[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01143351A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPH01143351A
JPH01143351A JP62302464A JP30246487A JPH01143351A JP H01143351 A JPH01143351 A JP H01143351A JP 62302464 A JP62302464 A JP 62302464A JP 30246487 A JP30246487 A JP 30246487A JP H01143351 A JPH01143351 A JP H01143351A
Authority
JP
Japan
Prior art keywords
film
insulating film
bit line
semiconductor substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62302464A
Other languages
Japanese (ja)
Other versions
JPH07118520B2 (en
Inventor
Yasushi Ema
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62302464A priority Critical patent/JPH07118520B2/en
Priority to KR1019880015422A priority patent/KR910009805B1/en
Priority to EP95102886A priority patent/EP0661752B1/en
Priority to EP88311107A priority patent/EP0318277B1/en
Priority to DE3854421T priority patent/DE3854421T2/en
Priority to DE3856543T priority patent/DE3856543T2/en
Publication of JPH01143351A publication Critical patent/JPH01143351A/en
Priority to US07/462,290 priority patent/US4953126A/en
Priority to US07/536,757 priority patent/US5128273A/en
Priority to US08/291,581 priority patent/US5572053A/en
Publication of JPH07118520B2 publication Critical patent/JPH07118520B2/en
Priority to US08/716,782 priority patent/US6046468A/en
Priority to US09/385,964 priority patent/US6114721A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a transfer transistor having high storage capacity and high reliability by strengthening breakdown strength and flatness of a gate electrode, a bit line and a storage electrode. CONSTITUTION:An Si substrate 11 is selectively locally oxidized to form a field oxide film 12, and N<+> type impurity diffused layers 13, 14 are formed by thermal ion diffusing as the source, drain of a transfer transistor T1. A storage electrode 22a formed on a polysilicon film containing impurity ions of a desired thickness is heat treated thereby to form a dielectric film 23. SiO2 films 15a, 16, 19a, 20 or Si3N4 film 20 are formed as thick insulating films on the sidewalls of gate electrodes WL3, WL4 and a bit line BL1. Thus, even if the electrode 22a is stereoscopically laminated as a result of miniaturization, the breakdown strength and flatness of the electrodes WL3, WL4 and the line BL1 can be strengthened.

Description

【発明の詳細な説明】 〔概 要〕 本発明は半導体記憶装置及びその製造方法、特に高集積
、高性能のダイナミックランダムアクセスメモリ(DR
AM)セルの構造とその形成方法に関し、 ゲート電極やビット線の側壁の絶縁強化および平坦化を
図り、メモリセルの蓄積電極面積を同一平面内に積層し
て増加させ、蓄積容量を増加させることを目的とし、 その装置を半導体基板に、不純物拡散層、ゲート電極か
ら成る転送トランジスタとビット線と、その上部に形成
された蓄積電極、誘電体膜及び対向電極から成る蓄積容
量とを有する半導体記憶装置において、 前記ゲート電極又はビット線の側壁の絶縁膜が該ゲート
電極及びビット線の上部の絶縁膜よりも厚い膜厚絶縁構
造を有することを含み構成し、その製造方法を半導体基
板に、フィールド絶縁膜と不純物拡散層とゲート電極と
を形成する工程と、 前記半導体基板に第1の絶縁膜を形成する工程と、 前記第1の絶縁へ膜を形成した半導体基板を異方性エツ
チングして、前記ゲート電極の側壁に第1の絶縁膜を残
留する工程と、 前記第1の絶縁膜を残留した半導体基板に第2の絶縁膜
を形成し、その後選択的に該第2の絶縁膜を除去して前
記不純物拡散層を露出し、開口部を設ける工程と、 前記開口部を設けた半導体基板に選択的に所望の第1の
導電体膜を形成して、ビット線を形成する工程と、 前記ビット線を形成した半導体基板に第3の絶縁膜を形
成する工程と、 前記第3の絶縁膜を形成した半導体基板を異方性エツチ
ングして、前記ビット線の側壁に第3の絶縁膜を残留す
る工程と、 前記第3の絶縁膜を残留した半導体基板の全面に第4の
絶縁膜を形成する工程と、 前記第4の絶縁膜と第2の絶縁膜とを選択的に除去して
、前記不純物拡散層を露出し、開口部を設ける工程と、 前記開口部を設けた半導体基板に選択的に第2の導電体
膜を形成する工程とを有することを含み構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a semiconductor memory device and a method for manufacturing the same, particularly a highly integrated, high-performance dynamic random access memory (DR).
AM) Regarding the structure of the cell and its formation method, strengthen the insulation and flatten the sidewalls of the gate electrode and bit line, increase the area of the storage electrodes of the memory cell by stacking them in the same plane, and increase the storage capacity. The device is a semiconductor memory having a transfer transistor and a bit line consisting of an impurity diffusion layer, a gate electrode, and a storage capacitor formed on the semiconductor substrate, consisting of a storage electrode, a dielectric film, and a counter electrode formed on the semiconductor substrate. In the device, the insulating film on the side wall of the gate electrode or the bit line has an insulating structure with a thickness thicker than the insulating film on the upper part of the gate electrode and the bit line, and the manufacturing method thereof is applied to a semiconductor substrate in a field. forming an insulating film, an impurity diffusion layer, and a gate electrode; forming a first insulating film on the semiconductor substrate; and anisotropically etching the semiconductor substrate on which the first insulating film is formed. , leaving a first insulating film on the sidewalls of the gate electrode, forming a second insulating film on the semiconductor substrate on which the first insulating film remains, and then selectively forming the second insulating film. removing the impurity diffusion layer to expose the impurity diffusion layer and providing an opening; and forming a bit line by selectively forming a desired first conductive film on the semiconductor substrate provided with the opening. , forming a third insulating film on the semiconductor substrate on which the bit line is formed; and anisotropically etching the semiconductor substrate on which the third insulating film is formed to form a third insulating film on the sidewall of the bit line. a step of leaving a film; a step of forming a fourth insulating film on the entire surface of the semiconductor substrate with the third insulating film remaining; and selectively removing the fourth insulating film and the second insulating film. The method includes the steps of exposing the impurity diffusion layer and providing an opening, and selectively forming a second conductor film on the semiconductor substrate provided with the opening.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体記憶語jl及びその製造方法に関するも
のであり、更に詳しく言えば、高集積、高性能のダイナ
ミックランダムアクセスメモリ(DRAM)セルの構造
とその形成方法に関するものである。
The present invention relates to a semiconductor memory word jl and a method for manufacturing the same, and more particularly, to a structure of a highly integrated, high-performance dynamic random access memory (DRAM) cell and a method for forming the same.

