[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01165558A - Separation of amino acid compound - Google Patents

Separation of amino acid compound

Info

Publication number
JPH01165558A
JPH01165558A JP62325768A JP32576887A JPH01165558A JP H01165558 A JPH01165558 A JP H01165558A JP 62325768 A JP62325768 A JP 62325768A JP 32576887 A JP32576887 A JP 32576887A JP H01165558 A JPH01165558 A JP H01165558A
Authority
JP
Japan
Prior art keywords
separated
membrane
amino acid
component
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62325768A
Other languages
Japanese (ja)
Inventor
Hisafumi Kimura
尚史 木村
Shinichi Nakao
真一 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP62325768A priority Critical patent/JPH01165558A/en
Publication of JPH01165558A publication Critical patent/JPH01165558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To efficiently separate an amino acid compound by migration effects caused by difference in pressure and electric field, by adjusting a solution to be separated to a proper pH and feeding the solution to a separating membrane arranged between electrodes under pressure. CONSTITUTION:An amino acid compound-containing solution to be separated is adjusted to a proper pH, either a component to be separated or the other component is provided with electric charge, the other is made an isoelectric point or provided with the opposite charge and an electric field is generated by electrodes 3 and 4. In this state, the solution 1 to be separated is fed to a separating membrane (e. g., precision filter membrane, ultrafilter or reverse osmosis membrane) M, the component of isoelectric point and the component having the same charge as that of the electrode 3 are passed through the separating membrane M by migration effects resulting from difference in pressure and the electric field and the permeated solution 2 is obtained at the opposite side of the separating membrane M to separate the aimed component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアミノ酸、蛋白質等のアミノ酸化合物を、電
気泳動を利用した膜分離法により分離する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating amino acid compounds such as amino acids and proteins by a membrane separation method using electrophoresis.

〔従来の技術〕[Conventional technology]

近年、微生物起源の有用物質生産への関心は著しく高い
、微生物の生産物を菌体と、あるいは基質等と、迅速か
つ効率的に分離する方法として、膜分離法の有用性が認
められつつある。しかしながら濃度分極現象によるゲル
層形成や、原理的に溶質の大きさの差異によるため、同
程度の粒径(分子量)同士では、分離が困難であること
など、問題点もあげられる(中尾真−・木村尚史:化学
工学、…鼾、545(1986))。
In recent years, there has been significant interest in the production of useful substances derived from microorganisms, and the usefulness of membrane separation methods is being recognized as a method for quickly and efficiently separating microbial products from bacterial cells or substrates, etc. . However, there are problems, such as the formation of a gel layer due to the concentration polarization phenomenon and the difficulty in separating particles of similar size (molecular weight) due to differences in the size of solutes (Makoto Nakao).・Takashi Kimura: Chemical Engineering,...Snoring, 545 (1986)).

本発明者は前記ゲル層形成を防止する方法として、電気
限外ろ過法につき実用化の可能性を検討しく木村尚史・
野村剛志:膜、ユニσ、245(1982))、また荷
電型限外ろ過法をもちいて、アミノ酸の分離を検討した
(S、Ki@ura and A、Tamano :“
5eparation of Am1noacids 
by Charged Ultra −filtrat
ion Membranas” in“Membran
es andMembrane Processes”
ed、 by E、Drioli andM、Naka
gaki P 191−197. Plenum Pr
ess。
The present inventors would like to investigate the possibility of practical application of electric ultrafiltration as a method for preventing the formation of the gel layer.
Tsuyoshi Nomura: Membrane, Uniσ, 245 (1982)) and charged ultrafiltration method were used to study the separation of amino acids (S, Ki@ura and A, Tamano: “
5eparation of Am1noacids
by Charged Ultra-filtrat
ion Membranas” in “Membranas”
es and Membrane Processes”
ed, by E, Drioli and M, Naka.
gaki P 191-197. Plenum Pr
ess.

New York、1986L 〔発明が解決しようとする問題点〕 しかしながら前記電気限外ろ過法はゲル層形成を防止す
る手段として検討されており、アミノ酸、蛋白質等のア
ミノ酸化合物を分離することは予測されていない。
New York, 1986L [Problems to be Solved by the Invention] However, the electric ultrafiltration method has been studied as a means to prevent gel layer formation, and it has not been predicted that it will separate amino acid compounds such as amino acids and proteins. do not have.

