JPH01149988A - Beryllium electroplating bath and plating method with said bath - Google Patents
Beryllium electroplating bath and plating method with said bathInfo
- Publication number
- JPH01149988A JPH01149988A JP30810087A JP30810087A JPH01149988A JP H01149988 A JPH01149988 A JP H01149988A JP 30810087 A JP30810087 A JP 30810087A JP 30810087 A JP30810087 A JP 30810087A JP H01149988 A JPH01149988 A JP H01149988A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- beryllium
- bath
- halide
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 62
- 229910052790 beryllium Inorganic materials 0.000 title claims abstract description 32
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 8
- 238000009713 electroplating Methods 0.000 title abstract description 7
- -1 beryllium halide Chemical class 0.000 claims abstract description 14
- 150000004820 halides Chemical class 0.000 claims abstract description 11
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 239000003960 organic solvent Substances 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052802 copper Inorganic materials 0.000 abstract description 9
- 239000010949 copper Substances 0.000 abstract description 9
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 abstract description 3
- POKOASTYJWUQJG-UHFFFAOYSA-M 1-butylpyridin-1-ium;chloride Chemical compound [Cl-].CCCC[N+]1=CC=CC=C1 POKOASTYJWUQJG-UHFFFAOYSA-M 0.000 abstract description 2
- 229910001627 beryllium chloride Inorganic materials 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910001423 beryllium ion Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- YPKQDKSROHHCKJ-UHFFFAOYSA-N 2,2-dichloroacetic acid;methanol Chemical compound OC.OC(=O)C(Cl)Cl YPKQDKSROHHCKJ-UHFFFAOYSA-N 0.000 description 1
- 101100325855 Caenorhabditis elegans bec-1 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、比較的低温で、均一で緻密なべ17 リウム
めっきを行うことができる溶融塩基電気めっき浴および
その俗によるめっき方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a molten base electroplating bath capable of uniformly and densely plating a pan at a relatively low temperature, and a plating method based thereon.
(従来技術)
Beは安定で、最も軽い金属であるので、Beめっきを
航空機部材のめっきに従来使用されているCdめっきの
代わりに使用すれば、機体を軽(することができる。ま
た、炭酸ガスや溶融金属に対する高温耐食性に優れてい
るので、そのめり外材は原子炉部材などにも適している
。さらに、音の伝達性にも優れているので、BeMはス
ピーカーの振動板などに使用すると、優れた音響効果が
得られる。(Prior art) Be is stable and the lightest metal, so if Be plating is used in place of Cd plating, which is conventionally used for plating aircraft parts, the aircraft body can be made lighter. Because it has excellent high-temperature corrosion resistance against gas and molten metal, BeM's outer material is suitable for nuclear reactor parts, etc.BeM also has excellent sound transmission properties, so it is suitable for use in speaker diaphragms, etc. , excellent acoustic effects can be obtained.
このBeのめっき材や電解箔の製造は、電気めっきによ
らねばならないが、Beの電位は水素より者しく卑であ
るので、水溶液系のめっき浴で行うことは、困難である
。このため、Beの電気めっきは、従来より有機溶媒系
や溶融塩系などの非水溶液系のめっき浴で行なわれてい
る。The Be plating material and electrolytic foil must be manufactured by electroplating, but since the potential of Be is significantly less base than that of hydrogen, it is difficult to carry out the process using an aqueous plating bath. For this reason, Be electroplating has conventionally been carried out in non-aqueous plating baths such as organic solvent-based or molten salt-based plating baths.
例えば、有機溶媒系のものとしては、ジメチルベリリウ
ム−ジエチルエーテル系、ベリリウムボロハイドフイド
ージエチルエーテル系、ドリブルオロ酢酸ベリリウムー
メタノールまたは7セトン系の浴など使用されており、
溶融塩系のものとしては、BeCl 2− NaCI系
やBeCIz LiCl KCl系の浴が使用され
ている。For example, as organic solvents, dimethyl beryllium-diethyl ether baths, beryllium borohydride diethyl ether baths, beryllium dichloroacetate-methanol or 7cetone baths are used.