〔従来の技術〕[Conventional technology]

第3図は従来例に係るDRAMセルに係る説明図である
FIG. 3 is an explanatory diagram of a conventional DRAM cell.

同図(a)はDRAMセルの電気回路図である。FIG. 2(a) is an electrical circuit diagram of a DRAM cell.

図において、Tはデータ(電荷)を転送するMOSトラ
ンジスタ等により構成される転送トランジスタ、Cは電
荷を蓄積する蓄積容量、WLはワード線、BLはビット
線である。なお、6は蓄積電極、7は誘電体膜、8は対
向電極である。
In the figure, T is a transfer transistor composed of a MOS transistor or the like that transfers data (charge), C is a storage capacitor that accumulates charge, WL is a word line, and BL is a bit line. Note that 6 is a storage electrode, 7 is a dielectric film, and 8 is a counter electrode.

同図(b)はDRAMセル構造を示す断面図である。図
において、1はP型エピタキシャル層等のSt基板、2
は選択ロコス法等により形成されるフィールド酸化膜(
SiOx膜)、3.4はA s ”イオン等を拡散して
形成されるn゛不純物拡散層であり、転送トランジスタ
Tのソース又はドレインである。5はワード線WLを絶
縁する絶縁膜であり、CVD酸化膜(SiJn膜)等で
ある。
FIG. 2B is a cross-sectional view showing the DRAM cell structure. In the figure, 1 is an St substrate such as a P-type epitaxial layer, 2 is
is a field oxide film (
3.4 is an impurity diffusion layer formed by diffusing As'' ions, etc., and is the source or drain of the transfer transistor T. 5 is an insulating film that insulates the word line WL. , CVD oxide film (SiJn film), etc.

なお同図(b)の破線円に示す部分Aは半導体素子の微
細化、高集化に伴い、絶縁膜が薄くなり絶縁耐力が落ち
、ショートや誤動作の原因となる薄膜部分である。6は
、ポリSi膜に不純物イオンをドープして形成される電
極であり、蓄積容量Cを構成する蓄積電極である。
Note that a portion A indicated by a broken line circle in FIG. 2B is a thin film portion where an insulating film becomes thinner and its dielectric strength decreases as semiconductor elements become smaller and more highly integrated, causing short circuits and malfunctions. Reference numeral 6 denotes an electrode formed by doping a poly-Si film with impurity ions, and is a storage electrode constituting a storage capacitor C.

7は、SiO□膜やSi3N4膜等の絶縁膜により形成
される誘電体膜である。8はポリSi膜に不純物イオン
をドープして形成される電極であり、蓄積容量Cを構成
する対向電極である。9は対向電極8を絶縁する絶縁膜
であり、PSG膜等である。
7 is a dielectric film formed of an insulating film such as a SiO□ film or a Si3N4 film. Reference numeral 8 denotes an electrode formed by doping impurity ions into a poly-Si film, and is a counter electrode constituting the storage capacitor C. 9 is an insulating film that insulates the counter electrode 8, and is a PSG film or the like.

10はビット線Bl−のコンタクトホールである。10 is a contact hole for bit line Bl-.

なおW Lは、ポリSi膜等により形成される転送トラ
ンジスタTのゲート電極であり、ワード線である。また
、BLは不純物をドープしたポリSi膜又はポリサイド
膜により形成されるビット線である。
Note that WL is a gate electrode of a transfer transistor T formed of a poly-Si film or the like, and is a word line. Further, BL is a bit line formed of a poly-Si film or a polycide film doped with impurities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで従来例によれば、半導体記憶装置の集積度の増
加と半導体素子の微細化とに従って、DRAMのメモリ
セルの面積はますます縮小化される。このため下記のよ
うな問題点がある。
However, according to the prior art, as the degree of integration of semiconductor memory devices increases and semiconductor elements become smaller, the area of a DRAM memory cell becomes smaller and smaller. This causes the following problems.

(1)蓄積電極面積に依存するメモリセルの蓄積容量C
が少なくなる。
(1) Storage capacitance C of memory cell depending on storage electrode area
becomes less.

(2)蓄積容量Cが減少したことによりα線入射による
ソフトエラーが増大する。
(2) As the storage capacitance C decreases, soft errors due to α-ray incidence increase.

(3)ビット線BLコンタクトホールのアスペクト比が
大きくなりパターン形成が困難になる。
(3) The aspect ratio of the bit line BL contact hole becomes large, making pattern formation difficult.

(4)ビット線BL同志の分離部分の間隔が狭い。(4) The distance between the separated portions of the bit lines BL is narrow.

(5)ビット線BLとワード線WLとの位置合わせ余裕
が少なくなる。
(5) There is less margin for positioning the bit line BL and word line WL.