また荷電型限外ろ過法は所定の電荷を有する膜を使用し
てアミノ酸等を分離する方法であり、アミノ酸、蛋白質
等のアミノ酸化合物は、同じ溶液pHでも種類により正
や負に荷電し、あるいは中性になるので、膜荷電によっ
て同程度分子量のものも分離が可能となるが、膜の固定
電荷には限界があるので、分離を有効に行うためには、
溶液濃度をある程度以下にする必要がある。
Charged ultrafiltration is a method that uses a membrane with a predetermined charge to separate amino acids, etc. Amino acids, proteins, and other amino acid compounds can be charged positively or negatively depending on the type, even at the same solution pH. Since it becomes neutral, it becomes possible to separate substances of similar molecular weight depending on the membrane charge, but since there is a limit to the fixed charge of the membrane, in order to perform separation effectively,
It is necessary to keep the solution concentration below a certain level.

一方、溶質の電荷を利用する分離法として、古くから電
気泳動法がある。近年、大量分離を目的とする新しい電
気泳動法の開発も進められているが、依然溶液処理量は
少なく1分離膜の制御も完全とは言えないなどの問題点
がある。
On the other hand, electrophoresis has long been known as a separation method that utilizes the charge of solutes. In recent years, new electrophoresis methods have been developed for the purpose of large-scale separation, but there are still problems such as the throughput of solutions is small and the control of a single separation membrane is not perfect.

この発明は上記問題点を解決するためのもので。This invention is intended to solve the above problems.

同程度の粒径のもの同士を、高濃度状態において、効率
よく大処理景で分離可能で、分離膜の制御も容易なアミ
ノ酸化合物の分離方法を提案することを目的としている
The purpose of the present invention is to propose a method for separating amino acid compounds that can efficiently separate particles of similar particle size in a high concentration state with a large processing capacity and that allows easy control of separation membranes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、アミノ酸化合物を含有する被分離液をpH
調節して、分離しようとする成分または他方の成分のい
ずれか一方に荷電を与えるとともに、他方を等電点とす
るかあるいは反対荷電を与え、電極間に配置された分離
膜と一方の電極間に加圧下に供給して、圧力差および電
場による泳動効果により分離することを特徴とするアミ
ノ酸化合物の分離方法である。
In this invention, a liquid to be separated containing an amino acid compound is adjusted to pH
Adjust the voltage to give a charge to either the component to be separated or the other component, and set the other to the isoelectric point or give the opposite charge, and between the separation membrane placed between the electrodes and one electrode. This is a method for separating amino acid compounds, which is characterized in that the amino acid compounds are supplied under pressure and separated by the electrophoretic effect caused by the pressure difference and electric field.

本発明において、アミノ酸化合物とは、アミノ酸および
蛋白質などのアミノ酸を構成要素とする化合物である。
In the present invention, an amino acid compound is a compound containing amino acids such as amino acids and proteins as constituent elements.

本発明における分離の原理は、分子量が同程度の二成分
系を考えると次のようになる。第1図は原理図であり、
アミノ酸化合物を含有する被分離液1のpHを調節する
ことにより、一方に荷電を与えるとともに、他方を等電
点とするか、あるいは反対荷電をもたせ、電極3,4に
より電場を加えた状態で、加圧下に分離膜Mに供給する
と、圧力差および電場による泳動効果で、等電点の成分
および電極3と同符号の荷電を有する成分は分離膜Mを
透過し、電極3と反対符号の荷電を有する成分は阻止さ
れて、分離膜Mの反対側に透過液2が得られ、目的とす
る成分が分離される。
The principle of separation in the present invention is as follows, considering a two-component system with comparable molecular weights. Figure 1 is a diagram of the principle,
By adjusting the pH of the liquid to be separated 1 containing the amino acid compound, one side is charged and the other side is made to have an isoelectric point, or the other side is made to have an opposite charge, and an electric field is applied by the electrodes 3 and 4. , when supplied to the separation membrane M under pressure, due to the electrophoresis effect due to the pressure difference and the electric field, components at the isoelectric point and components having the same charge as the electrode 3 pass through the separation membrane M, and components with the opposite sign to the electrode 3 pass through the separation membrane M. Charged components are blocked, a permeate 2 is obtained on the opposite side of the separation membrane M, and the target component is separated.

