JPH01141834A - Insulating enameled substrate - Google Patents
Insulating enameled substrateInfo
- Publication number
- JPH01141834A JPH01141834A JP30077987A JP30077987A JPH01141834A JP H01141834 A JPH01141834 A JP H01141834A JP 30077987 A JP30077987 A JP 30077987A JP 30077987 A JP30077987 A JP 30077987A JP H01141834 A JPH01141834 A JP H01141834A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- layer
- insulating hollow
- insulating
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 56
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000007747 plating Methods 0.000 claims abstract description 37
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 29
- 239000011521 glass Substances 0.000 claims abstract description 23
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 10
- 230000003746 surface roughness Effects 0.000 claims abstract description 7
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 55
- 239000002184 metal Substances 0.000 abstract description 55
- 238000009713 electroplating Methods 0.000 abstract description 8
- 239000002002 slurry Substances 0.000 abstract description 7
- 238000005406 washing Methods 0.000 abstract description 7
- 238000005554 pickling Methods 0.000 abstract description 5
- 239000010935 stainless steel Substances 0.000 abstract description 5
- 239000000843 powder Substances 0.000 abstract description 2
- 210000003298 dental enamel Anatomy 0.000 abstract 4
- 229910000859 α-Fe Inorganic materials 0.000 abstract 2
- 239000004519 grease Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 72
- 239000000463 material Substances 0.000 description 40
- 239000002585 base Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical group CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 229910000680 Aluminized steel Inorganic materials 0.000 description 1
- FAYIWMIPOUXCOX-UHFFFAOYSA-L B(O)(O)O.[Ni](Cl)Cl Chemical compound B(O)(O)O.[Ni](Cl)Cl FAYIWMIPOUXCOX-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 244000007853 Sarothamnus scoparius Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、サーマルヘッド用基板や耐摩耗性基板として
用いる絶縁ホーロ基板に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an insulating hollow substrate used as a substrate for a thermal head or a wear-resistant substrate.
従来の技術
ステンレス、アルミニウム、あるいはホーロ用鋼板等の
基材にガン2層を焼付けしたいわゆるホーロ基板は、調
理器具、暖房器具などの家庭電化製品に広く用いられて
きたが、近年、結晶化ガラスを用いた絶縁ホーロ基板は
、放熱性や耐摩耗性に優れていることから回路基板、サ
ーマルヘッド用基板等の電子部品や小型モータ用の軸受
として用いられている。Conventional technology So-called hollow substrates, which are made by baking two layers of gun onto a base material such as stainless steel, aluminum, or hollow steel plate, have been widely used in home appliances such as cooking utensils and heating appliances, but in recent years, crystallized glass Insulating hollow substrates using .
次に、絶縁ホーロ基板の形成方法について説明する。絶
縁ホーロ基板の製造工程を第6図に示す。Next, a method for forming the insulating hollow substrate will be explained. The manufacturing process of the insulating hollow substrate is shown in FIG.
第6図に示したように、溶融・冷却して作ったガラスフ
リットをボールミルでミル引きして電着用スラリーを炸
裂し、このスラリーにステンレスやホーロ用鋼板な・ど
の金属基板を浸漬し、対極と金属基板間に直流電圧を印
加してガラスフリット粒子を金属基板上に電着する。電
着の後、基板を十分に乾燥し、第4図に示した焼成パタ
ーンで焼成して第5図の金属基材1と絶縁ホーロ層とか
らなる絶縁ホーロ基板を形成する。As shown in Figure 6, the glass frit made by melting and cooling is milled in a ball mill to explode a slurry for electrodeposition, a metal substrate such as stainless steel or a steel plate for hollow holes is immersed in this slurry, and a counter electrode is immersed in the slurry. Glass frit particles are electrodeposited onto the metal substrate by applying a DC voltage between the metal substrate and the metal substrate. After electrodeposition, the substrate is sufficiently dried and fired according to the firing pattern shown in FIG. 4 to form an insulating hollow substrate consisting of the metal base material 1 and the insulating hollow layer shown in FIG. 5.