As molten salt baths, BeCl 2-NaCI baths and BeCIz LiCl KCl baths are used.
(発明が解決しようとする問題点)
しかしながら、上記のような有機溶媒系めっき浴は、浴
の導電率が低いため、めっき速度が遅く、また、緻密な
めっきを行うことも困難であった。(Problems to be Solved by the Invention) However, since the organic solvent-based plating baths described above have low conductivity, the plating speed is slow, and it is also difficult to perform dense plating.
一方、溶融塩浴は、めっき温度が数百度と高いため、作
業性が劣り、しかも、めっき層表面が凝固の際樹枝状に
なってしまうものであった。On the other hand, the molten salt bath has a plating temperature as high as several hundred degrees, resulting in poor workability and, moreover, the surface of the plating layer becomes dendritic during solidification.
そこで、本発明は、これらの問題を解決した電気ベリリ
ウムめっき浴およびめっき方法を提供するものである。Therefore, the present invention provides an electrolytic beryllium plating bath and a plating method that solve these problems.
(問題点を解決するための手段)
本発明者は、上記のような問題のない電気めっき浴を開
発すべく、鋭意研究した結果、ベリリウムハロゲン化物
とアルキルピリジニウムハロゲン化物の溶融塩浴による
と、比較的低温でめっきでさ、しかも、めっき層表面を
平滑にできることを見出だしたのである。(Means for Solving the Problems) As a result of intensive research in order to develop an electroplating bath free from the above-mentioned problems, the present inventor found that according to a molten salt bath of beryllium halide and alkylpyridinium halide, They discovered that plating can be performed at relatively low temperatures and the surface of the plating layer can be made smooth.
すなわち、本発明者は、ベリリウムハロゲン化物(Be
X2)30〜90モル%とアルキルピリジニウムハロゲ
ン化物(CsH6N−RX、但しRは炭素数1〜5のア
ルキル基、Xはハロゲン原子)10〜70モル%、また
はこれらに有機溶媒を20〜80Vol%配合してなる
電気ベリリウムめっき浴を開発し、この浴を用い、乾燥
無酸素雰囲気中で直流電流またはパルス電流により浴温
0〜200℃、電流密度0.1〜10^/dm2の電解
条件でめっきすると、平滑なめっきが可能であることを
見出だした。That is, the present inventor has discovered that beryllium halide (Be
X2) 30 to 90 mol% and alkylpyridinium halide (CsH6N-RX, where R is an alkyl group having 1 to 5 carbon atoms, X is a halogen atom) 10 to 70 mol%, or 20 to 80 vol% of an organic solvent to these We have developed an electrolytic beryllium plating bath consisting of a combination of the following: using this bath, electrolytic conditions are applied at a bath temperature of 0 to 200°C and a current density of 0.1 to 10^/dm2 using direct current or pulsed current in a dry oxygen-free atmosphere. It has been found that smooth plating is possible when plated.
ベリリウムハロゲン化物やアルキルピリジニウムハロゲ
ン化物は、ともに常温で固体であるが、上記割合で混合
すると、50℃前後で溶融して液体となり、ハロゲン化
ベリリウムアニオンとアルキルピリジニウムカチオンと
にイオン解離し、電解すれば、ベリリウムめっきするこ
とがで終る。Both beryllium halides and alkylpyridinium halides are solid at room temperature, but when mixed in the above ratio, they melt at around 50°C and become liquid, and they ionically dissociate into beryllium halide anions and alkylpyridinium cations, and undergo electrolysis. If finished, beryllium plated.
例えば、塩化ベリリウムとプチルピリノニウムクロリド
との溶融塩浴は、BeCI 3−とC5HJ”−C4H
iのように解離し、BeCl 3−が陰極で電子を受取
り、Beが析出する。For example, a molten salt bath of beryllium chloride and butylpyrinonium chloride produces BeCI 3- and C5HJ"-C4H
It dissociates as in i, BeCl 3- receives electrons at the cathode, and Be is precipitated.