分離膜Mとしては精密ろ過膜、限外ろ過膜、逆浸透膜等
があげられる。
Examples of the separation membrane M include microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, and the like.

本発明の分離方法に使用される装置としては、多孔質金
属板を電極とする循環型の装置が好ましく、その1例を
第2図の断面図に示す。
The device used in the separation method of the present invention is preferably a circulation type device using a porous metal plate as an electrode, one example of which is shown in the sectional view of FIG.

第2図において、押え板5と膜支持板6が0リング7を
介して一体結合されており、多孔体の電極3,4がそれ
ぞれ押え板5および膜支持板6に一体に結合されている
。多孔状の電極4には焼結金属からなる多孔質体や網状
体などが利用される。
In FIG. 2, a holding plate 5 and a membrane supporting plate 6 are integrally connected via an O-ring 7, and porous electrodes 3 and 4 are integrally connected to the holding plate 5 and membrane supporting plate 6, respectively. . For the porous electrode 4, a porous body or a mesh body made of sintered metal is used.

電極3の形態はとくに限定されない。電極3および4は
それぞれ押え板5および膜支持板6を通して電源8,9
に接続している。分離膜Mは多孔状の電極4に近接して
、好ましくは重ね合せて設けられている。
The form of the electrode 3 is not particularly limited. Electrodes 3 and 4 are connected to power sources 8 and 9 through a holding plate 5 and a membrane support plate 6, respectively.
is connected to. The separation membrane M is provided close to the porous electrode 4, preferably in an overlapping manner.

電極3と分離膜Mの間の空間10に、pH調節されたア
ミノ酸化合物を含む被分離液1が加圧下に供給口11か
ら供給され、排出口12から供給口11に循環供給され
るようになっている。13は透過液取出口である。
A liquid to be separated 1 containing a pH-adjusted amino acid compound is supplied under pressure to the space 10 between the electrode 3 and the separation membrane M from the supply port 11 and is circulated to the supply port 11 from the discharge port 12. It has become. 13 is a permeate outlet.

上記装置による分離方法は、電極3,4に給電して空間
10に電場を形成し、pH調節した被分離液1を押え板
5に設けられた供給口11がら空間10に加圧下に供給
し、排出口12から循環させ、分離を行う、このとき被
分離液1は矢印A1. A2. A。
In the separation method using the above device, power is supplied to the electrodes 3 and 4 to form an electric field in the space 10, and the pH-adjusted liquid 1 to be separated is supplied to the space 10 under pressure through the supply port 11 provided in the holding plate 5. , the liquid to be separated 1 is circulated through the discharge port 12 and separated, as indicated by the arrow A1. A2. A.

の方向に進行し、等電点または電極4と反対符号の電荷
を有するアミノ酸化合物は矢印B1.B2゜B、方向に
分離膜Mおよび多孔状の電極4を透過して分離され、透
過液2として取出口13から取出される。また電極4と
同符号の電荷を有するアミノ酸化合物は分離膜Mの透過
を阻止され、被分離液1中に濃縮される。
Amino acid compounds that proceed in the direction of arrow B1. It passes through the separation membrane M and the porous electrode 4 in the direction B2°B, is separated, and is taken out as the permeated liquid 2 from the outlet 13. Further, the amino acid compound having the same charge as the electrode 4 is prevented from permeating the separation membrane M and is concentrated in the liquid to be separated 1.

第3図は本発明に使用される装置の他の例を示す断面図
で、電極3に近接して別の分離膜M2が設けられ、透過
液2aが取出口14から取出されるようになっており、
分離膜MおよびM2を利用して、矢印B1.B2.B3
および/または矢印C1,C,。
FIG. 3 is a sectional view showing another example of the device used in the present invention, in which another separation membrane M2 is provided close to the electrode 3, and the permeated liquid 2a is taken out from the outlet 14. and
Using separation membranes M and M2, arrow B1. B2. B3
and/or arrow C1,C,.

C1の方向にアミノ酸化合物を透過させるものである。It allows amino acid compounds to permeate in the direction of C1.