(6)ワード線WLやビット線BLの絶縁耐圧が落ちて
誤動作やショート等をする。
(6) The dielectric strength of the word line WL and bit line BL decreases, causing malfunctions and short circuits.

本発明は係る従来例の問題点に鑑み創作されたものであ
り、ゲート電極やビット線の側壁の絶縁強化および平坦
化を図り、メモリセルの蓄積電極面積を同一平面内に立
体的増加させて、蓄積容量を増加させることを可能とす
る半導体記憶装置及びその製造方法の提供を目的とする
The present invention was created in view of the problems of the conventional example, and aims to strengthen and flatten the insulation of the side walls of gate electrodes and bit lines, and three-dimensionally increase the area of storage electrodes of memory cells within the same plane. An object of the present invention is to provide a semiconductor memory device and a method for manufacturing the same that make it possible to increase storage capacity.

(問題点を解決するための手段〕 本発明の半導体記憶装置及びその製造方法は、その一実
施例を第1〜4図に示すように、その装置を半導体基板
11に、不純物拡散層13.14、ゲート電極WL3、
WL、から成る転送トランジスタT1とビット線BL、
と、その上部に形成された蓄積電極22a、誘電体膜2
3及び対向電極24から成る蓄積容量C1とを有する半
導体記憶装置において、 前記ゲート電極WL3、WL、又はビット線BL、の側
壁の絶縁膜15a、16.19a、20が該ゲート電極
WL3、WL4及びビット線BL。
(Means for Solving the Problems) A semiconductor memory device and a method for manufacturing the same according to an embodiment of the present invention, as shown in FIGS. 1 to 4, include an impurity diffusion layer 13. 14, gate electrode WL3,
A transfer transistor T1 consisting of WL and a bit line BL,
, a storage electrode 22a and a dielectric film 2 formed on the top thereof.
In the semiconductor memory device, the insulating films 15a, 16, 19a, 20 on the side walls of the gate electrodes WL3, WL or the bit line BL are connected to the gate electrodes WL3, WL4 and Bit line BL.

の上部の絶縁膜16.20よりも厚い膜厚絶縁構造を有
していることを特徴とし、 その製造方法を半導体基板11に、フィールド絶縁膜1
2と不純物拡散層13.14とゲート電極WL3、WL
4とを形成する工程と、前記半導体基板11に第1の絶
縁■り15を形成する工程と、 前記第1の絶縁膜15を形成した半導体基板11を異方
性エツチングして、前記ゲート電極WLff 、WL4
の側壁に第1の絶縁膜15aを残留する工程と、 前記第1の絶縁膜15aを残留した半導体基板11に第
2の絶縁膜16を形成し、その後選択的に該第2の絶縁
膜16を除去して前記不純物拡散層4を露出し、開口部
17を設ける工程と、前記開口部17を設けた半導体基
板11に選択的に所望の第1の導電体膜18を形成して
、ビット線BL、を形成する工程と、 前記ビット線BL、を形成した半導体基板11に第3の
絶縁膜19を形成する工程と、前記第3の絶縁膜19を
形成した半導体基板11を異方性エツチングして、前記
ビット線B L 。
It is characterized by having an insulating structure with a film thickness thicker than the insulating film 16.20 on the upper part of the field insulating film 16.20.
2, impurity diffusion layers 13 and 14, and gate electrodes WL3 and WL
4, forming a first insulating film 15 on the semiconductor substrate 11, and anisotropically etching the semiconductor substrate 11 on which the first insulating film 15 is formed to form the gate electrode. WLff, WL4
forming a second insulating film 16 on the semiconductor substrate 11 on which the first insulating film 15a remains, and then selectively removing the second insulating film 16; a step of removing the impurity diffusion layer 4 to expose the impurity diffusion layer 4 and providing an opening 17; and a step of selectively forming a desired first conductive film 18 on the semiconductor substrate 11 provided with the opening 17; a step of forming a third insulating film 19 on the semiconductor substrate 11 on which the bit line BL is formed; and an anisotropic process on the semiconductor substrate 11 on which the third insulating film 19 is formed The bit line B L is etched.

の側壁に第3の絶縁膜19aを残留する工程と、前記第
3の絶縁膜19aを残留した半導体基板11の全面に第
4の絶縁膜20を形成する工程と、前記第4の絶縁膜2
0と第2の絶縁膜16とを選択的に除去して、前記不純
物拡散層13を露出し、開口部21を設ける工程と、 前記開口部21を設けた半導体基板11に選択的に第2
の導電体膜22を形成する工程とを有することを特徴と
し、上記目的を達成する。
forming a fourth insulating film 20 on the entire surface of the semiconductor substrate 11 with the third insulating film 19a remaining;
selectively removing the impurity diffusion layer 13 and the second insulating film 16 to expose the impurity diffusion layer 13 and providing an opening 21;
The above object is achieved.

〔作 用〕[For production]

本発明の半導体記憶装置によればゲート電極やビット線
の側壁に厚い絶縁膜を設けている。これにより微細化に
伴う蓄積電極を立体的に積層しても該ゲート電極やビッ
ト線の絶縁耐力と平坦化度を従来に比べて一層強化する
ことが可能となる。
According to the semiconductor memory device of the present invention, a thick insulating film is provided on the side walls of the gate electrode and bit line. This makes it possible to further strengthen the dielectric strength and flatness of the gate electrodes and bit lines compared to the prior art even if the storage electrodes are stacked three-dimensionally due to miniaturization.