上述の方法で形成した絶縁ホーロ基板は、中心線平均粗
さRaで0.10μm以下であシ、しかも、うねシが小
さいものである。しかし、上述の方法で形成した第6図
の構成の絶縁ホーロ基板は絶縁ホーロ層と金属基材との
密着性が悪く、しかも、ピンホールの多いものであった
。このピンホールが発生する原因は金属基材から002
ガス、原子状水素が発生するためである。特に上述のよ
うな欠点を有する絶縁ホーロ基板上にサーマルヘッドの
導電回路を形成すると、回路が断線するためサーマルヘ
ッド用基板としては満足なものが得られなかった。The insulating hollow substrate formed by the above method has a center line average roughness Ra of 0.10 μm or less, and has small ridges. However, the insulating hollow substrate having the structure shown in FIG. 6 formed by the above-described method had poor adhesion between the insulating hollow layer and the metal base material, and moreover, had many pinholes. The cause of this pinhole is 002 from the metal base material.
This is because gas and atomic hydrogen are generated. In particular, if a conductive circuit for a thermal head is formed on an insulating hollow substrate having the above-mentioned drawbacks, the circuit will be disconnected, making it impossible to obtain a satisfactory substrate for a thermal head.
上記のような問題点を解決する方法として、通常二ソケ
ルあるいはコバルトは金属から発生する水素ガスを吸蔵
する働きをもっているので、金属基材上に置換メツキや
電解メツキ法によってニアケルメツキ層、コバルトメツ
キ層を形成する方法が考えられる。一般ホーロの前処理
などで用いられる置換メツキ法を用いてニッケルImを
形成すると、ニッケル層がアイランド状に析出するため
、完全に水素ガスを吸蔵することができずピンホールが
発生し、しかも密着性やホーロ層表面の表面粗度も悪い
ものとなった。また同様に、電解メツキ法で形成したも
のは、置換メツキ法に比ベビンホールの数は少なくなっ
たものの、完全には除去できず、しかもホーロ層の表面
粗度は大きいものであった。As a method to solve the above-mentioned problems, since disokel or cobalt usually has the function of absorbing hydrogen gas generated from metals, a disokel plating layer or a cobalt plating layer is formed on the metal base material by substitution plating or electrolytic plating. One possible method is to form a When nickel Im is formed using the substitution plating method used in pre-treatment of general hollow holes, the nickel layer precipitates in an island shape and cannot completely absorb hydrogen gas, resulting in pinholes and The properties and surface roughness of the hollow layer surface were also poor. Similarly, although the number of Bevin holes formed by the electrolytic plating method was smaller than that by the substitution plating method, it was not possible to completely remove them, and the surface roughness of the hollow layer was large.
発明が解決しようとする問題点
本発明は、上記のような絶縁ホーロ層と金属基材との密
着性と絶縁ホーロ層のピンホールとを解決するものであ
る。Problems to be Solved by the Invention The present invention is intended to solve the above problems of adhesion between the insulating hollow layer and the metal base material and pinholes in the insulating hollow layer.
問題点を解決するだめの手段
本発明は、金属基材Cフェライト系ステンレスχfP3
縁ホーロ層との間に、電解ニッケルメッキ層を設け、し
かもニッケルメッキ層表面の中心線平均粗さを0.15
μm 以下にすることによシ上記の問題全解決するもの
である。Means for Solving the Problems The present invention is based on a metal base material C ferritic stainless steel χfP3.
An electrolytic nickel plating layer is provided between the edge hollow layer and the center line average roughness of the nickel plating layer surface is 0.15.
By making the thickness smaller than μm, all of the above problems can be solved.
作 用
一般にニッケルは、水素を吸蔵する働きをもっているの
で、電解メツキ法で金属基材上に均一にニッケル層を設
ければ、金属基材からの水素ガスを完全に吸蔵するため
ピンホールを押えることができるはずである。しかし、
従来の電解メツキ法は、金属基材とニッケルメッキ層と
の密着性を向上させるため、強酸(HF、H2SO4等
)で金属基材の表面を粗くしていた。そのため、金属基
材とニッケル層の密着性が向上し、その結果ホーロ層金
属基材との密着性も向上したが、ニッケルメッキ層上の
粗い表面の間に空気層を取シ込むため、今度はそれが原
因となってピンホールが発生した。このピンホールは絶
縁耐圧に大きく影響を与え、絶縁基板等の用途にはピン
ホールレス化が不可決である。そこで、酸洗などによる
金属表面の粗さを小さくして、さらにその上に電解ニッ
ケルメッキ層を設けることによシ、空気層の取シ込みが
なくなり、しかも金属からの水素ガスも完全に吸蔵され
るので、完全にピンホールを除去することができる。Function Generally, nickel has the ability to absorb hydrogen, so if a nickel layer is uniformly formed on a metal base material using electrolytic plating, it will completely absorb hydrogen gas from the metal base material and suppress pinholes. It should be possible. but,
In the conventional electrolytic plating method, the surface of the metal base material is roughened with a strong acid (HF, H2SO4, etc.) in order to improve the adhesion between the metal base material and the nickel plating layer. As a result, the adhesion between the metal base material and the nickel layer has improved, and as a result, the adhesion between the hollow layer and the metal base material has also improved, but in order to introduce an air layer between the rough surfaces on the nickel plating layer, This caused pinholes to occur. These pinholes have a large effect on the dielectric strength, and pinhole-free use is essential for applications such as insulating substrates. Therefore, by reducing the roughness of the metal surface through pickling, etc., and then providing an electrolytic nickel plating layer on top of it, the intake of air spaces is eliminated and hydrogen gas from the metal is completely absorbed. Therefore, pinholes can be completely removed.