アルキルピリジニウムハロゲン化物としては、アルキル
基の炭素数が1〜5のものを使用するのが好ましい。こ
れは、アルキル基の炭素数が6以上になると、ベリリウ
ムハロゲン化物と混合した際、低温で液体になりにくく
なるためである。As the alkylpyridinium halide, it is preferable to use an alkyl group having 1 to 5 carbon atoms. This is because when the alkyl group has 6 or more carbon atoms, it becomes difficult to become liquid at low temperatures when mixed with beryllium halide.
ベリリウムハロゲン化物の混合割合を30〜90モル%
にするのは、ベリリウムハロゲン化物が30モル%未満
であると、浴中でのアルキルピリジニウムカチオン濃度
が高くなり、Be電析の際、アルキルピリジニウムカチ
オン還元反応が同時に進行し、電流効率の低下およびめ
っき層の表面外観不良を招くからである。また、90モ
ル%を越えると、融点も高く、俗の導電率が低くなり、
蒸気圧も高くなる。The mixing ratio of beryllium halide is 30 to 90 mol%.
The reason for this is that if the beryllium halide content is less than 30 mol%, the concentration of alkylpyridinium cations in the bath will increase, and during Be electrodeposition, the alkylpyridinium cation reduction reaction will proceed simultaneously, resulting in a decrease in current efficiency and This is because it leads to poor surface appearance of the plating layer. Moreover, if it exceeds 90 mol%, the melting point will be high and the general conductivity will be low.
The vapor pressure also increases.
アルキルピリジニウムハロゲン化物の混合割合は、ベリ
リウムハロゲン化物の残部であるので、10〜70モル
%になる。The mixing ratio of the alkylpyridinium halide is 10 to 70 mol % since it is the remainder of the beryllium halide.
このめっき浴は、溶融塩浴であるので、浴温が低くなる
と、浴の流動性が低下し、電流密度を高くするのが困難
になる場合がある。そこで、このような場合には、有機
溶媒を配合して浴の流動性を商めればよい。有機溶媒を
配合しても、めっき俗のイオン解離は変わらない。Since this plating bath is a molten salt bath, when the bath temperature becomes low, the fluidity of the bath decreases, and it may be difficult to increase the current density. Therefore, in such a case, an organic solvent may be added to improve the fluidity of the bath. Even if an organic solvent is added, the ion dissociation commonly used in plating does not change.
この有機溶媒としては、芳香族のもの、例えば、トルエ
ン、キシレン、ベンゼンなどでも十分であるが、誘電率
の高いジメチルスル7オキシド、ジメチルホルムアミド
、γ−ブチロラクトン、トリグライムなどが好ましい。As this organic solvent, aromatic ones such as toluene, xylene, benzene, etc. are sufficient, but dimethylsulf7oxide, dimethylformamide, γ-butyrolactone, triglyme, etc., which have a high dielectric constant, are preferable.
配合割合は、ベリリウムハロテン化物トアルキルビリシ
ニウムハロゲン化物の合計量に対して、Vol%で20
〜80%にするのが好ましい(従って、溶融塩の合計量
も20〜80%になる)。有機溶媒の配合割合が20V
ol%未満であると、浴の特性が未配合のものとほとん
ど変わらず、80Vol%を越えると、浴中のベリリウ
ムハロゲン化物の濃度が低くなるため、Be電析の際の
電流効率が着しく低くなり、浴温上昇により引火した場
合火災になる危険性がある。The blending ratio is 20% by volume based on the total amount of beryllium halotenide and toalkylbiricinium halide.
It is preferable to make it ~80% (therefore, the total amount of molten salt will also be from 20 to 80%). The blending ratio of organic solvent is 20V
If it is less than 80 Vol%, the properties of the bath will be almost the same as those without it, and if it exceeds 80 Vol%, the concentration of beryllium halide in the bath will be low, resulting in poor current efficiency during Be electrodeposition. There is a risk of a fire if the bath temperature rises and ignites.