また本発明の製造方法によれば、先に形成したゲート電
極やビット線の絶縁工程において、第1の絶縁膜と第3
の絶縁膜とをその側壁の絶縁強化と、垂直段差の緩和に
用いている。このため該第1.3の絶縁膜を異方性エツ
チングすることによりゲート電極やビット線の側壁に第
1の絶縁膜と第3の絶縁膜とを残留させる。従って該ゲ
ート電極やビット線の絶縁膜を厚く、かつ断面を滑らか
にすることが可能となる。
Further, according to the manufacturing method of the present invention, in the step of insulating the previously formed gate electrodes and bit lines, the first insulating film and the third insulating film are
The insulating film is used to strengthen the insulation on the side walls and to alleviate vertical steps. Therefore, the first and third insulating films are left on the side walls of the gate electrode and bit line by anisotropically etching the first and third insulating films. Therefore, it is possible to make the insulating film of the gate electrode and bit line thick and have a smooth cross section.

これにより後工程における蓄積電極の形成を容易にする
ことが可能となる。
This makes it possible to easily form the storage electrode in a subsequent process.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1.2図は本発明の実施例に係る半導体記憶装置及び
その製造方法の説明図であり、第1図は本発明の実施例
に係るDRAMセルの構造図を示している。
FIG. 1.2 is an explanatory diagram of a semiconductor memory device and its manufacturing method according to an embodiment of the present invention, and FIG. 1 shows a structural diagram of a DRAM cell according to an embodiment of the present invention.

同図(a)、(b)はDRAMセル(D断面図であり、
同図(C)はその平面図である。なお、同図(a)は同
図(c)のA−A ′矢視断面図であり、同図(b)は
同図(C)の13−B矢視断面図である。
Figures (a) and (b) are DRAM cell (D cross-sectional views,
The same figure (C) is the top view. In addition, the same figure (a) is a sectional view taken along the arrow AA' in the same figure (c), and the same figure (b) is the 13-B arrow sectional view taken in the same figure (C).

図において、11はn型又はp型エピタキシャル層等の
Si基板、12はSt基板11を選択ロコス酸化して形
成されたフィールド酸化膜、13.14はAs”イオン
等の不純物イオンを熱拡散して形成されるn゛不純物拡
散層であり、転送トランジスタT1のソースやドレイン
である。WL3、WL、はポリSi膜等により形成され
るゲート電極であり、DRAMセルにおけるワード線で
ある。
In the figure, 11 is a Si substrate such as an n-type or p-type epitaxial layer, 12 is a field oxide film formed by selectively oxidizing the St substrate 11, and 13.14 is a film formed by thermally diffusing impurity ions such as As'' ions. This is an n' impurity diffusion layer formed by the same method, and is the source and drain of the transfer transistor T1.WL3 and WL are gate electrodes formed of a poly-Si film or the like, and are word lines in the DRAM cell.

16.15a、20はワード線(ゲート電極)WL、 
、WL4を絶縁するSiO□膜や5iJ4III等の絶
縁膜であり、特に各電極の側壁に5i02膜15aを設
けて配線の絶縁保護強化および垂直段差の緩和をしてい
る。
16.15a, 20 are word lines (gate electrodes) WL,
, WL4, and an insulating film such as SiO□ film or 5iJ4III. In particular, a 5i02 film 15a is provided on the side wall of each electrode to strengthen the insulation protection of the wiring and to alleviate vertical steps.

また、16.19a、20はビット線BLを絶縁する絶
縁膜であり、ワード線WLS 、WL、と同様に、ビッ
ト線BLの側壁にSing膜19aを設けて、その絶縁
保護強化および垂直段差の緩和をしている。これにより
転送トランジスタT1を構成する。
In addition, 16.19a and 20 are insulating films for insulating the bit line BL, and similarly to the word lines WLS and WL, a Sing film 19a is provided on the side wall of the bit line BL to strengthen its insulation protection and eliminate vertical steps. It's relaxing. This constitutes the transfer transistor T1.

なお、22aは所望の膜厚の不純物イオンを含有したポ
リSi膜に形成された蓄積電極である。23は誘電体膜
であり、蓄積電極22aを熱処理することにより形成さ
れる。また24は不純物イオンを含有したポリSi膜に
より形成される対向電極であり、蓄積電極22aと誘電
体膜23と共に蓄積容量C0を形成する。
Note that 22a is a storage electrode formed on a poly-Si film containing impurity ions with a desired thickness. 23 is a dielectric film, which is formed by heat-treating the storage electrode 22a. Further, 24 is a counter electrode formed of a poly-Si film containing impurity ions, and together with the storage electrode 22a and the dielectric film 23, forms a storage capacitor C0.

なお、同図(C)において、実線に示すWL3、WL、
はワード線(ゲート電極)、−点鎖線に示すBLはビッ
ト線である。また二点鎖線に示す22aは蓄積電極であ
り、17はビット線コンタクトホール、21は蓄積電極
コンタクトホールである。これ等によりDRAMセルを
構成する。
In addition, in the same figure (C), WL3, WL,
is a word line (gate electrode), and BL shown by a dashed-dotted line is a bit line. Further, 22a shown by a two-dot chain line is a storage electrode, 17 is a bit line contact hole, and 21 is a storage electrode contact hole. These constitute a DRAM cell.

このようにして、ゲート電極WL3 、WL4やビット
線BL、の側壁に厚い絶縁膜としてSiO□膜L5a、
16.19a、20又はSi3N4膜20を設けている
。これにより微細化に伴う蓄積電極22aを立体的に積
層しても該ゲート電極W L3、WL4やビット線BL
Iの絶縁耐力および平坦化度を従来に比べて一層強化す
ることが可能となる。
In this way, the SiO□ film L5a is formed as a thick insulating film on the side walls of the gate electrodes WL3 and WL4 and the bit line BL.
16.19a, 20 or Si3N4 film 20 is provided. As a result, even if the storage electrodes 22a are stacked three-dimensionally due to miniaturization, the gate electrodes WL3, WL4 and the bit line BL
It becomes possible to further strengthen the dielectric strength and planarization degree of I compared to the conventional method.