実施例
以下本発明の実施例について説明する。まず各構成要素
について説明する。Examples Examples of the present invention will be described below. First, each component will be explained.
(1)金属基材
一般的にホーロ基板に用いられる金属基材には、ホーロ
用低炭素鋼板、アルミナイズド鋼板。(1) Metal substrate Metal substrates commonly used for hollow substrates include low carbon steel plates for hollow hollows and aluminized steel plates.
ステンレス鋼板、その他類似の鋼板を使用できる。しか
し、本発明で用いられるSiS102−B2o3− O
−E a O系の結晶化ガラスの熱膨張係数は11o−
130X10−’/”Cであるので、熱膨張係数が、1
10〜130X10 /Cであるフェライト系ステン
レスが最も好ましい。以下本実施例ではフェライト系ス
テンレスとして5US430を用いた。Stainless steel plates and other similar steel plates can be used. However, the SiS102-B2o3-O used in the present invention
-E a O-based crystallized glass has a thermal expansion coefficient of 11o-
130X10-'/''C, the coefficient of thermal expansion is 1
Ferritic stainless steel having a carbon content of 10 to 130×10 /C is most preferred. In this example, 5US430 was used as the ferritic stainless steel.
?)結晶化ガラス
結晶化ガラスは、絶縁性、耐摩耗性に優れたものでなけ
ればならないので、通常ホーロ製品に用いられるような
ガラスは使用できない。したがって、本発明では、第3
表aのガラスを用いた。? ) Crystallized glass Crystallized glass must have excellent insulation and abrasion resistance, so glass normally used for hollow products cannot be used. Therefore, in the present invention, the third
Glass shown in Table a was used.
(3)金属基材の前処理
第1図は本発明の絶縁ホーロ基板の断面構成図であシ、
金属基材1の両面に電解ニッケルメッキ層2を設け、さ
らにその両側に絶縁ホーロ層3を施したものである。(3) Pretreatment of metal base material FIG. 1 is a cross-sectional diagram of the insulating hollow substrate of the present invention.
Electrolytic nickel plating layers 2 are provided on both sides of a metal base material 1, and insulating hollow layers 3 are further provided on both sides.
第3図に本実施例の金属基材の前処理工程を示した。FIG. 3 shows the pretreatment process for the metal base material of this example.
金属基材は、アルカリ脱脂剤で十分に脱脂・水洗され、
汚れは完全に除去される。もし、この脱脂工程が不十分
であると、後の工程のニッケルメッキ工程に悪い影響を
及ぼし、不均一な層を形成してしまい、最終的にホーロ
層の表面状態も悪くなってしまうので、脱脂は十分に注
意を払っておこなう必要がある。The metal base material is thoroughly degreased with an alkaline degreaser and washed with water.
Dirt is completely removed. If this degreasing process is insufficient, it will have a negative effect on the subsequent nickel plating process, forming an uneven layer, and ultimately the surface condition of the hollow layer will deteriorate. Degreasing must be done with great care.