めっき浴は、酸素や水分に触れても安全であるが、Be
錯イオン酸化防止のため、乾燥無酸素雰囲気中(たとえ
ば乾燥N2や^r中)で行なうのが好ましい。また、電
解は、浴温0〜200°Cで、直流またはパルス電流に
より0.1〜10^/dII12で行うと、効率よく高
純度で、均一なめっきを行なうことができる。浴温が0
℃より低いと、高電流密度でめっきすることが困難にな
り、逆に浴温を200℃より高くして電流密度を10^
/dm2より高くすると、結晶が粗いデンドライト結晶
となり、外観、加工性が劣ってしまう。電流は、直流よ
りパルス電流の方が結晶が微細になり、加工性が良好に
なる。Plating baths are safe even when exposed to oxygen or moisture, but Be
In order to prevent complex ion oxidation, it is preferable to carry out the reaction in a dry oxygen-free atmosphere (for example, in dry N2 or ^r). Moreover, when electrolysis is carried out at a bath temperature of 0 to 200° C. and a direct current or pulsed current of 0.1 to 10^/dII12, highly pure and uniform plating can be performed efficiently. Bath temperature is 0
If it is lower than ℃, it will be difficult to plate with high current density, and conversely, if the bath temperature is higher than 200℃ and the current density is 10^
If it is higher than /dm2, the crystals become coarse dendrite crystals, resulting in poor appearance and workability. Pulsed current produces finer crystals and better workability than direct current.
一般に連続めっきで均一なめっきを施すには、めっき浴
にBeイオンを補給して、浴中のめつき金属イオンを一
定に管理する必要があるが、この場合、陽極をBe製の
可溶性陽極にすると、通電量に応じてBeイオンが電解
量に応じて自動的に補給されるので、好都合である。Generally, in order to achieve uniform plating through continuous plating, it is necessary to replenish Be ions to the plating bath and control the plating metal ions in the bath at a constant level. This is convenient because Be ions are automatically replenished according to the amount of electrolysis depending on the amount of current applied.
陽極にTi−PL系などの不溶性陽極を使用して連続め
っきする場合のBeイオンの補給は、BeCl 2やB
eF 2などのハロゲン化物を補給すればよい。しかし
、不溶性陽極使用による連続めっきの場合、電解時に陽
極界面でハロゲンブス発生反応が起こって、浴中のハロ
ゲン成分が減少する。このため、浴組成が変動し、浴寿
命が短くなる。When performing continuous plating using an insoluble anode such as Ti-PL, replenishment of Be ions is performed using BeCl 2 or B
A halide such as eF 2 may be replenished. However, in the case of continuous plating using an insoluble anode, a halogen bus generation reaction occurs at the anode interface during electrolysis, reducing the halogen component in the bath. As a result, the bath composition fluctuates and the bath life is shortened.
以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.
(実施例)
実施例1
銅板(板厚0.5IIIII)に常法によりアルカリ脱
脂、酸洗などのめっき前処理を施した後、乾燥して、直
ちにあらかじめNzfス雰囲気に保っておいたBeC1
□50モル%とブチルピリジニウムクロリド50モル%
とからなる溶融塩浴に浸漬し、ベリリウムめっきを行な
った。なお、めっきは、銅板を陰極、ベリリウム板を陽
極として、浴温100℃、直流電流密度5^/dm2で
5分間行った。(Example) Example 1 A copper plate (plate thickness 0.5III) was subjected to plating pretreatment such as alkaline degreasing and pickling by a conventional method, then dried and immediately kept in a Nzf gas atmosphere in advance.BeC1
□50 mol% and butylpyridinium chloride 50 mol%
Beryllium plating was performed by immersing the material in a molten salt bath consisting of. The plating was carried out for 5 minutes at a bath temperature of 100°C and a DC current density of 5^/dm2, using the copper plate as a cathode and the beryllium plate as an anode.
得られたベリリウムめっき銅板のめっき層は、厚みが均
一で金属光沢を呈し、結晶は緻密であった。また、銅板
に繰り返し折り曲げを施しても、クラックや剥離が発生
せず、加工性、密着性とも良好であった。The plating layer of the obtained beryllium-plated copper plate had a uniform thickness, a metallic luster, and dense crystals. Further, even when the copper plate was repeatedly bent, no cracks or peeling occurred, and both workability and adhesion were good.
また、電流効率は、通電量とめっき付着量とから算出し
たところ、はぼ100%であった。Further, the current efficiency was calculated from the amount of current applied and the amount of plating deposited, and was approximately 100%.
実施例2
混合割合がBeF260モル%、メチルピリノニウムフ
ルオリド40モル%である溶融塩浴を用いて、同板厚の
銅板に実施例1と同要領で電気べ1717ウムめっきを
行った。めっきは、浴を^「ガス雰囲気に保ち、浴温1
20℃、直流電流密度3^/da2で10分間行った。Example 2 Using a molten salt bath in which the mixing ratio was 260 mol % of BeF and 40 mol % of methylpyrinonium fluoride, a copper plate of the same thickness was electrolytically plated in the same manner as in Example 1. For plating, keep the bath in a gas atmosphere and keep the bath temperature 1.
The test was carried out at 20° C. and a DC current density of 3^/da2 for 10 minutes.
得られためっき銅板のめっき層性状は、実施例1の場合
と同様で、電流効率は約95%であった。The properties of the plating layer of the obtained plated copper plate were similar to those in Example 1, and the current efficiency was about 95%.
実施例3
実施例1の溶融塩浴にジメチルスル7オキシドをその割
合が50Vol%となるように添加した浴を用いて、実
施例1と同要領で同板厚の銅板に電気ベリリウムめっト
を行った。めっきは、俗を同様に82ffX雰囲気に保
ち、浴温50℃、直流電流密度7^/d輸2で5分間行
った。Example 3 Electrolytic beryllium plating was applied to a copper plate of the same thickness in the same manner as in Example 1 using the molten salt bath of Example 1 to which dimethyl sulf7oxide was added in a proportion of 50 vol%. went. Plating was carried out for 5 minutes at a bath temperature of 50° C. and a DC current density of 7^/d×2 while maintaining the same 82ffX atmosphere.
本実施例で得られためっ終銅板のめつき層性状も、実施
例1の場合と同様で、電流効率は約97%であった。The properties of the plating layer of the final copper plate obtained in this example were also similar to those in Example 1, and the current efficiency was about 97%.
実施例4
実施例1〜3のめっ終において、電流をパルス電流に変
更してベリリウムめっきを行なった。パルス電流による
めっきはいずれのめつき浴の場合もデユーティ−比1/
10〜1/100、平均電流密度0.1〜10^/dm
”で行なったが、めっき層の厚みは均一で、結晶、加工
性とも直流によりめつ鯵した場合と同一であった。Example 4 At the end of plating in Examples 1 to 3, beryllium plating was performed by changing the current to a pulsed current. For plating with pulsed current, the duty ratio is 1/ for any plating bath.
10 to 1/100, average current density 0.1 to 10^/dm
However, the thickness of the plating layer was uniform, and the crystals and workability were the same as those obtained by direct current plating.
また、Ni板、冷延鋼板へも上記同!!領でベリリウム
めっきしてみたが、優れたベリリウムめっきが可能であ
った。The same applies to Ni plates and cold-rolled steel plates! ! We tried beryllium plating in our laboratory, and found that excellent beryllium plating was possible.
以上めっき材の方法について実施例を掲げたが、電解箔
の製造の場合も同様に行うことができる。Although examples have been given above regarding the method for plating materials, the same method can be used for manufacturing electrolytic foil.
(効果)
以上のように、本発明によれば、比較的低温で、しかも
、高電流密度で均一平滑なベリリウムめっきを行うこと
ができる。(Effects) As described above, according to the present invention, uniform and smooth beryllium plating can be performed at a relatively low temperature and at a high current density.
Claims (3)
0モル%とアルキルピリジニウムハロゲン化物 (C_5H_5N−RX、但しRは炭素数1〜5のアル
キル基、Xはハロゲン原子)10〜70モル%、または
これらに有機溶媒を20〜80Vol%配合してなる電
気ベリリウムめっき浴。(1) Beryllium halide (BeX_2) 30-9
0 mol% and alkylpyridinium halide (C_5H_5N-RX, where R is an alkyl group having 1 to 5 carbon atoms, X is a halogen atom) 10 to 70 mol%, or 20 to 80 vol% of an organic solvent is blended with these. Electric beryllium plating bath.
0モル%とアルキルピリジニウムハロゲン化物 (C_5H_5N−RX、但しRは炭素数1〜5のアル
キル基、Xはハロゲン原子)10〜70モル%、または
これらに有機溶媒を20〜80Vol%配合してなる電
気ベリリウムめっき浴を用い、乾燥無酸素雰囲気中で直
流電流またはパルス電流により浴温0〜200℃、電流
密度0.1〜10A/dm^2の電解条件でめっきする
ことを特徴とする電気ベリリウムめっき方法。(2) Beryllium halide (BeX_2) 30-9
0 mol% and alkylpyridinium halide (C_5H_5N-RX, where R is an alkyl group having 1 to 5 carbon atoms, X is a halogen atom) 10 to 70 mol%, or 20 to 80 vol% of an organic solvent is blended with these. Electric beryllium is characterized by plating using an electrolytic beryllium plating bath under electrolytic conditions of a bath temperature of 0 to 200°C and a current density of 0.1 to 10 A/dm^2 with direct current or pulsed current in a dry oxygen-free atmosphere. Plating method.
特徴とする特許請求の範囲第2項に記載の電気ベリリウ
ムめっき方法。(3) The electrolytic beryllium plating method according to claim 2, characterized in that plating is performed using a beryllium anode as an anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30810087A JPH01149988A (en) | 1987-12-05 | 1987-12-05 | Beryllium electroplating bath and plating method with said bath |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30810087A JPH01149988A (en) | 1987-12-05 | 1987-12-05 | Beryllium electroplating bath and plating method with said bath |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01149988A true JPH01149988A (en) | 1989-06-13 |
Family
ID=17976864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30810087A Pending JPH01149988A (en) | 1987-12-05 | 1987-12-05 | Beryllium electroplating bath and plating method with said bath |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01149988A (en) |
-
1987
- 1987-12-05 JP JP30810087A patent/JPH01149988A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2662635B2 (en) | Electric aluminum plating bath and plating method using the bath | |
US6203936B1 (en) | Lightweight metal bipolar plates and methods for making the same | |
CN101243211B (en) | Pretreatment of magnesium substrates for electroplating | |
EP2662478B1 (en) | Aluminium or aluminium alloy molten salt electroplating bath having good throwing power, and electroplating method and pretreatment method using same | |
WO2010044305A1 (en) | Electrolytic aluminum plating solution and method for forming aluminum plating film | |
US1971761A (en) | Protection of metals | |
JPH0613758B2 (en) | Electro aluminum plating method | |
Hrussanova et al. | Electrochemical properties of Pb–Sb, Pb–Ca–Sn and Pb–Co 3 O 4 anodes in copper electrowinning | |
JPS6270593A (en) | Aluminum electroplating bath and plating method by said plating bath | |
US3867265A (en) | Process for electroplating an aluminum wire | |
US3616292A (en) | Alumated stannous sulfate solutions their preparation and their use in plating on conductive surfaces particularly on aluminum | |
JPH01104791A (en) | Production of electrolytic aluminum foil | |
JPH01149988A (en) | Beryllium electroplating bath and plating method with said bath | |
US4560446A (en) | Method of electroplating, electroplated coating and use of the coating | |
KR100917325B1 (en) | Method of plating nickel on magnesium alloy and nickel plating magnesium alloy | |
JP2540110B2 (en) | Electro aluminum plating method | |
JPH0280589A (en) | Tungsten electroplating bath and plating method using the bath | |
US2871172A (en) | Electro-plating of metals | |
Zhu et al. | Copper coating electrodeposited directly onto AZ31 magnesium alloy | |
US2690997A (en) | Electrodeposition of copper | |
JP2657991B2 (en) | Electric aluminum plating bath and plating method using the bath | |
US2439935A (en) | Indium electroplating | |
JPS62297492A (en) | Method for plating aluminum by electrolytic activation | |
Devyatkina et al. | Deposition of protective-decorative coatings onto aluminum alloys | |
JPH06346272A (en) | Sulfuric acid bath for tinning at high current density and tinning method |