第2図は本発明の実施例に係るDRAMセルの形成工程
図であり、同図(al)〜(j1)は第1図(c)、D
RAMセルの平面図のA−A ’矢視断面に係る形成工
程を示し、同図(a2)〜(L)は同様にB−B’矢視
断面図に係る形成工程を示している。
FIG. 2 is a diagram showing the formation process of a DRAM cell according to an embodiment of the present invention, and FIGS.
A forming process according to a cross section taken along the line A-A' in a plan view of the RAM cell is shown, and (a2) to (L) of the same figure similarly show a forming process according to a cross-sectional view taken along the line B-B'.

図において、まずp型又はn型エピタキシャル層等のS
i基板11を選択ロコス法等により熱酸化して、フィー
ルド酸化膜12を形成し、その後ポリSi膜等を選択的
にフィールド酸化膜12上にパターニングし、ゲート電
極WL、 、WL4を形成する。なお、ゲート電極WL
a 、WL4はDRAMセルにおけるワード線となる。
In the figure, first, S of the p-type or n-type epitaxial layer, etc.
The i-substrate 11 is thermally oxidized by selective LOCOS method or the like to form a field oxide film 12, and then a poly-Si film or the like is selectively patterned on the field oxide film 12 to form gate electrodes WL, WL4. Note that the gate electrode WL
a, WL4 becomes a word line in the DRAM cell.

次いで所望の、例えばAs”イオン等の不純物イオンを
Si基板11に注入する。その後熱処理をし、n+不純
物拡散層13.14を形成する。なおn゛不純物拡散層
13.14は転送トランジスタT1のソース、ドレイン
となる(同図(al)、(a2))。
Next, desired impurity ions such as As'' ions are implanted into the Si substrate 11. After that, heat treatment is performed to form n+ impurity diffusion layers 13.14. It becomes a source and a drain ((al) and (a2) in the same figure).

次いで、ゲート電極WL3、WL4を膜厚1000人程
度O3iO□膜15膜上5堆積する(同図(b1)(b
z ) )。
Next, five gate electrodes WL3 and WL4 are deposited on the O3iO□ film 15 to a thickness of about 1000 ((b1) in the same figure).
z)).

その後tE法等の異方性エツチングによりSiO□膜1
5膜上5イエツチングしてゲート電極WL3、WL4の
側壁にSiO□膜15aを残す。なおエッチングガスは
例えばCF、102を用いる(同図(c1)、(c2)
)。
After that, the SiO□ film 1 is etched by anisotropic etching such as the tE method.
The SiO□ film 15a is left on the side walls of the gate electrodes WL3 and WL4 by etching the 5-layer film. Note that CF, 102, for example, is used as the etching gas ((c1) and (c2) in the same figure).
).

次に、側壁にSiO□膜15aを残したゲート電極WL
3、WL4を膜厚1000人程度O3iO□膜16膜上
6絶縁し、その後、不図示のレジスト膜をマスクにして
SiO□膜16膜上6E法等の異方性エツチングにより
開口し、開口部17を形成する。なお、開口部17はビ
ット線コンタクトボールとなる(同図(d1)、(dZ
))。
Next, the gate electrode WL with the SiO□ film 15a left on the side wall
3. WL4 is insulated on the 16 O3iO□ films to a thickness of about 1000, and then an opening is formed on the 16 SiO□ film by anisotropic etching such as 6E method using a resist film (not shown) as a mask. form 17. Note that the opening 17 becomes a bit line contact ball ((d1), (dZ
)).

さらに、開口部17を設げたSi基板11の全面に膜厚
1000人程度O3純物イオンを含有したポリSi膜1
8を減圧CVD法等により形成し、不図示のレジスト膜
をマスクにして、RIE法等によりパターニングする。
Further, a poly-Si film 1 containing O3 pure ions with a film thickness of about 1000 is applied to the entire surface of the Si substrate 11 in which the opening 17 is provided.
8 is formed by a low pressure CVD method or the like, and patterned by an RIE method or the like using a resist film (not shown) as a mask.

なおパターニングされたポリSi膜18は転送トランジ
スタT1におけるビット線BL、となる(同図(e1)
、(ez ) )。
Note that the patterned poly-Si film 18 becomes the bit line BL in the transfer transistor T1 ((e1) in the same figure).
, (ez)).

次いで、ビット線BL上の全面にCVD法等により膜厚
1000人程度O3iO□膜19を堆積する(同図(f
l)、(rz))。
Next, an O3iO□ film 19 with a thickness of about 1000 layers is deposited on the entire surface of the bit line BL by CVD or the like (see (f) in the same figure).
l), (rz)).

その後、RIE法等の異方性エツチングによりSiO□
膜19をドライエツチングして、ビット線BL、の側壁
にSiO□膜19aを残す。なおエツチングガスは同様
にCF、10□を用いる(同図(g1)、(gz ) 
)。
After that, SiO□ was formed by anisotropic etching such as RIE method.
The film 19 is dry etched to leave the SiO□ film 19a on the sidewalls of the bit lines BL. Note that CF, 10□ is used as the etching gas ((g1), (gz) in the same figure).
).

次いで、側壁に5iOz膜19aを残したビット線BL
’を膜厚1000人程度O3iO7膜又はSi3N、膜
20により絶縁する(同図(hl)、(hZ))。
Next, the bit line BL with the 5iOz film 19a left on the sidewall
' is insulated by an O3iO7 film or Si3N film 20 with a thickness of about 1000 ((hl) and (hZ) in the same figure).