脱脂・水洗の後、酸洗を行なうが、エツチング後の基板
表面の粗度Ra を0.15μm以下にする必要がある
。もし、Raを0.15μm以上にすると、粗い金属基
材表面に空気層が取シ込まれやすくなシ、ピンホールの
発生原因となシ、さらにホーロ層の表面粗度も大きくな
って、サーマルヘッド用基板として使用できなくなって
しまうので工程も十分に注意する必要がある。酸洗工程
で使用できる酸は、塩酸、硝酸、硫酸王水などであシ、
これらを適当に希釈して用いも次に十分水洗したのち、
硫酸ニッケル、塩化ニッケル硼酸の混合溶液に金属基材
を浸漬して電解メツキを行ない、金属基材上にニッケル
層2を析出させる。このときのメツキ液の温度は6o±
6°Cが好ましい。また、この工程ではメツキ層の厚さ
を0.4〜5.0μmにする必要があ、9.0.3μm
以下では、ホーロ層にピンホールが発生しゃすくなシ、
逆に5.0μm以上になると金属基材からニッケル層が
剥離しやすくなるので、注意が必要である。After degreasing and washing with water, pickling is performed, but the roughness Ra of the substrate surface after etching must be 0.15 μm or less. If Ra is set to 0.15 μm or more, an air layer will be easily trapped on the rough metal substrate surface, which will cause pinholes, and the surface roughness of the hollow layer will also increase, causing thermal damage. It is necessary to be very careful about the process as it will become unusable as a head substrate. Acids that can be used in the pickling process include hydrochloric acid, nitric acid, sulfuric acid aqua regia, etc.
After diluting these appropriately and using them, wash thoroughly with water.
Electrolytic plating is performed by immersing a metal base material in a mixed solution of nickel sulfate and nickel chloride boric acid to deposit a nickel layer 2 on the metal base material. The temperature of the plating liquid at this time is 6o±
6°C is preferred. Also, in this process, the thickness of the plating layer needs to be 0.4 to 5.0 μm, and the thickness is 9.0.3 μm.
Below, we will explain how to prevent pinholes from forming in the hollow layer.
On the other hand, if the thickness is 5.0 μm or more, the nickel layer will easily peel off from the metal base material, so care must be taken.
この後、水洗を行なって前処理工程が終了する。Thereafter, the pretreatment process is completed by washing with water.
(4)絶縁ホーロ層の形成法
同様に、第3図に絶縁ホーロ層の形成工程を示した。ガ
ラス材料は1250〜1360°Cで先ず溶解され、ロ
ーラー力レッターで結晶化ガラスのカレントを得る。こ
れをボールミル等の粉砕機で粉砕する。この後、粒径の
大きいものをある程度取シ除き、さらにボールミルに結
晶化ガラス粉末と分散媒である2−プロパツールを人ね
、時間をかけてミル引きしてスラリーを調製する。(4) Method of forming an insulating hollow layer Similarly, FIG. 3 shows a process for forming an insulating hollow layer. The glass material is first melted at 1250-1360°C and a current of crystallized glass is obtained with a roller force cutter. This is pulverized using a pulverizer such as a ball mill. After this, a certain amount of large particles are removed, and the crystallized glass powder and 2-propertool, which is a dispersion medium, are added to a ball mill and milled over time to prepare a slurry.
他の分散媒としては、イソブチルアルコール。Another dispersion medium is isobutyl alcohol.
エタノール、アセトン、MIBK等があるが、分散性2
作業性などから考えると2−プロパツールが最も優れて
いるので、本実施例では、2−プロパツールを用いた。There are ethanol, acetone, MIBK, etc., but the dispersibility is 2.
Since 2-proper tools are the most superior in terms of workability, etc., 2-proper tools were used in this embodiment.
上述の方法で調製したスラリーラミ解槽に人ね、前処理
を行なった金属基材を電解槽内に装着して、極間距離2
〜4crr1で、直流電圧150〜eoovでガラス粒
子を金属基材上に電気泳動電着させ、ガラス被覆層を乾
燥の後、第4図のような焼成パターンで焼成し、絶縁ホ
ーロ層3を得る。この絶縁ホーロ層3上にAu−メタル
オルガニック層を印刷し、8℃0℃で6分間焼成してA
u電極を形成する。この電極上にRu O2・ガラスフ
リットからなる抵抗体ペーストを印刷・焼成して抵抗体
を形成し、さらに、ガラスグレーズオーバーコート層を
印刷・焼成して第2図に示すサーマルヘッドを形成する
。In the slurry laminate disintegration tank prepared by the method described above, the pretreated metal base material was placed in the electrolytic tank, and the distance between the electrodes was set at 2.
Glass particles are electrophoretically electrodeposited on a metal substrate at ~4 crr1 and a DC voltage of 150 ~ eoov, and after drying the glass coating layer, it is fired in a firing pattern as shown in Figure 4 to obtain an insulating hollow layer 3. . An Au-metal organic layer was printed on this insulating hollow layer 3 and baked at 8°C and 0°C for 6 minutes.