さらに第4図は本発明に使用される別の装置を示す断面
図であり、管状のモジュール20の長手方向に垂直な断
面を示す。この態様では多孔状の管状電極対4および3
に近接して、それぞれ分離膜M、M2が設けられており
、アミノ酸化合物はそれぞれ矢印B1.B2および/ま
たは矢印C,,C。
Furthermore, FIG. 4 is a cross-sectional view of another device for use in the present invention, showing a cross-section perpendicular to the longitudinal direction of the tubular module 20. In this embodiment, porous tubular electrode pairs 4 and 3
Separation membranes M and M2 are provided adjacent to the arrows B1 and B1, respectively. B2 and/or arrow C,,C.

の方向に透過し、透過液2,2aは取出口13.14か
らそれぞれ取出される。
The permeate liquids 2 and 2a are taken out from the take-off ports 13 and 14, respectively.

以上のように本発明で使用できる装置のモジュールは、
第2図および第3図に例示した平面膜型をはじめ、第4
図に例示した管型や、中空系型、スパイラル型等の型式
が例示される。
As described above, the device modules that can be used in the present invention are:
In addition to the flat membrane type illustrated in Figures 2 and 3,
Examples include the tube type, hollow type, and spiral type illustrated in the figure.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 電気限外ろ過法におけるアミノ酸の分離について、圧力
、加電圧、溶液pH等の分離に及ぼす影響を調べるため
、平膜用テストセル(有効膜面積57.785d)を用
い、多孔質金属板を電極として、第2図に示す循環型装
置で実験を行った。すなわち下記の三種類のアミノ酸に
ついて、濃度5mM、流量6 Q/win、 p)+6
.5、温度25℃を一定として、電圧と操作圧力を変化
させた。膜は005社のポリスルホン製限外ろ過膜(G
R−61PP、分画分子量20000)を用い5分析は
TOC(住友化学flI)で行った。
Example 1 In order to investigate the effects of pressure, applied voltage, solution pH, etc. on the separation of amino acids in the electric ultrafiltration method, a flat membrane test cell (effective membrane area 57.785 d) was used to investigate the effects of pressure, applied voltage, solution pH, etc. on the separation of amino acids. An experiment was conducted using a circulation type apparatus shown in FIG. 2 using a plate as an electrode. That is, for the following three types of amino acids, the concentration is 5mM, the flow rate is 6Q/win, p) + 6
.. 5. The voltage and operating pressure were varied while keeping the temperature constant at 25°C. The membrane is a polysulfone ultrafiltration membrane (G
5 analysis was performed using TOC (Sumitomo Chemical flI) using R-61PP, molecular weight cutoff 20000).

三種類のアミノ酸;L−グルタミン酸ナトリウム(Mw
187.13)、グリシン(Mw75.07)、L−リ
ジン塩酸塩(Mw182.65)は、各々等電点をpI
=3.22,5.97゜9.59にもつ。よって、pH
6,5の溶液中で、L−グルタミン酸ナトリウムはマイ
ナスに、グリシンは中性、L−リジン塩酸塩はプラスに
荷電している。
Three types of amino acids; monosodium L-glutamate (Mw
187.13), glycine (Mw 75.07), and L-lysine hydrochloride (Mw 182.65), each with an isoelectric point of pI
= 3.22, 5.97° 9.59. Therefore, pH
In the solution of 6,5, sodium L-glutamate is negatively charged, glycine is neutral, and L-lysine hydrochloride is positively charged.

電気限外ろ過法による実験結果のうち、L−グルタミン
酸ナトリウムの結果を第5図および第6図に、グリシン
の結果を第7図および第8図に、L−リジン塩酸塩の結
果を第9図および第10図に示す。
Among the experimental results by the electric ultrafiltration method, the results for sodium L-glutamate are shown in Figures 5 and 6, the results for glycine are shown in Figures 7 and 8, and the results for L-lysine hydrochloride are shown in Figure 9. and FIG. 10.

第5〜10図において、ΔPは差圧(kg/ci)、J
νは膜透過液量(cxl/cxt・S)を示す。Rob
sは見かけ阻止率(−)で、次式により求められる。
In Figures 5 to 10, ΔP is differential pressure (kg/ci), J
ν indicates the amount of liquid permeated through the membrane (cxl/cxt·S). Rob
s is the apparent rejection rate (-), which is determined by the following equation.

