromatic poly (1, 4‐phenylene‐1, 3, 4‐oxadiazole) fibers by dry jet‐wet spinning | |
JPH01162814A (en) | Production of novel polyethylene fiber | |
JPH01162816A (en) | Novel polyethylene fiber | |
JPH01162817A (en) | Production of polyethylene fiber | |
JPH01162819A (en) | Production of novel polyethylene fiber | |
JPH0233314A (en) | High-tenacity polyvinyl alcohol based fiber and production thereof | |
JPH02175913A (en) | New polyethylene yarn and production thereof | |
JPS61108712A (en) | Production of polyvinyl alcohol fiber of high strength and high elastic modulus | |
JPH01156508A (en) | Novel polyethylene fiber | |
JPS61215708A (en) | Production of multifilament yarn | |
JPH01162815A (en) | Production of polyethylene fiber | |
JPS62184111A (en) | Novel polyethylene filament | |
JPH02175914A (en) | New polyethylene yarn and production thereof | |
Pottick et al. | The effect of tension during drying on the structure and mechanics of poly (p‐phenylene benzobisthiazole) fibers | |
JPH02175912A (en) | New polyethylene yarn | |
JPH0284504A (en) | Polyvinyl alcohol fiber suitable as reinforcing material | |
JPS63190010A (en) | Production of high-tenacity polyvinyl alcohol based fiber | |
JPS62184112A (en) | Production of high-tenacity high-modulus polyethylene fiber |