さらに、不図示のレジスト膜をマスクとして、5i02
膜16.20を選択的に除去して、n゛不純物拡散層1
3を露出し、開口部21を設ける。なお、開口部21は
蓄積電極コンタクトホールとなる(同図(i1)、(L
))。
Furthermore, using a resist film (not shown) as a mask, 5i02
Films 16 and 20 are selectively removed to form n゛ impurity diffusion layer 1.
3 is exposed and an opening 21 is provided. Note that the opening 21 becomes a storage electrode contact hole ((i1) and (L) in the same figure).
)).

次いで、開口部21を設けたSi基板11の全面に所望
の膜厚による不純物イオンを含有したポリSi膜22を
形成し、その後不図示のレジスト膜をマスクにして、ポ
リSi膜22をRIE法等の異方性エツチングによりパ
ターニングする。なお、ボ’JSJjJ22をパターニ
ングすることにより蓄積電極22aを形成する。またエ
ツチングガスはCC1,IO,を用いる(同図(jl)
、(L))。
Next, a poly-Si film 22 containing impurity ions is formed to a desired thickness on the entire surface of the Si substrate 11 provided with the opening 21, and then the poly-Si film 22 is subjected to RIE using a resist film (not shown) as a mask. Patterning is performed by anisotropic etching such as etching. Note that the storage electrode 22a is formed by patterning the bo'JSJjJ22. In addition, CC1 and IO are used as etching gas (see figure (jl)).
, (L)).

なお、同図(j1)、(j2)の形成工程後は、従来と
同様に蓄積電極22aを熱処理して、SiO2膜等の誘
電体膜23を形成し、さらに対向電極24として不純物
イオンを含有したポリSi膜を誘電体膜23の全面に形
成する。これにより第1図(a)、(b)に示すような
りRAMセルを製造することができる。
After the formation steps shown in (j1) and (j2) in the figure, the storage electrode 22a is heat-treated in the same manner as in the past to form a dielectric film 23 such as a SiO2 film, and a dielectric film 23 containing impurity ions is further formed as the counter electrode 24. A poly-Si film is formed on the entire surface of the dielectric film 23. As a result, a RAM cell as shown in FIGS. 1(a) and 1(b) can be manufactured.

このようにして、先に形成したゲート電極WL3、W 
L aやビット線BL、の絶縁工程において、5i02
膜15とSiO□膜19とをその側壁の絶縁強化に用い
ている。このため、該SiO□膜15.19をRIE法
等による異方性エツチングすることにより、ゲート電極
WL3 、WL4やビット線BL、の側壁に5iOz膜
15 a、 Sing膜19aとを残留させることがで
きる。従って該ゲート電極WL、 、WL。
In this way, the previously formed gate electrodes WL3, W
In the insulation process of La and bit line BL, 5i02
The film 15 and the SiO□ film 19 are used to strengthen the insulation of the side walls. Therefore, by anisotropically etching the SiO□ film 15.19 by RIE method or the like, it is possible to leave the 5iOz film 15a and the Sing film 19a on the side walls of the gate electrodes WL3, WL4 and the bit line BL. can. Therefore, the gate electrodes WL, , WL.

やビット線BL、の絶縁膜を厚く、かつ断面を滑らかに
することが可能となる。
It becomes possible to make the insulating film of the bit line BL thick and to have a smooth cross section.

これにより後工程における蓄積電極を形成する際の異方
性エツチング処理等の工程に好条件を与えることが可能
となる。
This makes it possible to provide favorable conditions for processes such as anisotropic etching when forming storage electrodes in subsequent steps.

(発明の効果〕 以上説明したように本発明によれば、ゲート電極やビッ
ト線と蓄積電極との絶縁耐力および平坦化度を従来に比
べて一層強化することができる。
(Effects of the Invention) As described above, according to the present invention, the dielectric strength and degree of planarization between the gate electrode, bit line, and storage electrode can be further strengthened compared to the prior art.

これにより立体積層構造の蓄積電極と併せて従来の2〜
3倍程度の蓄積容量と高信頼度の転送トランジスタとを
形成することが可能となる。
This makes it possible to combine the storage electrodes with a three-dimensional stacked structure with the conventional two to
It becomes possible to form a transfer transistor with storage capacity about three times as large and highly reliable.