Cb:被分離液の初期濃度 Cp:透過液の濃度 以上の結果より、中性溶質であるグリシンに対して、電
場の効果はないことが分かる。L−グルタミン酸ナトリ
ウム、L−リジン塩酸塩に対し、見かけの阻止率が変化
しているのは、電場による溶質の泳動効果によるものと
分かる。特に荷電溶質に対して、膜を透過させる方向に
電場をかけると、供給液濃度よりも高い濃度の透過液が
得られている。
Cb: Initial concentration of the liquid to be separated Cp: Concentration of the permeated liquid From the results above, it can be seen that there is no effect of the electric field on glycine, which is a neutral solute. It can be seen that the change in the apparent rejection rate for sodium L-glutamate and L-lysine hydrochloride is due to the electrophoretic effect of the solute due to the electric field. In particular, when an electric field is applied to a charged solute in the direction of permeation through the membrane, a permeate with a higher concentration than the feed solution is obtained.

実施例2 蛋白質の例として、牛血清アルブミン(B、S、A、)
を用いて、実施例1と同様に実験を行った。
Example 2 As an example of protein, bovine serum albumin (B, S, A,)
An experiment was conducted in the same manner as in Example 1 using .

B、S、A、は等電点がpH4,8である。結果を第1
1〜16図に示す。図中、■は電圧(V)を示す。B、
S、A、濃度は1100ppで、第11図および第12
図はPH4,8、第13図および第14図はp09.第
15図および第16図はp)13である。また使用した
分離膜は、富士フィルム製の再生セルロース膜(孔径0
.22μm)からなる精密ろ過膜(FM−22)であり
、ΔP 2 kg/am”、流量0.IQ/win、温
度25℃である。
B, S, and A have isoelectric points of pH 4.8. Results first
Shown in Figures 1 to 16. In the figure, ■ indicates voltage (V). B,
S, A, concentration is 1100 pp, Figures 11 and 12
The figure is PH4,8, Figures 13 and 14 are p09. Figures 15 and 16 are p)13. The separation membrane used was a regenerated cellulose membrane manufactured by Fujifilm (pore size 0).
.. It is a microfiltration membrane (FM-22) consisting of 22 μm), has a ΔP 2 kg/am”, a flow rate of 0.IQ/win, and a temperature of 25°C.

以上の結果より、蛋白質についても実施例1と同様の結
果が得られることがわかる。
From the above results, it can be seen that the same results as in Example 1 can be obtained for proteins as well.

実施例3 実施例1で用いた3種類のアミノ酸を同時に含有する被
分離液(アミノ酸3成分混合系)に対して実施例1と同
様の試験を行った。アミノ酸濃度は各1mM、流ii5
 Q/min、 pH無調整、温度25℃とし、膜はロ
ース・ブーラン社のポリアクリロニトリル系限外濾過膜
(IRIS 3038.分画分子量20000)を用い
た。結果を第17図に示す。
Example 3 The same test as in Example 1 was conducted on the liquid to be separated (amino acid 3 component mixed system) used in Example 1 that simultaneously contained the three types of amino acids. Amino acid concentration was 1mM each, flow ii5
Q/min, no pH adjustment, temperature 25° C., and a polyacrylonitrile ultrafiltration membrane (IRIS 3038, molecular weight cutoff 20,000) manufactured by Loos-Boulin was used as the membrane. The results are shown in FIG.

以上の結果より、各成分の相互作用は認められず、荷電
性の異なる2種以上のアミノ酸または蛋白質を含有する
混合系中の各成分の分離において、実施例1のような単
独系と同様の結果が得られることがわかる。
From the above results, no interaction between the components was observed, and the separation of the components in a mixed system containing two or more types of amino acids or proteins with different charge characteristics was similar to that in a single system like Example 1. It can be seen that results are obtained.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、被分離液をPH調節して
電極間に配置された分離膜に加圧下に供給し、圧力差お
よび電場による泳動効果によりアミノ酸化合物を分離す
るようにしたので、同程度の粒径のもの同士を、高濃度
状態において、効率よく大処理量で分離することができ
、分離膜の制御も容易である。
As described above, according to the present invention, the pH of the liquid to be separated is adjusted and it is supplied under pressure to the separation membrane disposed between the electrodes, and the amino acid compounds are separated by the electrophoretic effect caused by the pressure difference and the electric field. , particles of similar particle size can be efficiently separated in a high concentration state with a large throughput, and the separation membrane can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す原理図、第2〜4図はそれ
ぞれ本発明に使用される別の装置を示す断面図、第5〜
17図は実施例の結果を示すグラフである。 各図中、同一符号は同一または相当部分を示し、1は被
分離液、2,2aは透過液、3,4は電極、5は押え板
、6は膜支持板、7は0リング、11は供給口、12は
排出口、13.14は取出口、M、M、は分離膜である
。 代理人 弁理士 柳 原   成 第1図 第2図 第3図 7゜ 1/l  60 ε さ ε 50 ど 〉 Q膜面− ・膜面+     10 口を場なし 第11図 手続補正帯 特許庁長官  小 川 邦 夫  殿 1、事件の表示   、62−g2f−’7紹昭和62
年12月23日付特許出願 2、発明の名称 アミノ酸化合物の分離方法 代表者 竹林省吾 4、代理人 〒105電話436−4700住 所  
東京都港区西新橋3丁゛目15番8号6、補正の対象 明細書の発明の詳細な説明の欄1図面、特許出願に係る
発明が特許法第30条第1項に規定する発明であること
を証明する書面および委任状 7、補正の内容 (1)明細書第2頁第13行および第3頁第7行「ろ過
」の後に「膜」を挿入する。 (2)同第5頁第5行「3と同」を「4と反対」に訂正
する。 (3)同第5頁第6行「3と反対」を「4と同」に訂正
する。 (4)同第10頁第7行r2kgJをrO,1kgJに
訂正する。 (5)同第10頁第8行ro、IJを「2」に訂正する
。 (6)図面中、第1図を別紙の通り訂正する。 (7)特許出願に係る発明が特許法第30条第1項に規
定する発明であることを証明する書面を提出する。 (8)委任状を提出する。 8、添付書類の目録 (1)特許出願に係る発明が特許法第30条第1項に規
定する発明であることを証明する書面 1通(2)委任
状  1通 1:謳友分籠シ糺 M、M2:ケ1ffi広
Fig. 1 is a principle diagram showing the principle of the present invention, Figs. 2 to 4 are sectional views showing different devices used in the present invention, and Figs.
FIG. 17 is a graph showing the results of the example. In each figure, the same reference numerals indicate the same or corresponding parts, 1 is the liquid to be separated, 2 and 2a are the permeated liquid, 3 and 4 are the electrodes, 5 is the holding plate, 6 is the membrane support plate, 7 is the O ring, and 11 12 is a supply port, 12 is a discharge port, 13.14 is a take-out port, and M, M are separation membranes. Agent Patent Attorney Sei Yanagihara Figure 1 Figure 2 Figure 3 7゜1/l 60 ε ε 50 Do〉 Q Membrane surface - ・Membrane surface + 10 No place to speak Figure 11 Proceedings amendment belt Commissioner of the Patent Office Kunio Ogawa, 1, Indication of the incident, 62-g2f-'7 Showa 62
Patent application 2, dated December 23, 2013, Name of the invention: Method for separating amino acid compounds Representative: Shogo Takebayashi 4, Agent: 105 Phone: 436-4700 Address:
3-15-8-6 Nishi-Shinbashi, Minato-ku, Tokyo, detailed description of the invention column 1 drawings in the specification subject to amendment, the invention pertaining to the patent application is an invention defined in Article 30, Paragraph 1 of the Patent Act. Document certifying that it is, power of attorney 7, contents of amendment (1) "Membrane" is inserted after "filtration" on page 2, line 13 and page 3, line 7 of the specification. (2) On page 5, line 5, "same as 3" is corrected to "opposite to 4." (3) On page 5, line 6, "opposite to 3" is corrected to "same as 4." (4) Correct page 10, line 7, r2kgJ to rO,1kgJ. (5) On page 10, line 8, ro and IJ are corrected to "2". (6) Among the drawings, Figure 1 will be corrected as shown in the attached sheet. (7) Submit a document certifying that the invention pertaining to the patent application is an invention stipulated in Article 30, Paragraph 1 of the Patent Law. (8) Submit a power of attorney. 8. List of attached documents (1) Document certifying that the invention pertaining to the patent application is an invention stipulated in Article 30, Paragraph 1 of the Patent Law 1 copy (2) Power of attorney 1 copy 1: Yuyu Bunkago Shi Tadasu M, M2: ke1ffi wide

Claims (3)

【特許請求の範囲】[Claims] (1)アミノ酸化合物を含有する被分離液をpH調節し
て、分離しようとする成分または他方の成分のいずれか
一方に荷電を与えるとともに、他方を等電点とするかあ
るいは反対荷電を与え、電極間に配置された分離膜と一
方の電極間に加圧下に供給して、圧力差および電場によ
る泳動効果により分離することを特徴とするアミノ酸化
合物の分離方法。
(1) Adjusting the pH of a liquid to be separated containing an amino acid compound to give a charge to either the component to be separated or the other component, and bring the other to the isoelectric point or give it an opposite charge; 1. A method for separating amino acid compounds, which comprises supplying under pressure between a separation membrane disposed between electrodes and one electrode, and separating by the electrophoresis effect due to a pressure difference and an electric field.
(2)電極が多孔質金属製のものである特許請求の範囲
第1項記載の方法。
(2) The method according to claim 1, wherein the electrode is made of porous metal.
(3)被分離液が循環供給されるものである特許請求の
範囲第1項または第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the liquid to be separated is supplied in circulation.
JP62325768A 1987-12-23 1987-12-23 Separation of amino acid compound Pending JPH01165558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325768A JPH01165558A (en) 1987-12-23 1987-12-23 Separation of amino acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325768A JPH01165558A (en) 1987-12-23 1987-12-23 Separation of amino acid compound

Publications (1)

Publication Number Publication Date
JPH01165558A true JPH01165558A (en) 1989-06-29

Family

ID=18180406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325768A Pending JPH01165558A (en) 1987-12-23 1987-12-23 Separation of amino acid compound

Country Status (1)

Country Link
JP (1) JPH01165558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228507A (en) * 1988-03-10 1989-09-12 Ind Res Inst Japan Method for filtering chargeable suspended solid
JP2013150978A (en) * 2005-04-29 2013-08-08 Univ Of Rochester Ultrathin porous nanoscale membranes, methods of manufacturing, and uses thereof
CN112827361A (en) * 2020-12-31 2021-05-25 平湖爱之馨环保科技有限公司 Two-chamber three-electrode electrolysis electrodialysis device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228507A (en) * 1988-03-10 1989-09-12 Ind Res Inst Japan Method for filtering chargeable suspended solid
JP2013150978A (en) * 2005-04-29 2013-08-08 Univ Of Rochester Ultrathin porous nanoscale membranes, methods of manufacturing, and uses thereof
CN112827361A (en) * 2020-12-31 2021-05-25 平湖爱之馨环保科技有限公司 Two-chamber three-electrode electrolysis electrodialysis device

Similar Documents

Publication Publication Date Title
JP4426457B2 (en) Apparatus and method for performing electrophoresis as a preparative method
US5080770A (en) Apparatus and method for separating particles
US8252161B2 (en) Electrofiltration method
Timmer et al. Separation of amino acids by nanofiltration and ultrafiltration membranes
US4396477A (en) Separation of proteins using electrodialysis-isoelectric focusing combination
WO1995017950A1 (en) High molecular weight electrodialysis
US4441978A (en) Separation of proteins using electrodialysis - isoelectric focusing combination
US4043895A (en) Electrophoresis apparatus
GB2225339A (en) Separating electrically charged macromolecular compounds by forced-flow membrane electrophoresis
EP1341596B1 (en) Multi-port electrophoresis separation apparatus and corresponding method
JP2003519005A (en) Cross flow filtration device
DK517485A (en) MEMBRANE STRUCTURE WITH CONTINUOUS PORTS
JP2661716B2 (en) Method for separating biotechnologically useful substances from culture solution
Etzel et al. Charged ultrafiltration and microfiltration membranes for antibody purification
Galier et al. Study of biomolecules separation in an electrophoretic membrane contactor
JPH01165558A (en) Separation of amino acid compound
Radovich et al. Coupling electrophoresis with ultrafiltration for improved processing of plasma proteins
Zydney et al. High-performance tangential-flow filtration
Aider et al. Potential of continuous electrophoresis without and with porous membranes (CEPM) in the bio-food industry
Schratter Purification and concentration by ultrafiltration
Radovich et al. Electrophoretic techniques for controlling concentration polarization in ultrafiltration
Gandhi et al. Membrane Processes
JPS62175498A (en) Method for separating protein
JPS59171850A (en) Separation of protein
Tsuru et al. Separation of amino acids and proteins by electrically enhanced membrane filtrations