Form a u electrode. A resistor paste made of RuO2 and glass frit is printed and fired on this electrode to form a resistor, and a glass glaze overcoat layer is further printed and fired to form the thermal head shown in FIG.
次に本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.
〈実施例1〉
金属基材を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行ない、ニッケルメッキ層表面の中心
線平均粗さ(Ra)が0.04μmになるようにした。<Example 1> Metal base material was degreased, washed with water, pickled, washed with water, nickel plated,
A pretreatment was performed by washing with water so that the center line average roughness (Ra) of the surface of the nickel plating layer was 0.04 μm.
この金属基材を第3表aのガラスを用いて調製したスラ
リーに浸漬して、電着を行ない第4図の焼成パターンで
焼成して絶縁ホーロ基板を形成した。This metal base material was immersed in a slurry prepared using the glass shown in Table 3 a, electrodeposited and fired in the firing pattern shown in FIG. 4 to form an insulating hollow substrate.
〈実施例2〉
同様に前処理後の金属基材のRaが0.10μmになる
ように前処理を行ない、絶縁ホーロ基板を形成した。<Example 2> Similarly, pretreatment was performed so that the metal base material after pretreatment had an Ra of 0.10 μm to form an insulating hollow substrate.
〈実施例3〉
同様に前処理後のRaが0.15μmの金属基材を用い
て、絶縁ホーロ基板を形成した。<Example 3> Similarly, an insulating hollow substrate was formed using a metal base material having an Ra of 0.15 μm after pretreatment.
く比較例1〉
同様に前処理後のRaがo、17μmの金属基材を用い
て、絶縁ホーロ基板を形成した。Comparative Example 1 Similarly, an insulating hollow substrate was formed using a metal base material having an Ra of 17 μm after pretreatment.
く比較例2〉
同様に前処理後のRaがo、26μmの金属基材を用い
て、絶縁ホーロ基板を形成した。Comparative Example 2> Similarly, an insulating hollow substrate was formed using a metal base material having an Ra of 26 μm after pretreatment.
く比較例3〉
前処理工程として脱脂・水洗だけを行なった金属基材に
絶縁ホーロ層を形成した。このときの金属基材のRaは
0.02μmであった。Comparative Example 3> An insulating hollow layer was formed on a metal base material that had only been degreased and washed with water as a pretreatment step. Ra of the metal base material at this time was 0.02 μm.
く比較例4〉
前処理工程として脱脂・水洗・酸洗・水洗だけ全行なっ
た金属基材に絶縁ホーロ層を形成した。Comparative Example 4> An insulating hollow layer was formed on a metal substrate that had been subjected to all of the pretreatment steps of degreasing, water washing, pickling, and water washing.
このときの金属基材のRaは0.10μmであった。Ra of the metal base material at this time was 0.10 μm.
実施例1〜3.比較例1〜4のメツキ層の膜厚は2.4
μmである。Examples 1-3. The thickness of the plating layer in Comparative Examples 1 to 4 was 2.4
It is μm.
以上の実施例1〜3.比較例1〜4について、日本工業
規格・工業用グラスライニング機器・JISR4201
ピンホール目視試験法に基づいて、ピンホールの数を調
べ、同様に、日本工業規格・セラミックコーティング試
験方法ll5R4204密着度試験に基づいて、絶縁ホ
ーロ層と金属基材との平均密着度(8)を調べた。また
さらに、絶縁ホーロ層表面のRaについても測定をおこ
なった。その結果を第1表に示す。Examples 1 to 3 above. Regarding Comparative Examples 1 to 4, Japanese Industrial Standards/Industrial Glass Lining Equipment/JISR4201
The number of pinholes was determined based on the pinhole visual test method, and the average adhesion between the insulating hollow layer and the metal base material (8) was similarly determined based on the Japanese Industrial Standard Ceramic Coating Test Method ll5R4204 adhesion test. I looked into it. Furthermore, the Ra of the surface of the insulating hollow layer was also measured. The results are shown in Table 1.
第1表
以上のように、前処理後の金属基材のRaが0.15μ
mのものは、ピンホールも全く無く、シかも、密着度、
a縁ホーロ層のRaO値についても優れた値を示してい
ることがわかる。As shown in Table 1, the Ra of the metal base material after pretreatment is 0.15μ.
The one with size M has no pinholes at all, and the adhesion is poor.