従って、高集積、超微細化するDRAMセル等の半導体
装置を製造することが可能となる。
Therefore, it becomes possible to manufacture highly integrated and ultra-fine semiconductor devices such as DRAM cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るDRAMセルの構造図、 第2図は本発明の実施例に係るDRAMセルの形成工程
図、 第3図は従来例に係るDRAMセルの説明図である。 (符号の説明) T、T、・・・転送トランジスタ、 C,C,・・・蓄積容量、 1.11・・・Si基板(半導体基板)、2.12・・
・フィールド酸化膜(SiOx膜)、3.13・・・ド
レイン(不純物拡散層)、4.14・・・ソース(不純
物拡散層)、5、 15. 15 a−3iOz膜(第
1の絶縁膜)、6.22a・・・蓄積電極、 7.23・・・誘電体膜、 8.24・・・対向電極、 9・・・PSG膜、 10・・・ビット線コンタクトホール、16・・・5i
02膜(第2の絶縁膜)、17・・・開口部(ビット線
コンタクトボール)、18・・・ポリSi膜(第1の導
電体膜)、19 、 19 a−3iOz膜(第3の絶
縁膜)、20・・・SiO□膜又は5i3Na膜(第4
の絶縁膜)、21・・・開口部(蓄積電極コンタクトホ
ール)、22・・・ポリSi膜(第2の導電体膜)、w
L、WL、〜WL4・・・ワード線(ゲート電極)BL
、BL、・・・ビット線。 (bl) (C1) 、+イでト日「A6へ惨(七シヒオイ夛11して)邂匠
るDへ?Aへ第2 (aご (M (C2) 4ぞ)しの引形ρズ千オ里じ司 図 (イのグ) l4 (dl) (d2) (el) (fl) 不−in’h と2)?iぷ31マ24列し第 (e2) (f2) (ス矛るDRA刈セ小セル成丁デ1z (it)  13 展イ馨砺で61(6亥七に1?イシ弓L(メ〕[る諏(
h2) γ ’AM屯ル■形以ニオ永ダ (jl) 矛博?シ咀C)$七すiとイ41し;ノ詞トるD斥ごM
図 (イの、3) / (j2)11 4ゼ)レグ1形戸に丁才里図 図(イの4)
FIG. 1 is a structural diagram of a DRAM cell according to an embodiment of the present invention, FIG. 2 is a formation process diagram of a DRAM cell according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram of a DRAM cell according to a conventional example. . (Explanation of symbols) T, T,... Transfer transistor, C, C,... Storage capacitor, 1.11... Si substrate (semiconductor substrate), 2.12...
- Field oxide film (SiOx film), 3.13...Drain (impurity diffusion layer), 4.14...Source (impurity diffusion layer), 5, 15. 15 a-3iOz film (first insulating film), 6.22a... Storage electrode, 7.23... Dielectric film, 8.24... Counter electrode, 9... PSG film, 10. ...Bit line contact hole, 16...5i
02 film (second insulating film), 17... opening (bit line contact ball), 18... poly-Si film (first conductor film), 19, 19 a-3iOz film (third insulating film), 20...SiO□ film or 5i3Na film (fourth
(insulating film), 21... opening (storage electrode contact hole), 22... poly-Si film (second conductor film), w
L, WL, ~WL4...Word line (gate electrode) BL
,BL,...bit line. (bl) (C1), +I to day ``A6 to misery (7 Shihioi 11) to D?A to the second (ago (M (C2) 4zo))'s drawing form ρ Zusenorijijizu (Inogu) l4 (dl) (d2) (el) (fl) ふ-in'h and 2)? Haru DRA Karise small cell construction de 1z (it) 13 Exhibition I Kainto de 61 (6 to 7 to 1? Ishiyumi L(me) [Rusu(
h2) γ 'AM tunru ■ form i nio ei da (jl) hakuhiro? Shi Tsui C) $7 I and I41; no words toru D exclusion M
Figure (A, 3) / (j2) 11 4ze) Chozairi map on the leg 1 door (A, 4)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板(11)に、不純物拡散層(13、1
4)、ゲート電極(WL_3、WL_4)から成る転送
トランジスタ(T_1)とビット線(BL_1)と、そ
の上部に形成された蓄積電極(22a)、誘電体膜(2
3)及び対向電極(24)から成る蓄積容量(C_1)
とを有する半導体記憶装置において、 前記ゲート電極(WL_3、WL_4)又はビット線(
BL_1)の側壁の絶縁膜(15a、16、19a、2
0)が該ゲート電極(WL_3、WL_4)及びビット
線(BL_1)の上部の絶縁膜(16、20)よりも厚
い膜厚絶縁構造を有していることを特徴とする半導体記
憶装置。
(1) Impurity diffusion layers (13, 1
4), a transfer transistor (T_1) consisting of gate electrodes (WL_3, WL_4), a bit line (BL_1), a storage electrode (22a) formed on the top thereof, and a dielectric film (2).
3) and a storage capacitor (C_1) consisting of a counter electrode (24)
In a semiconductor memory device having the gate electrode (WL_3, WL_4) or the bit line (
Insulating films (15a, 16, 19a, 2) on the side walls of BL_1)
0) has an insulating structure with a film thickness thicker than the insulating films (16, 20) above the gate electrodes (WL_3, WL_4) and the bit line (BL_1).
(2)半導体基板(11)に、フィールド絶縁膜(12
)と不純物拡散層(13、14)とゲート電極(WL_
3、WL_4)とを形成する工程と、前記半導体基板(
11)に第1の絶縁膜(15)を形成する工程と、 前記第1の絶縁膜(15)を形成した半導体基板(11
)を異方性エッチングして、前記ゲート電極(WL_3
、WL_4)の側壁に第1の絶縁膜(15a)を残留す
る工程と、 前記第1の絶縁膜(15a)を残留した半導体基板(1
1)に第2の絶縁膜(16)を形成し、その後選択的に
該第2の絶縁膜(16)を除去して前記不純物拡散層(
4)を露出し、開口部(17)を設ける工程と、 前記開口部(17)を設けた半導体基板(11)に選択
的に所望の第1の導電体膜(18)を形成して、ビット
線(BL_1)を形成する工程と、前記ビット線(BL
)を形成した半導体基板(11)に第3の絶縁膜(19
)を形成する工程と、前記第3の絶縁膜(19)を形成
した半導体基板(11)を異方性エッチングして、前記
ビット線(BL_1)の側壁に第3の絶縁膜(19a)
を残留する工程と、 前記第3の絶縁膜(19a)を残留した半導体基板(1
1)の全面に第4の絶縁膜(20)を形成する工程と、 前記第4の絶縁膜(20)と第2の絶縁膜(16)とを
選択的に除去して、前記不純物拡散層(13)を露出し
、開口部(21)を設ける工程と、 前記開口部(21)を設けた半導体基板(11)に選択
的に第2の導電体膜(22)を形成する工程とを有する
ことを特徴とする半導体記憶装置の製造方法。
(2) Field insulating film (12) on the semiconductor substrate (11)
), impurity diffusion layers (13, 14), and gate electrode (WL_
3. WL_4) and the step of forming the semiconductor substrate (
forming a first insulating film (15) on the semiconductor substrate (11) on which the first insulating film (15) is formed;
) is anisotropically etched to form the gate electrode (WL_3
, WL_4), a step of leaving the first insulating film (15a) on the side wall of the semiconductor substrate (15a), and leaving the first insulating film (15a) on the sidewall of the semiconductor substrate (15a).
A second insulating film (16) is formed on the impurity diffusion layer (1), and then the second insulating film (16) is selectively removed.
4) exposing and providing an opening (17); selectively forming a desired first conductor film (18) on the semiconductor substrate (11) provided with the opening (17); A step of forming a bit line (BL_1) and a step of forming the bit line (BL_1).
) on the semiconductor substrate (11) on which the third insulating film (19
) and anisotropically etching the semiconductor substrate (11) on which the third insulating film (19) is formed to form a third insulating film (19a) on the sidewall of the bit line (BL_1).
a step of leaving the third insulating film (19a) on the semiconductor substrate (1);
1) forming a fourth insulating film (20) on the entire surface of the impurity diffusion layer; selectively removing the fourth insulating film (20) and the second insulating film (16); (13) and providing an opening (21); and a step of selectively forming a second conductor film (22) on the semiconductor substrate (11) provided with the opening (21). A method of manufacturing a semiconductor memory device, comprising:
JP62302464A 1987-11-25 1987-11-30 Semiconductor memory device and manufacturing method thereof Expired - Fee Related JPH07118520B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62302464A JPH07118520B2 (en) 1987-11-30 1987-11-30 Semiconductor memory device and manufacturing method thereof
KR1019880015422A KR910009805B1 (en) 1987-11-25 1988-11-23 Dynamic random access memory device and method of fabrication therefor
EP95102886A EP0661752B1 (en) 1987-11-25 1988-11-24 Dynamic random access memory device and method for producing the same
EP88311107A EP0318277B1 (en) 1987-11-25 1988-11-24 Dynamic random access memory device and method for producing the same
DE3854421T DE3854421T2 (en) 1987-11-25 1988-11-24 Dynamic random access memory array and manufacturing method therefor.
DE3856543T DE3856543T2 (en) 1987-11-25 1988-11-24 Dynamic random access arrangement and manufacturing process therefor
US07/462,290 US4953126A (en) 1987-11-25 1989-12-29 Dynamic random access memory device including a stack capacitor
US07/536,757 US5128273A (en) 1987-11-25 1990-06-12 Method of making a dynamic random access memory cell with stacked capacitor
US08/291,581 US5572053A (en) 1987-11-25 1994-08-16 Dynamic random access memory cell having a stacked capacitor
US08/716,782 US6046468A (en) 1987-11-25 1996-09-24 Dynamic random access memory device and method for producing the same
US09/385,964 US6114721A (en) 1987-11-25 1999-08-30 Dynamic random access memory device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302464A JPH07118520B2 (en) 1987-11-30 1987-11-30 Semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01143351A true JPH01143351A (en) 1989-06-05
JPH07118520B2 JPH07118520B2 (en) 1995-12-18