It can be seen that the RaO value of the a-edge hollow layer also shows an excellent value.
〈実施例4〉
金属基材を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行ない、ニッケルメッキ層の膜厚を0
.4μm、メツキ層表面のRaを0.10μmとして、
さらにその上に絶縁ホーロ層を形成した。<Example 4> Metal base material was degreased, washed with water, pickled, washed with water, nickel plated,
Wash with water and perform pretreatment to reduce the thickness of the nickel plating layer to 0.
.. 4 μm, Ra of the plating layer surface is 0.10 μm,
Furthermore, an insulating hollow layer was formed thereon.
〈実施例5〉
同様に金属基材の前処理を行ないメツキ層の膜厚を2.
4μm、メツキ層表面のl(aを0.10μmとして、
絶縁ホーロ層を形成した。<Example 5> The metal base material was similarly pretreated, and the thickness of the plating layer was set to 2.
4 μm, l of the plating layer surface (a is 0.10 μm,
An insulating hollow layer was formed.
〈実施例6〉
同様に金属基材の前処理を行なって、メツキ層の膜厚を
5.0μm、メツキ層表面のRaを0.10μmとして
、絶縁ホーロ層を形成した。<Example 6> A metal base material was similarly pretreated to form an insulating hollow layer with a plating layer thickness of 5.0 μm and a plating layer surface Ra of 0.10 μm.
く比較例5〉
同様に金属基材の前処理を行なって、メツキ層の膜厚を
0.3μm、メツキ層表面のRa t−0,10μmと
して、絶縁ホーロ層を形成した。Comparative Example 5 A metal base material was similarly pretreated to form an insulating hollow layer with a plating layer thickness of 0.3 μm and a surface Ra t of the plating layer of 10 μm.
く比較例6〉
同様に金属基材の前処理を行なって、メツキ層の膜厚を
8.1μm、メツキ層表面のRaを0.10μmとして
、絶縁ホーロ層を形成した。Comparative Example 6 A metal base material was similarly pretreated to form an insulating hollow layer with a plating layer thickness of 8.1 μm and a plating layer surface Ra of 0.10 μm.
以上の実施例4〜5.比較例5〜6について、fISH
8504引きはがし試験方法に基づいて、金属基板とニ
ッケルメッキ層との密着性を調べ、さらに絶縁ホーロ層
のピンホールの数も調べた。これらの結果を第2表に示
す。Examples 4 to 5 above. Regarding Comparative Examples 5 and 6, fISH
Based on the 8504 peel test method, the adhesion between the metal substrate and the nickel plating layer was examined, and the number of pinholes in the insulating hollow layer was also examined. These results are shown in Table 2.
第2表
以上のようにニッケルメッキ層の膜厚′fI:0.4μ
m〜5.0μmにすると、ニッケル層と金属基材との密
着も良好で、しかもホーロ層形成後、ピンホールも発生
しないが、メツキ層の膜厚を0.3μmにするとピンボ
ールが発生し、逆に、膜厚を5.1μmにすると密着性
が悪いことがわかる。As shown in Table 2, the thickness of the nickel plating layer 'fI: 0.4μ
When the thickness of the plating layer is set to 5.0 μm, the adhesion between the nickel layer and the metal base material is good, and pinholes do not occur after the hollow layer is formed, but when the thickness of the plating layer is set to 0.3 μm, pinballs occur. On the contrary, it can be seen that adhesion is poor when the film thickness is 5.1 μm.
〈実施例子〉 ガラスに含まれるアルカリ土類金属(MqO。<Example> Alkaline earth metals (MqO) contained in glass.
Cab、Bad、Zn0)が少なくとも15重量%以上
であシ、アルカリ金属(L 1 0 、 i?a 20
t K2O)が21量係以下でなければならない理由
を説明すもガラスの組成として次表に示す組成のものに
ついて、電気泳動電層で絶縁ホーロ層を形成し、基板の
表面粗度と電気泳動電着性を調べた。その結果を第3表
に示す。形成方法は、実施例2と同様である。Cab, Bad, Zn0) is at least 15% by weight or more, alkali metal (L 1 0 , i?a 20
To explain why tK2O) must be less than 21%, the glass composition shown in the table below is formed by forming an insulating hollow layer with an electrophoretic layer, and the surface roughness of the substrate and electrophoresis are Electrodeposition properties were investigated. The results are shown in Table 3. The forming method is the same as in Example 2.
第3表の結果よシ、アルカリ土類金属が少なくとも15
重量%以上であシ、しかも、アルカリ金属が2重量%以
下であることが必須である。According to the results in Table 3, alkaline earth metals are at least 15
It is essential that the alkali metal content be at least 2% by weight and not more than 2% by weight.
〈実施例7〉
実施例1〜3で形成した絶縁ホーロ基板の上に電極2発
熱抵抗体、オーバーコート層を形成して、第 図のサー
マルヘッドを形成した。<Example 7> On the insulating hollow substrate formed in Examples 1 to 3, an electrode 2 heating resistor and an overcoat layer were formed to form a thermal head as shown in FIG.
く比較例7〉
同様に、比較例1〜4で形成した絶縁ホーロ基板上にサ
ーマルヘッド全形成した。Comparative Example 7> Similarly, a thermal head was entirely formed on the insulating hollow substrate formed in Comparative Examples 1 to 4.
コレラのサーマルヘッドについて、ヘット°内の断線個
数を調べた。その結果を第4表に示す。Regarding cholera thermal heads, we investigated the number of disconnections within the head. The results are shown in Table 4.
以上のように、ピンホールの多いものほどヘッド内の断
線個数も多くなっている。ピンホールの数と断線個数が
同数でないのは、ヘッドの配線幅(およそ60μm)よ
シ小さいピンホールの場合は、断線とならないからであ
る。As described above, the more pinholes there are, the greater the number of disconnections in the head. The reason why the number of pinholes and the number of disconnections are not equal is because pinholes smaller than the wiring width of the head (approximately 60 μm) do not cause disconnections.
この結果よシ、サーマルヘッド用基板として絶縁ホーロ
基板を用いるためには、少なくとも本発明の請求の範囲
を満足する必要があることがわかる。As a result, it can be seen that in order to use an insulating hollow substrate as a substrate for a thermal head, it is necessary to satisfy at least the scope of the claims of the present invention.
発明の効果
以上詳述の如く、フェライト系ステンレス、電解ニッケ
ルメッキ層、S io2−B203−MgO−BaO系
の結晶化ガラス層の構成からなる絶縁ホーロ基板のニッ
ケルメッキ層のRaが0.15μm以下であるものは、
ピンホールも無く、しかも密着性が優れておシ、サーマ
ルヘッド用基板として欠陥や抵抗値バラツキの少ない、
長寿命なサーマルヘッドを形成することが可能となる。Effects of the Invention As detailed above, the Ra of the nickel plating layer of the insulating hollow substrate consisting of ferritic stainless steel, electrolytic nickel plating layer, and Sio2-B203-MgO-BaO-based crystallized glass layer is 0.15 μm or less. What is
It has no pinholes and has excellent adhesion, so it can be used as a thermal head substrate with few defects and resistance variations.
It becomes possible to form a long-life thermal head.
また、この絶縁ホーロ基板は密着性、平面平滑性に優れ
ていることから、耐摩耗性を必要とするモータの軸受と
して応用することか可能である。Furthermore, since this insulating hollow substrate has excellent adhesion and flat surface smoothness, it can be applied as a bearing for a motor that requires wear resistance.
第1図は本発明の一実施例の絶縁ホーロ基板の断面構成
図、第2図は同絶縁ホーロ基板を応用したサーマルヘッ
ドの断面構成図、第3図は同絶縁縁ホーロ基板の断面構
成図、第6図は従来例の絶ホーロ基板の形成法を示す工
程図である。
1・・・・・・金属基材、2・・・・・・電解ニッケル
メッキ層、3・・・・・・絶縁ホーロ層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 口
z 2 口
箒 3 図
第40
町j±す
第5図
第61FIG. 1 is a cross-sectional diagram of an insulating hollow board according to an embodiment of the present invention, FIG. 2 is a cross-sectional diagram of a thermal head to which the same insulating hollow board is applied, and FIG. 3 is a cross-sectional diagram of the same insulating hollow board. , FIG. 6 is a process diagram showing a conventional method of forming an absolutely hollow substrate. 1... Metal base material, 2... Electrolytic nickel plating layer, 3... Insulating hollow layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 mouth z 2 mouth broom 3 Figure 40 Town j±su Figure 5 Figure 61
Claims (3)
、SiO_2−B_2O_3−MgO−BaO系の結晶
化ガラス層の構成からなる絶縁ホーロ基板の電解ニッケ
ルメッキ層の表面粗度が、中心線平均粗さで0.15μ
m以下であることを特徴とする絶縁ホーロ基板。(1) The surface roughness of the electrolytic nickel plating layer of the insulating hollow substrate, which is composed of ferritic stainless steel, electrolytic nickel plating layer, and SiO_2-B_2O_3-MgO-BaO-based crystallized glass layer, is 0 in terms of center line average roughness. .15μ
An insulating hollow board characterized by having a thickness of less than m.
0μmであることを特徴とする特許請求の範囲第1項記
載の絶縁ホーロ基板。(2) The thickness of the electrolytic nickel plating layer is 0.4 μm to 5.0 μm.
The insulating hollow substrate according to claim 1, wherein the insulating hollow substrate has a thickness of 0 μm.
結晶化ガラスが少なくともアルカリ土類金属の酸化物を
15重量パーセント以上含有し、一価のアルカリ金属の
酸化物が2重量パーセント以下の組成を有することを特
徴とする特許請求の範囲第1項記載の絶縁ホーロ基板。(3) The SiO_2-B_2O_3-MgO-BaO-based crystallized glass contains at least 15% by weight of an oxide of an alkaline earth metal, and has a composition of 2% by weight or less of an oxide of a monovalent alkali metal. An insulating hollow substrate according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30077987A JPH01141834A (en) | 1987-11-27 | 1987-11-27 | Insulating enameled substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30077987A JPH01141834A (en) | 1987-11-27 | 1987-11-27 | Insulating enameled substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01141834A true JPH01141834A (en) | 1989-06-02 |
Family
ID=17888992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30077987A Pending JPH01141834A (en) | 1987-11-27 | 1987-11-27 | Insulating enameled substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01141834A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679464A (en) * | 1992-03-31 | 1997-10-21 | Nippon Steel Corporation | Joined product of heat-resisting alloys and method for joining heat-resisting alloys |
EP3644690A4 (en) * | 2017-06-23 | 2021-03-03 | Toyo Seikan Group Holdings, Ltd. | Substrate for flexible devices |
-
1987
- 1987-11-27 JP JP30077987A patent/JPH01141834A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679464A (en) * | 1992-03-31 | 1997-10-21 | Nippon Steel Corporation | Joined product of heat-resisting alloys and method for joining heat-resisting alloys |
EP3644690A4 (en) * | 2017-06-23 | 2021-03-03 | Toyo Seikan Group Holdings, Ltd. | Substrate for flexible devices |
US11414762B2 (en) | 2017-06-23 | 2022-08-16 | Toyo Seikan Group Holdings. Ltd. | Substrate for flexible device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104798440A (en) | Substrate for flexible devices and method for producing same | |
JP2825383B2 (en) | Improved anode for oxygen generation | |
US2748066A (en) | Process of enameling steel | |
JPH01141834A (en) | Insulating enameled substrate | |
JP2654420B2 (en) | Corrosion-resistant protective coating method for copper articles | |
WO2017170038A1 (en) | Substrate for flexible devices and method for producing same | |
JPH0696847A (en) | Surface heating unit and manufacture thereof | |
US4234395A (en) | Metal composites and laminates formed therefrom | |
US2819207A (en) | Process for enameling steel | |
JP2729835B2 (en) | Method for forming ceramic film on aluminum substrate surface | |
JP3487675B2 (en) | Manufacturing method of mechanical quantity sensor | |
JP2618423B2 (en) | Electrophoretic white and colored enamel method | |
JPH01150000A (en) | Insoluble anode for electroplating | |
JPH06137805A (en) | Strain gauge and its manufacture | |
JP2542640B2 (en) | Method of manufacturing hollow substrate for forming thin film circuit | |
JP2779953B2 (en) | Method for forming ceramic film on aluminum substrate surface | |
JPH0382187A (en) | Manufacture of high corrosion-resistant printed wiring board | |
JP2512062B2 (en) | Glass ceramic substrate manufacturing method | |
JPH098325A (en) | Production of electric insulation substrate and physical quantity sensor employing it | |
JPH02301574A (en) | Heat accumulating enameled substrate and production thereof | |
JPH0635669B2 (en) | Enamel board manufacturing method | |
JPS63312985A (en) | Formation of insulating enameling layer | |
JPH0426789A (en) | Production of reflow soldering material | |
JPS63203779A (en) | Formation of insulating enamel layer | |
JPS5935439B2 (en) | Manufacturing method of insoluble anode for electrolysis |