Family

ID=17909257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302464A Expired - Fee Related JPH07118520B2 (en) 1987-11-25 1987-11-30 Semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07118520B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237333A (en) * 2006-03-08 2007-09-20 Toyoda Van Moppes Ltd Abrasive wheel
US7695353B2 (en) 2004-11-19 2010-04-13 Toyoda Van Moppes Ltd. Grinding wheel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition
JPS62145765A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Memory cell
JPS62224070A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Semiconductor memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition
JPS62145765A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Memory cell
JPS62224070A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Semiconductor memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695353B2 (en) 2004-11-19 2010-04-13 Toyoda Van Moppes Ltd. Grinding wheel
JP4874121B2 (en) * 2004-11-19 2012-02-15 豊田バンモップス株式会社 Grinding wheel
JP2007237333A (en) * 2006-03-08 2007-09-20 Toyoda Van Moppes Ltd Abrasive wheel

Also Published As

Publication number Publication date
JPH07118520B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
JP2005123243A (en) Semiconductor device and its manufacturing method
JPH03109764A (en) Mos-type semiconductor device
JP2001053251A (en) Manufacture of semiconductor device
JPH0888333A (en) Manufacture of semiconductor device
JP2772375B2 (en) Semiconductor storage device
JPH01143351A (en) Semiconductor memory and manufacture thereof
JPH01147857A (en) Semiconductor memory and manufacture thereof
JPH01149452A (en) Semiconductor storage device and manufacture thereof
JPH01265556A (en) Semiconductor memory and manufacture thereof
JP2004158585A (en) Semiconductor device and method for manufacturing the same
JP2627515B2 (en) Semiconductor memory device and method of manufacturing the same
JPH01270344A (en) Manufacture of semiconductor device
JPH073860B2 (en) Method of manufacturing semiconductor memory device
JPH0496270A (en) Manufacture of semiconductor device
JPH03148860A (en) Semiconductor memory and manufacture thereof
JPH0648718B2 (en) Method of manufacturing semiconductor memory device
JPH01189949A (en) Manufacture of semiconductor memory device
JP3079558B2 (en) Method of forming semiconductor memory cell
JP3067316B2 (en) Method of forming semiconductor memory cell
JPH01290255A (en) Semiconductor memory and manufacture thereof
JP2000031413A (en) Semiconductor device and its manufacture
JPH0563152A (en) Semiconductor device and its manufacture
JPH05275649A (en) Semiconductor storage device
JPH04267558A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees