JPH01147074A - Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing - Google Patents
Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealingInfo
- Publication number
- JPH01147074A JPH01147074A JP30320587A JP30320587A JPH01147074A JP H01147074 A JPH01147074 A JP H01147074A JP 30320587 A JP30320587 A JP 30320587A JP 30320587 A JP30320587 A JP 30320587A JP H01147074 A JPH01147074 A JP H01147074A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- silicon steel
- insulating film
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000137 annealing Methods 0.000 title claims abstract description 75
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 29
- 230000006866 deterioration Effects 0.000 title claims abstract 3
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 31
- 239000010959 steel Substances 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000008119 colloidal silica Substances 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 11
- 239000010452 phosphate Substances 0.000 claims abstract description 11
- 229910052839 forsterite Inorganic materials 0.000 claims abstract description 9
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 24
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052735 hafnium Inorganic materials 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 40
- 229910052742 iron Inorganic materials 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 16
- 238000005096 rolling process Methods 0.000 abstract description 13
- 238000000926 separation method Methods 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 238000010894 electron beam technology Methods 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 29
- 238000011282 treatment Methods 0.000 description 18
- 238000001953 recrystallisation Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 7
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 7
- 239000004137 magnesium phosphate Substances 0.000 description 7
- 229960002261 magnesium phosphate Drugs 0.000 description 7
- 235000010994 magnesium phosphates Nutrition 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000005261 decarburization Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- 230000005381 magnetic domain Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- -1 81t 0.3 (80%) Inorganic materials 0.000 description 3
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 3
- 208000037998 chronic venous disease Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000013532 laser treatment Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229910002971 CaTiO3 Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、歪取り焼鈍による特性劣化がない方向性け
い素鋼板に関し、とくに該綱板表面に被成するりん酸塩
系絶縁被膜に工夫を加えることによって磁気特性とくに
鉄損特性の有利な向上を図ろうとするものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to grain-oriented silicon steel sheets that do not deteriorate in characteristics due to strain relief annealing, and in particular, devises a phosphate-based insulating coating formed on the surface of the steel sheets. By adding this, it is intended to advantageously improve the magnetic properties, especially the iron loss properties.
一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
る。Remarkable development efforts in recent years to improve the electrical and magnetic properties of grain-oriented silicon steel sheets, particularly to meet the extreme demands of reducing iron loss, are gradually bearing fruit.
さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(110) <OOb 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気磁気的特性
として製品の磁束密度(Boo値で代表される)が高く
、鉄損(WIT/S。値で代表される)の低いことが要
求される。As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) <OOb, or Goss orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have high electromagnetic characteristics such as high magnetic flux density (represented by the Boo value) and low iron loss (represented by the WIT/S value).
この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明改善が加えら
れ、今日では板ff0.30mmの製品の磁気特性がB
le値1.90T以上、IL、zs。値1.05に/k
g以下、または板ff0.23mmの製品の磁気特性が
BIG値1.89T以上、1,7.。値0.90%17
kg以下の超低鉄損一方向性けい素鋼板が製造されるよ
うになって来ている。This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of ff0.30mm have magnetic properties of B.
le value 1.90T or more, IL, zs. value 1.05/k
g or less, or the magnetic properties of the product with plate ff0.23mm are BIG value 1.89T or more, 1,7. . Value 0.90%17
Ultra-low core loss unidirectional silicon steel sheets weighing less than 1 kg are now being manufactured.
特に最近では省エネの見地から電力損失の低減を特徴と
する請求が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリユエーション」 (鉄損評
価)制度が普及している。Particularly in recent years, demand for reducing power loss has become much stronger from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.
(従来の技術)
このような状況下において最近、一方向性けい素鋼板の
仕上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレ
ーザー照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭5B−26405号及び特公昭58−26406号公
報参照)。(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss by this method (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 5B-26405 and Japanese Patent Publication No. 58-26406).
この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微小ひずみ
が焼鈍処理により開放されて磁区幅が広くなるため、レ
ーザー照射効果がなくなるという欠点がある。This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
There is a drawback that the local minute strain introduced by laser irradiation is released by annealing and the magnetic domain width becomes wider, so that the laser irradiation effect disappears.
一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面を
鏡面上げするか又はその鏡面仕上げ面上に金属メツキや
さらにその上に絶縁被膜を塗布焼付けすることによる、
超低鉄損一方向性けい素鋼板の製造方法が提案さている
。On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was raised to a mirror finish, or the mirror finish surface was plated with metal or an insulating coating was applied thereon. By coating and baking,
A method for manufacturing ultra-low core loss unidirectional silicon steel sheets has been proposed.
しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割に鉄
損低減への寄与が充分でない上、とくに鏡面仕上後に不
可欠な絶縁被膜を塗布焼付した後の密着性に問題がある
ため、現在の製造工程において採用されるに至ってはい
ない。また特公昭56−4150号公報においても鋼板
表面を鏡面仕上げした後、酸化物系セラミックス薄膜を
蒸着する方法が提案されている。しかしながらこの方法
も600 ’C以上の高温焼鈍を施すと鋼板とセラミッ
クス層とが剥離するため、実際の製造工程では採用でき
ない。However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not contribute enough to reducing iron loss, as it significantly increases costs. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in the actual manufacturing process because the steel plate and the ceramic layer will separate when subjected to high-temperature annealing at 600'C or higher.
さらに特開昭59−229419号公報においてけい素
鋼板表面に局部的に熱エネルギーを加えることにより熱
歪領域を形成させる方法が提案されている。Furthermore, Japanese Patent Application Laid-Open No. 59-229419 proposes a method of forming thermal strain regions by locally applying thermal energy to the surface of a silicon steel sheet.
しかしながらこの局所熱歪領域の優先形成は600°C
以上の高温焼鈍によってその効果がなくなるという欠点
を有している。However, the preferential formation of this local thermal strain region occurs at 600°C.
It has the disadvantage that the above-mentioned high-temperature annealing loses its effect.
(発明が解決しようとする問題点)
前記の不利を補ってあまりある鉄損の低減を成就するこ
とがこの発明の目的である。(Problems to be Solved by the Invention) It is an object of the present invention to compensate for the above-mentioned disadvantages and achieve a significant reduction in iron loss.
(問題点を解決するための手段)
すなわちこの発明は、仕上げ焼鈍済みの鋼板表面に、り
ん酸塩とコロイダルシリカとを主成分とする絶縁被膜を
そなえる方向性けい素鋼板であって、該絶縁被膜が局所
的に生地よりも結晶化度が大きいAl域をそなえること
からなる歪取り焼鈍による特性劣化がない方向性けい素
鋼板である。(Means for Solving the Problems) That is, the present invention provides a grain-oriented silicon steel sheet having an insulating coating mainly composed of phosphate and colloidal silica on the surface of the finish-annealed steel sheet, This is a grain-oriented silicon steel sheet whose properties do not deteriorate due to strain relief annealing because the coating locally has Al regions with a higher degree of crystallinity than the base material.
この発明において、りん酸塩とコロイダルシリカとを主
成分とする絶縁被膜は、
i)仕上げ焼鈍後に鋼板表面に形成されたフォルステラ
イト被膜上、または
ii)仕上げ焼鈍後、表面の非金属酸化物を除去した面
に被成したTi 、 Zr 、 Iff、 V 、
Nb 、 Ta 。In this invention, an insulating coating mainly composed of phosphate and colloidal silica is formed on i) a forsterite coating formed on the surface of a steel sheet after final annealing, or ii) a nonmetallic oxide on the surface after final annealing. Ti, Zr, Iff, V, deposited on the removed surface
Nb, Ta.
Cr I Mo * W + Mn HCo + N
t +^1 、 B 、 Siの窒化物および/または
炭化物ならびにAl、 Nt。Cr I Mo * W + Mn HCo + N
t +^1, B, nitride and/or carbide of Si and Al, Nt.
Cu 、 W 、 StおよびZnの酸化物のうちから
選んだ少なくとも1種からなる極薄張力被膜上に被成す
ることがとりわけ有利に適合する。It is particularly advantageous to deposit it on an ultra-thin tension coating consisting of at least one selected from oxides of Cu, W, St and Zn.
まずこの発明の成功が導かれた具体的な実験に従って説
明を進める。First, the explanation will proceed according to a specific experiment that led to the success of this invention.
C: 0.048重量%(以下単に%で示す) 、Si
:3.40%、 Mn:0.066%、 Se: 0.
020%、 Sb: 0.023%およびMo:0.0
12%を含有するけい素鋼連鋳スラプを1350″Cで
4時間加熱後熱間圧延して2.0mm厚さの熱延板とし
た。C: 0.048% by weight (hereinafter simply expressed as %), Si
: 3.40%, Mn: 0.066%, Se: 0.
020%, Sb: 0.023% and Mo: 0.0
Continuously cast silicon steel slab containing 12% was heated at 1350''C for 4 hours and then hot rolled into a hot rolled sheet with a thickness of 2.0 mm.
その後900”Cで3分間の均一化焼鈍後、950°C
で3分間の中間焼鈍をはさむ2回の冷間圧延を施して0
、23mm厚の最終冷延板とした。Then, after homogenization annealing at 900"C for 3 minutes, 950°C
It was cold rolled twice with 3 minutes of intermediate annealing in between.
A final cold-rolled sheet having a thickness of 23 mm was obtained.
その後820°Cの湿水素雰囲気中で脱炭・−次再結晶
焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍
分離剤Aまたは不活性Al2O:I (75%)とMg
O(25%)から成る焼鈍分離剤Bを塗布し、ついで8
50 ’Cで50時間の2次再結晶焼鈍と、1200″
Cで5時間乾水素中で純化焼鈍とを施した。After that, after decarburization and second recrystallization annealing in a wet hydrogen atmosphere at 820°C, the surface of the steel sheet is coated with annealing separator A mainly composed of MgO or inert Al2O:I (75%) and Mg
Apply annealing separator B consisting of O (25%), then 8
Secondary recrystallization annealing at 50'C for 50 hours and 1200''
Purification annealing was performed at C for 5 hours in dry hydrogen.
得られた仕上げ焼鈍板のうち、焼鈍分離剤としてAを用
い表面にフォルステライト被膜を形成させたものについ
ては、次の(a)〜(d)に示す処理に供した。Among the obtained finished annealed plates, those on which a forsterite film was formed on the surface using A as an annealing separation agent were subjected to the treatments shown in the following (a) to (d).
(a)仕上げ焼鈍板表面上に真空中で圧延方向に直角方
向にエレクトロンビーム照射(EB前照射加速電圧:
65kV、加速電流: 1.OmA 、ビーム径0.1
5mmφ、ビーム走査間隔ニア間)した。(a) Electron beam irradiation (EB pre-irradiation acceleration voltage:
65kV, acceleration current: 1. OmA, beam diameter 0.1
5 mmφ, beam scanning interval near).
(b)仕上げ焼鈍板表面上にりん酸マグネシウムとコロ
イダルシリカを主成分とする絶縁コーティング被膜を施
した後、真空中で圧延方向の直角方向に上記(a)と同
一条件にてEB前照射た。(b) After applying an insulating coating film mainly composed of magnesium phosphate and colloidal silica on the surface of the final annealed plate, pre-EB irradiation was performed in a vacuum in the direction perpendicular to the rolling direction under the same conditions as in (a) above. .
また比較のため(C)E B照射を施さない仕上げ焼鈍
板および(d)仕上げ焼鈍後に上記の絶縁コーティング
を施し、EB前照射施さない製品板も用意した。For comparison, (C) a final annealed plate without EB irradiation and (d) a product plate with the above insulation coating applied after final annealing but without EB pre-irradiation were also prepared.
一方焼鈍分離剤としてBを用いて得た仕上げ焼鈍板はそ
の表面を軽く酸洗(10%の11Cl液中)した後、3
%IPと)1.02の液中で化学研澄し鋼板表面平均粗
さ0.03μmの鏡面状態に仕上げた後4群の試料に分
け、それぞれ次の条件で処理した。On the other hand, the surface of the finished annealed plate obtained using B as an annealing separation agent was lightly pickled (in 10% 11Cl solution), and then
The steel sheets were chemically polished in a solution of 1.02% IP and finished to a mirror-like state with an average surface roughness of 0.03 μm, and then divided into four groups of samples, each of which was treated under the following conditions.
(e) 鏡面鋼板の上に連続イオンブレーティング装
置(HCD法)によりTiNの1.0μm厚の薄膜を形
成させた。(e) A thin film of TiN with a thickness of 1.0 μm was formed on a mirror-finished steel plate using a continuous ion brating device (HCD method).
(f) 鏡面鋼板の上に連続イオンブレーティング装
置によりTiNの1.0μm厚の薄膜を形成させた後、
ひきつづき真空中で圧延方向に直角方向にEB前照射加
速電圧:65にV、加速電流: 1.OmA 。(f) After forming a 1.0 μm thick TiN film on a mirror steel plate using a continuous ion brating device,
Subsequently, EB pre-irradiation was carried out in a vacuum in a direction perpendicular to the rolling direction. Acceleration voltage: 65 V, acceleration current: 1. OmA.
ビーム径0.15閣、ビーム走査間隔ニアmm)した。The beam diameter was 0.15mm, and the beam scanning interval was near mm).
(2)鏡面鋼板の上に連続イオンブレーティング装置に
よりTiNの1゜0μm厚の薄膜を形成させた後、りん
酸マグネシウムとコロイダルシリカを主成分とする絶縁
コーティング被膜の被成処理を行った。(2) After forming a thin film of TiN with a thickness of 1°0 μm on a mirror-polished steel plate using a continuous ion blating device, an insulating coating film mainly composed of magnesium phosphate and colloidal silica was applied.
山)鏡面銅板上に連続イオンブレーティング処理により
TiNの1.0μm厚の薄膜を形成し、ついでりん酸マ
グネシウムとコロイダルシリカを主成分とする絶縁コー
ティング被膜の被成処理を施した後、真空中で圧延方向
に対して直角方向に上記げ)と同一条件にてEB前照射
た。A thin film of TiN with a thickness of 1.0 μm was formed on a mirror-finished copper plate by continuous ion blating treatment, and then an insulating coating film mainly composed of magnesium phosphate and colloidal silica was applied, and then it was coated in a vacuum. Pre-EB irradiation was carried out under the same conditions as above) in the direction perpendicular to the rolling direction.
以上の処理を経た各試料、さらには800°Cで2時間
の歪取り焼鈍を施した後の製品の磁気特性について調べ
た結果を、第1表にまとめて示す。Table 1 summarizes the results of investigating the magnetic properties of each sample subjected to the above treatment and of the product after being subjected to strain relief annealing at 800°C for 2 hours.
第1表から明らかなように、通常の一方向性けい素鋼仕
上焼鈍板を対象としたEB照射を行った(a)および(
b)の場合の磁気特性はB、。値が1.90〜1.91
T s W+’?/30値が0.81〜0.84W/k
gで、EB照射しない(C)および(d)の場合の磁気
特性に比較してり、/、。値が0.05〜0.08W/
kg向上している。又仕上げ焼鈍板を研磨処理後イオン
ブレーティングによりTiN被膜を形成してからEB照
射をしたげ)および(h)の場合の磁気特性は、B10
値が1.91〜1.92T、W+tzs。値が0.64
〜0.67W/kgで、EB照射しない(e)および(
(至)の場合の磁気特性値に比較して1,7.。値が0
.05〜0.09W/kg向上している。As is clear from Table 1, EB irradiation was performed on ordinary unidirectional silicon steel finish annealed plates (a) and (
The magnetic properties in case b) are B. Value is 1.90-1.91
T s W+'? /30 value is 0.81~0.84W/k
In g, the magnetic properties are compared with those in cases (C) and (d) without EB irradiation. Value is 0.05~0.08W/
kg has improved. In addition, after polishing the finish annealed plate, a TiN film is formed by ion blating, and then EB irradiation is performed.) and (h), the magnetic properties are B10.
Value is 1.91-1.92T, W+tzs. value is 0.64
~0.67W/kg, without EB irradiation (e) and (
(up to) compared to the magnetic property values of 1,7. . value is 0
.. It has improved by 0.05 to 0.09 W/kg.
このようにEBを照射した場合、800°Cで2時間の
歪取り焼鈍を施しても特性が劣化しないことが注目され
る。It is noteworthy that when EB is irradiated in this manner, the characteristics do not deteriorate even if strain relief annealing is performed at 800° C. for 2 hours.
そこで発明者らは、この理由について調査を行なった。Therefore, the inventors investigated the reason for this.
第1図aに、仕上げ焼鈍後、りん酸マグネシウムとコロ
イダルシリカを主成分とする絶縁被膜をコーティングし
たときの表面を薄膜X線によって構造解析した結果を示
す。FIG. 1a shows the results of structural analysis using thin film X-rays of the surface coated with an insulating film containing magnesium phosphate and colloidal silica as main components after final annealing.
また同図すは、上記の絶縁被膜コーテイング後の表面上
にEB処理(第1表中の(1))の条件)を施したもの
、同図Cは、同じく上記の絶縁被膜コーテイング後の表
面上にEB処理を施しく第1表中の(b)の条件)た後
、N2中で800°C12時間の歪取り焼鈍を施したも
の、同図dは同じく上記の絶縁被膜コーテイング後、N
2中で800°C,2時間の歪取り焼鈍を施したものに
ついてのX線解析結果である。In addition, the same figure shows the surface after being coated with the above-mentioned insulating film and subjected to EB treatment (conditions (1) in Table 1), and the figure C shows the surface after being coated with the above-mentioned insulating film. After applying EB treatment to the top (condition (b) in Table 1), strain relief annealing was performed at 800°C for 12 hours in N2.
These are the results of an X-ray analysis of a specimen subjected to strain relief annealing at 800°C for 2 hours in No. 2.
第1図aでは、Mg2SiO4、a−Fe 、 CaT
iO3のピークに加えて、弱い(020)と(022)
面のMgzP207のピークが観察された。また絶縁被
膜コーテイング後、EB処理を施したものは、第1図す
に示したとおり同図aに見られたMg2SiO4+
α−Fe 、 CaTiO3のピークに加えて、弱い(
020)と強い(022)面のMgzhOtのピークが
観察された。さらに同図Cに示した絶縁被膜コーティン
グを施し、EB処理後歪取り焼鈍を施したものは、同図
a、bに見られたMg2SiO4,α−Fe 、 Ca
TiOsのピークに加えて、弱い(020)ときわめて
強い(022)面のMgzPzOtのピークが観察され
た。またさらに同図dに示した絶縁被膜コーティング後
歪取り焼鈍を施したものは、同図a、b、cに見られた
MgzSiOa l α−FeCaTi03のピークに
加えて、弱い(020)と強い(022)面のMgzP
zOtのピーク(この(022)面のMgzhOlのピ
ークはCの条件よりも弱い)が観察された。In Figure 1 a, Mg2SiO4, a-Fe, CaT
In addition to the iO3 peak, weak (020) and (022)
A peak of MgzP207 on the surface was observed. In addition, as shown in Figure 1, the Mg2SiO4+
In addition to the peaks of α-Fe, CaTiO3, a weak (
020) and strong (022) plane MgzhOt peaks were observed. Furthermore, the insulating film coating shown in Figure C was applied, and the strain relief annealing was performed after EB treatment.
In addition to the TiOs peak, weak (020) and very strong (022) plane MgzPzOt peaks were observed. Furthermore, the strain-relief annealed product after coating with an insulating film shown in Figure d shows weak (020) and strong ( 022) MgzP surface
A peak of zOt (the peak of MgzhOl on the (022) plane is weaker than that under the C condition) was observed.
次に第2表に、第1図の各処理条件における絶縁被膜中
のMgzPzOrの(022)面強度(最強ピーク)変
化、ならびに新たに同様の方法によって、I X 10
− ’ torrの真空中と大気中とでそれぞれ−レー
ザーおよびプラズマ処理を施したときのMgzPzOl
の(022)面強度変化についての調査結果をまとめて
示す。Next, Table 2 shows the changes in (022) plane strength (strongest peak) of MgzPzOr in the insulating film under each treatment condition shown in Figure 1, as well as the I x 10
- MgzPzOl when subjected to laser and plasma treatment in a vacuum of 'torr and in air, respectively.
The results of the investigation regarding the change in strength of the (022) plane are summarized below.
第2表から明らかなように、真空中でEB、レーザー、
プラズマ照射などの熱処理を施したときのMgzPz0
7の(022)面強度は、■のコーティング処理材に比
較して強くなるが、大気中でレーザー、プラズマ処理を
行なうと逆に弱くなっている。この傾向は800°Cで
2時間の歪取り焼鈍後までももたらされ、真空中で処理
した場合、いずれの条件(EB、レーザー、プラズマ処
理)下でも歪取り焼鈍後において■の条件におけるMg
zhOtの(022)面強度よりも極端に強くなってい
る。As is clear from Table 2, EB, laser,
MgzPz0 when subjected to heat treatment such as plasma irradiation
The (022) plane strength of No. 7 is stronger than that of the coated material No. 2, but it becomes weaker when laser or plasma treatment is performed in the atmosphere. This tendency was observed even after strain relief annealing at 800°C for 2 hours, and when treated in vacuum, Mg in the conditions of
It is extremely stronger than the (022) plane strength of zhOt.
これに対し、大気中でレーザー、プラズマ処理し、その
後歪取り焼鈍を施したときのMgzPzOyの(022
)面強度は■の条件よりも弱くなり、結晶化が進行しな
くなっている。In contrast, MgzPzOy (022
) The surface strength is weaker than the condition (■), and crystallization does not proceed.
以上の実験から、絶縁被膜上への真空中におけるEB、
レーザー、プラズマ処理を施した領域では、かような熱
処理後さらには歪取り焼鈍を施した場合にMg2P2O
7の(022)面の結晶化が優先的に進行し、これらの
処理を施さない領域との間で絶縁被膜中に弾性張力の不
均一が生じ、結果としてけい素鋼板表面上このような張
力の不均一領域が形成されるために磁区が細分化され、
ひいては低鉄損化を図ることが可能となったものと考え
られる。From the above experiments, it was found that EB in vacuum on an insulating film,
In areas that have been subjected to laser or plasma treatment, Mg2P2O
Crystallization of the (022) plane of No. 7 proceeds preferentially, causing non-uniform elastic tension in the insulating coating between the areas where these treatments are not applied, and as a result, such tension on the surface of the silicon steel sheet. The magnetic domain is subdivided to form non-uniform regions of
In turn, it is thought that it has become possible to achieve lower iron loss.
すなわち従来の磁区細分化技術は、前述したように、主
として鋼板表面上に局部的な熱歪、塑性歪を与えること
により低鉄…化を図るもので、結果として歪取り焼鈍を
施すと歪の解放により特性(特に鉄損特性)は劣化した
。これに対しこの発明では、真空中における絶縁被膜へ
の局所加熱処理さらにはその後の焼鈍による絶縁被膜の
結晶化過程で、特定の(022)面の方位を有する結晶
のみを優先的に発達させることによって異張力領域を局
所的に形成させることにより、低鉄損化を達成したもの
である。In other words, as mentioned above, conventional magnetic domain refining technology aims to reduce the iron content by applying localized thermal strain and plastic strain to the surface of the steel sheet, and as a result, strain relief annealing can reduce the strain. Characteristics (especially iron loss characteristics) deteriorated due to release. In contrast, in the present invention, only crystals having a specific (022) plane orientation are preferentially developed in the crystallization process of the insulating film by local heating treatment of the insulating film in vacuum and subsequent annealing. By locally forming regions of different tension, lower core loss is achieved.
Mg2P2O7の結晶化は、真空中でのEB、レーザー
、プラズマ照射、さらにはその後の歪取り焼鈍によって
(022)面の最ちょう密面が優勢的に発達することに
よって進行し、この領域において鋼板に張力を効果的に
付加する一方、未処理領域では張力が付加されないので
、結果として鋼板に対し弾性張力が効果的に付加され、
その結果鉄損の低減が実現されるものと考えられる。Crystallization of Mg2P2O7 progresses through EB, laser, and plasma irradiation in vacuum, and subsequent strain relief annealing, whereby the (022) plane, which is the closest-packed plane, develops dominantly, and the steel plate is formed in this region. While tension is effectively applied, no tension is applied in the untreated area, so as a result, elastic tension is effectively applied to the steel plate,
It is considered that as a result, reduction in iron loss is realized.
第2図に、この発明に従う鋼板の断面を模式で示す。FIG. 2 schematically shows a cross section of a steel plate according to the present invention.
同図に示したとおり、絶縁被膜中に、生地よりも結晶化
度の大きな領域を生じさせることによって異張力の働く
領域を区画形成し、もって低鉄損を実現するのである。As shown in the figure, by creating regions in the insulating coating that have a higher degree of crystallinity than the fabric, regions where different tensions act are divided, thereby achieving low iron loss.
ここに結晶化度は、X線回折では、面強度や半値幅を考
慮して定めるが、この発明では、主にM2PZO?の(
022)面のX線回折の面強度を指標とした。なおここ
でMとはMgやA1である。In X-ray diffraction, the degree of crystallinity is determined by considering surface strength and half-width, but in this invention, it is mainly determined by M2PZO? of(
The surface intensity of X-ray diffraction of the 022) surface was used as an index. Note that M here refers to Mg or A1.
次にこの発明による、一方向性けい素鋼板の製造工程に
ついて説明する。Next, the manufacturing process of a unidirectional silicon steel sheet according to the present invention will be explained.
出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば
■ C: 0.01〜0.050%、 Si: 2.5
0〜4.5%、 Mn:0.01〜0.2%、 Mo:
0.003〜0.1%、 Sb: 0.005〜0.
2%、SあるいはSeの1種あるいは2種合計で、0.
005〜0.05%を含有する組成■ C: 0.01
〜0.08%、 Si: 2.0〜4.0 %、S:
0.005〜0.05%、 Al: 0.005
〜0.06%、N: 0.001〜0.01%、
Sn: 0.01〜0.5 %、 Cu:0.01
〜0.3 %。The starting material has conventionally known unidirectional silicon steel material components, such as ■ C: 0.01 to 0.050%, Si: 2.5
0-4.5%, Mn: 0.01-0.2%, Mo:
0.003-0.1%, Sb: 0.005-0.
2%, one or two types of S or Se, 0.
Composition containing 005-0.05%■ C: 0.01
~0.08%, Si: 2.0~4.0%, S:
0.005-0.05%, Al: 0.005
~0.06%, N: 0.001~0.01%,
Sn: 0.01-0.5%, Cu: 0.01
~0.3%.
Mn: 0.01〜0.2%を含有する組成■ C:
0.011〜0.06%、 Si: 2.0〜4.0%
、S二0.005〜0.05%、 B:0.0003〜
0.0040%、N:0゜001〜0.01%、 Mn
:0.01〜0.2%を含有する組成の如きにおいて適
用可能である。Composition containing Mn: 0.01 to 0.2% ■C:
0.011-0.06%, Si: 2.0-4.0%
, S2 0.005~0.05%, B: 0.0003~
0.0040%, N: 0°001~0.01%, Mn
: Applicable to compositions containing 0.01 to 0.2%.
次に熱延板は800〜1100°Cの均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又は、通
常850°Cから1050″Cの中間焼鈍をはさんでさ
らに冷延する2回冷延法にて、後者の場合最初の圧下率
は50%から80%程度、最終の圧下率は50%から8
5%程度で0.15mmから0.35mmの最終冷延板
厚とする。Next, the hot-rolled sheet is either uniformly annealed at 800-1100°C and then cold-rolled once to achieve the final thickness, or it is usually subjected to intermediate annealing at 850-1050"C. In the second cold rolling method, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is about 50% to 8.
At about 5%, the final cold-rolled sheet thickness is from 0.15 mm to 0.35 mm.
最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750°Cから850°Cの湿水素中で脱炭・1次、
再結晶焼鈍処理を施す。After the final cold rolling, the steel plate finished to the product thickness is decarburized and subjected to primary decarburization in wet hydrogen at 750°C to 850°C after surface degreasing.
Perform recrystallization annealing treatment.
その後は通常鋼板表面にMgOを主成分とする焼鈍分離
材を塗布する。After that, an annealing separation material containing MgO as a main component is usually applied to the surface of the steel plate.
この際、−船釣には仕上げ焼鈍後フォルステライト被膜
の形成を不可欠とする場合はMgOを主成分とする焼鈍
分離剤を塗布するが、フォルステライトを特に形成させ
ない場合、その後の鋼板の鏡面化処理を簡便にするのに
有効であるので、焼鈍分離剤としてAha、やZrO,
、TiO2の如きを50%以上でMgOに混入した焼鈍
分離剤を使用するのが好ましい。At this time, - For boat fishing, if it is essential to form a forsterite film after finish annealing, an annealing separator containing MgO as the main component is applied, but if forsterite is not specifically formed, the steel plate is mirror-finished after that. Since it is effective in simplifying the processing, Aha, ZrO,
It is preferable to use an annealing separator containing 50% or more of MgO, such as TiO2.
その後゛2次再結晶焼鈍を行うが、この工程は(110
) <001>方位の2次再結晶粒を充分発達させるた
めに施されるもので、通常箱焼鈍によって直ちに100
0°C以上に昇温し、その温度に保持することによって
行われる。After that, "secondary recrystallization annealing is performed, but this process is (110
) It is performed to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed immediately after recrystallization.
This is done by raising the temperature to 0°C or higher and maintaining it at that temperature.
この場合(110) <001>方位に、高度に揃った
2次再結晶粒組繊を発達させるためには820°Cから
900°Cの低温で保定焼鈍する方が有利であり、その
ほか例えば0.5〜15°C/hの昇温速度の除熱焼鈍
でもよい。In this case, in order to develop highly aligned secondary recrystallized grains in the (110) <001> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C; Heat-removal annealing at a heating rate of .5 to 15°C/h may also be used.
2次再結晶焼鈍後の純化焼鈍は飽水素中で1100°C
以上で1〜20時間焼鈍を行って鋼板の純化を達成する
ことが必要である。Purification annealing after secondary recrystallization annealing is performed at 1100°C in saturated hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel sheet.
その後さらにりん酸塩とコロイダルシリカを主成分とす
る絶縁被膜を形成する。ここにりん酸塩としては、りん
酸マグネシウムやりん酸アルミニウムなどが好適である
。After that, an insulating film mainly composed of phosphate and colloidal silica is formed. Here, as the phosphate, magnesium phosphate, aluminum phosphate, etc. are suitable.
ついでこの絶縁被膜上で圧延方向を横切る方向、好適に
は60〜90°の方向、3〜15鴫程度の間隔で局所的
熱処理たとえばEB照射を施す。このときのEB照射条
件は10〜100Kvの加速電圧、0.005〜10鱈
の電流、ビーム径は 0.005〜1胴を用いて点状あ
るいは線状に施すのが効果的である。なお局所的熱処理
は、上記のEB照射に限るものではなく、真空中でのレ
ーザー照射やプラズマ炎放射なども有利に適合する。こ
のときの好適真空度は10−2〜10−’torr程度
である。Then, local heat treatment, such as EB irradiation, is performed on this insulating coating in a direction transverse to the rolling direction, preferably in a direction of 60 to 90 degrees, at intervals of about 3 to 15 degrees. The EB irradiation conditions at this time are as follows: an accelerating voltage of 10 to 100 Kv, a current of 0.005 to 10 kW, a beam diameter of 0.005 to 1 cylinder, and it is effective to apply the beam in a dotted or linear manner. Note that the local heat treatment is not limited to the above-mentioned EB irradiation, but laser irradiation in a vacuum, plasma flame irradiation, etc. are also advantageously applicable. The preferred degree of vacuum at this time is about 10-2 to 10-'torr.
この発明の鋼板は上記のようにして得ることができるが
、次のようにしても得ることができる。The steel plate of the present invention can be obtained as described above, but it can also be obtained as follows.
純化焼鈍後に鋼板表面の酸化物被膜を硫酸、硝酸又は弗
酸などの強酸によるような酸洗か又は機械的研削、切削
等により除去し、またさらには化学研磨および/または
電解研磨など従来から既知の手法により鋼板表面を鏡面
状態つまり中心線平均粗さRaで0.4μm以下に仕上
げたのち、CVD 。After purification annealing, the oxide film on the surface of the steel sheet is removed by pickling with a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid, or by mechanical grinding, cutting, etc., and further by conventionally known methods such as chemical polishing and/or electrolytic polishing. After finishing the steel plate surface to a mirror-like state, that is, to a center line average roughness Ra of 0.4 μm or less, using the method described above, CVD is performed.
イオンプレーテングあるいはイオンインプランテーショ
ンによりTit Zrt L Nb + Ta+ Cr
、 Mo+ W。Tit Zrt L Nb + Ta+ Cr by ion plating or ion implantation
, Mo+W.
Mn、 Co+ Ni1^1. B、 Siの窒化物お
よび/または炭化物ならびにAl、 Ni+ Cu、
W、 SiおよびZnの酸化物のうちから選んだ少なく
とも1種から成る0、05〜5μm程度の極薄被膜を形
成させる。Mn, Co+ Ni1^1. B, Si nitride and/or carbide and Al, Ni+Cu,
An extremely thin film of about 0.05 to 5 μm is formed, which is made of at least one selected from oxides of W, Si, and Zn.
ついでその上にりん酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成する。Then, an insulating film containing phosphate and colloidal silica as main components is formed thereon.
その後この絶縁被膜上に、上述したのと同様の方法で圧
延方向を横切る方向好適には60〜90°の方向に3〜
15mm程度の間隔で局所的な加熱処理を施すのである
。なおこのときの加熱処理条件は前述と同様である。Thereafter, the insulating coating is coated with 3 to 300 ml in a direction transverse to the rolling direction, preferably at an angle of 60 to 90°, in the same manner as described above.
Local heat treatment is performed at intervals of about 15 mm. Note that the heat treatment conditions at this time are the same as those described above.
かくしてこの発明に従う低鉄損方向性けい素鋼板が得ら
れるのである。In this way, a grain-oriented silicon steel sheet with low core loss according to the present invention can be obtained.
なおかくして得られたけい素鋼板は、600°C以上の
温度で処理した場合に、加熱処理領域の結晶化度は一層
高くなるので、その後に歪取り焼鈍や平たん化熱処理を
施した場合には鉄損特性はより一層向上する。Furthermore, when the silicon steel sheet thus obtained is treated at a temperature of 600°C or higher, the degree of crystallinity in the heat-treated region becomes even higher, so when it is subsequently subjected to strain relief annealing or flattening heat treatment, The iron loss characteristics are further improved.
(実施例)
実施例 I
C: 0.044%、 Si: 3.45%、 Mn:
0.068%+ Mo:0.021%、 Se: 0
.022%、 Sb: 0.024%を含有する熱延板
を、900°Cで3分間の均一化焼鈍後、950°Cの
中間焼鈍をはさんで2回の冷延圧延を行って0.23m
m厚の最終冷延板とした。(Example) Example IC: 0.044%, Si: 3.45%, Mn:
0.068% + Mo: 0.021%, Se: 0
.. A hot rolled sheet containing Sb: 0.022% and Sb: 0.024% was uniformly annealed at 900°C for 3 minutes and then cold-rolled twice with intermediate annealing at 950°C in between. 23m
A final cold-rolled sheet with a thickness of m was obtained.
その後820°Cの湿水素中で脱炭焼鈍後鋼板表面にM
gQを主成分とする焼鈍分離剤を塗布した後850°C
で50時間の2次再結晶焼鈍し、1200″Cで8時間
飽水素中で純化焼鈍を行った。Then, after decarburization annealing in wet hydrogen at 820°C, M
850°C after applying an annealing separator mainly composed of gQ
Secondary recrystallization annealing was performed for 50 hours at 1200"C, and purification annealing was performed in saturated hydrogen for 8 hours at 1200"C.
その後りん酸マグネシウムとコロイダルシリカを主成分
とする絶縁被膜を形成した後、圧延方向にほぼ直角方向
に7箇間隔で線状にEB照射(加熱電圧: 65kV、
電流: 1.OmA 、 スポット直径は0.15mm
φ)を行った。このときのX線回折によるMgzP20
7の(022)面強度は56000cps、また未処理
部のそれは40000cpsであり、B、。値は1.9
1T、 W17ys。値は0.89 W/kgであった
。After that, after forming an insulating film mainly composed of magnesium phosphate and colloidal silica, EB irradiation was applied linearly at seven intervals in a direction approximately perpendicular to the rolling direction (heating voltage: 65 kV,
Current: 1. OmA, spot diameter is 0.15mm
φ) was performed. MgzP20 by X-ray diffraction at this time
The (022) surface strength of B.7 is 56,000 cps, and that of the untreated portion is 40,000 cps. The value is 1.9
1T, W17ys. The value was 0.89 W/kg.
その後窒素雰囲気中で800°Cで3時間の歪取り焼鈍
を行ったところ、製品の磁気特性はB、。値が1.91
T 、 Ltzs。値は0.80 W/kgであった。After that, strain relief annealing was performed at 800°C for 3 hours in a nitrogen atmosphere, and the magnetic properties of the product were B. The value is 1.91
T, Ltzs. The value was 0.80 W/kg.
またそのときの鋼板表面を薄膜X線で測定したところ、
フォルステライトα−Pe 、 CaTiO3およびM
gzhOlのピークが観察され、とくにこれらのピーク
の中でもMgzPzOtの(022)面が強度=65’
000CPS、半値幅: 0.90と異方性が極めて強
く、結晶化度が高いことが認められた。In addition, when the surface of the steel plate at that time was measured using thin film X-rays,
forsterite α-Pe, CaTiO3 and M
Peaks of gzhOl were observed, and among these peaks, the (022) plane of MgzPzOt had an intensity of 65'.
000CPS, half width: 0.90, it was recognized that the anisotropy was extremely strong and the degree of crystallinity was high.
実施例 2
C: 0.055%、 Si: 3.42%、 Mn:
0.078%、^l:0.026%、 S: 0.0
021%、 Cu: 0.05%、 Sn: 0.06
%を含有する熱延板を、1130°Cで3分間の均−化
焼鈍後急冷処理を行い、その後300″Cの温間圧延を
施して0.20mm厚の最終冷延板とした。Example 2 C: 0.055%, Si: 3.42%, Mn:
0.078%, ^l: 0.026%, S: 0.0
021%, Cu: 0.05%, Sn: 0.06
% was uniformly annealed at 1130° C. for 3 minutes and then rapidly cooled, and then warm rolled at 300″C to obtain a final cold rolled sheet with a thickness of 0.20 mm.
その後850°C湿水素中で脱炭焼鈍後、表面に八1t
0.3(80%)とMg0(15%)とZr0t(5%
)を主成分とする焼鈍分離剤を塗布した後850’Cか
ら1150°Cまで10°C/hrで昇温して2次再結
晶させた後、軟水素中で1200°Cで8時間の純化焼
鈍を行った。Then, after decarburization annealing in 850°C wet hydrogen, 81t
0.3 (80%), Mg0 (15%) and Zr0t (5%
) was applied as a main component, the temperature was raised from 850'C to 1150°C at a rate of 10°C/hr for secondary recrystallization, and then annealing was performed at 1200°C for 8 hours in soft hydrogen. Purification annealing was performed.
その後酸洗により酸化被膜を除去後、3%IIPと11
□0□液中で化学研磨して鏡面仕上げした後、CVD、
イオンブレーティング(IIcD法)及びイオンインプ
ランテーションにより(1)BN、(2)Ti (CN
) 、(3)Si+N4゜(4)V N 、 (5)Z
r N 、 (6)Cr z N、 (7)八IN、
(8)llfNの如き窒化物、(9)ZrC,Oω!
IfC,(II)SiC,02)TaC,(13)Zr
C,(14)MnCの如き炭化物および05)ZnO,
OωNiO,(17)SiOz、 Q8)Wo。After that, after removing the oxide film by pickling, 3% IIP and 11
□0□After chemical polishing in liquid to a mirror finish, CVD,
By ion blating (IIcD method) and ion implantation, (1) BN, (2) Ti (CN
) , (3) Si+N4゜ (4) V N , (5) Z
r N, (6) Cr z N, (7) 8 IN,
(8) Nitride such as llfN, (9) ZrC, Oω!
IfC, (II) SiC, 02) TaC, (13) Zr
C, (14) carbides such as MnC and 05) ZnO,
OωNiO, (17)SiOz, Q8)Wo.
09八1203.G!lCuOの酸化物の薄膜(0,5
〜1.9 pm厚)を形成させた。その後りん酸アルミ
ニウムとコロイダルシリカを主成分とする絶縁被膜を形
成した。0981203. G! A thin film of lCuO oxide (0,5
~1.9 pm thick). Thereafter, an insulating film containing aluminum phosphate and colloidal silica as main components was formed.
ついで圧延方向に直角方向に10mm間隔で線状にEB
照射(EB照射条件:加速電圧70kV、電流0.8m
A 。Then, EB was applied linearly at 10 mm intervals in the direction perpendicular to the rolling direction.
Irradiation (EB irradiation conditions: acceleration voltage 70kV, current 0.8m
A.
ビーム径0.05mm)を行った。このときのX線回折
による照射部におけるMgzP207の(022)面強
度は50000cps、また未処理部のそれは3500
0cpsであった。ついで800″Cで2時間の歪み取
り焼鈍を行った。beam diameter 0.05 mm). At this time, the (022) plane strength of MgzP207 in the irradiated part by X-ray diffraction was 50,000 cps, and that of the untreated part was 3,500 cps.
It was 0 cps. Then, strain relief annealing was performed at 800″C for 2 hours.
かくして得られた製品の歪取り焼鈍前後における磁気特
性について調べた結果を第3表に示す。Table 3 shows the results of investigating the magnetic properties of the thus obtained products before and after strain relief annealing.
*) A : CVD処理
B:イオンプレーティング処理
C:イオンインプランテーション処理
*t) BN、 AlN、 ZrC,WOの上に絶縁被
膜を形成させ、EB処理後、歪取り焼鈍を施したのち、
薄膜X線回折を行なった結果、各下地被膜のピークに加
えてα−Pe 、 CaTiOsとA12P20゜のピ
ークが観察された。その中で特にA12P207の(0
22)面のピークは5oooo〜75000cpsで半
値幅は0.65〜0.74と、極めて異方性の強い結晶
化度の高い領域が区画形成されていた。*) A: CVD treatment B: Ion plating treatment C: Ion implantation treatment *t) After forming an insulating film on BN, AlN, ZrC, and WO, and performing strain relief annealing after EB treatment,
As a result of thin film X-ray diffraction, peaks of α-Pe, CaTiOs, and A12P20° were observed in addition to the peaks of each base film. Among them, A12P207 (0
22) The peak of the plane was 5oooo to 75,000 cps, and the half-width was 0.65 to 0.74, and regions with extremely strong anisotropy and high crystallinity were formed.
実施例3
C: 0.066%、 Si: 3.41%、 Mn:
0.079%、 Al:0.021%、 Se: 0
.022%、 Sn: 0.1%およびCu:0.03
%を含有する組成になるけい素鋼スラブを、1390’
Cで8時間加熱後、熱延して1.8M厚の熱延板とした
。その後1100°Cで3分間の中間焼鈍をはさんで2
回の冷間圧延を施して0.20mm厚の最終冷延板とし
た。その後850°Cの湿水素中で脱炭・1次再結晶焼
鈍を施したのち、鋼板表面上にMgOを主成分とする焼
鈍分離剤を塗布し、ついで850°CからlO°C/h
で昇温してGoss方位の2次再結晶粒を発達させたの
ち、乾H2中で1200’C15時間の純化処理を施し
た。Example 3 C: 0.066%, Si: 3.41%, Mn:
0.079%, Al: 0.021%, Se: 0
.. 022%, Sn: 0.1% and Cu: 0.03
A silicon steel slab having a composition containing 1390'
After heating at C for 8 hours, it was hot-rolled to obtain a hot-rolled sheet with a thickness of 1.8M. After that, 2 minutes with intermediate annealing at 1100°C for 3 minutes.
The sample was cold-rolled twice to obtain a final cold-rolled sheet with a thickness of 0.20 mm. After decarburization and primary recrystallization annealing in wet hydrogen at 850°C, an annealing separator containing MgO as a main component is applied to the surface of the steel plate, and then the temperature is lowered from 850°C to lO°C/h.
After raising the temperature to develop secondary recrystallized grains with Goss orientation, a purification treatment was performed at 1200'C for 15 hours in dry H2.
その後鋼板表面上にりん酸アルミニウムとコロイダルシ
リカを主成分とする絶縁被膜を被成したのち、4 Xl
0−’torrの真空中でレーザー照射(スポット径:
0.15mmφ、スポット間隔:300 gm :照
射間隔:8胴、スポット当りのエネルギー=2.3mJ
/cm2)を圧延方向と直角方向に行った。After that, an insulating film mainly composed of aluminum phosphate and colloidal silica was formed on the surface of the steel plate, and then 4Xl
Laser irradiation in a vacuum of 0-'torr (spot diameter:
0.15 mmφ, spot interval: 300 gm: irradiation interval: 8 cylinders, energy per spot = 2.3 mJ
/cm2) in a direction perpendicular to the rolling direction.
かくして得られた鋼板表面のX線回折によるMg2Pz
07の(022)面強度は48000cps、または未
処理領域のそれは35000cpsであり、BIGは1
.93 T。Mg2Pz by X-ray diffraction on the surface of the steel plate thus obtained
The (022) surface strength of 07 is 48,000 cps, or that of the untreated area is 35,000 cps, and the BIG is 1
.. 93 T.
W I 7/S。は0.86 W/ kgであった。W I 7/S. was 0.86 W/kg.
ついで800″Cで5時間の歪取り焼鈍を施したところ
製品の磁気特性は次のとおりとなった。Then, strain relief annealing was performed at 800''C for 5 hours, and the magnetic properties of the product were as follows.
Boo : 1.94T、 Wtt/so : 0.
76 W/kg実施例4
C: 0.044%、 Si: 3.38%、 Mn:
0.073%、 Se:0.021%、 Sb: 0
.026%およびMo: 0.016%を含有する組成
になるけい素鋼スラブを、1340°Cで4時間加熱し
たのち、熱延して2.Orm厚の熱延板とした。その後
950°Cで3分間の中間焼鈍をはさむ2回の冷間圧延
を施して0.20mm厚の最終冷延板としたのち、82
0°Cの湿水素中で脱炭・1次再結晶焼鈍を施した。そ
の後鋼板表面上にMgOを主成分とする焼鈍分離剤を塗
布し、ついで850°Cで50時間の2次再結晶焼鈍を
施したのち、飽水素中で1200”C18時間の純化処
理を施した。Boo: 1.94T, Wtt/so: 0.
76 W/kg Example 4 C: 0.044%, Si: 3.38%, Mn:
0.073%, Se: 0.021%, Sb: 0
.. A silicon steel slab having a composition containing 0.026% and Mo: 0.016% was heated at 1340°C for 4 hours and then hot rolled. It was made into a hot-rolled sheet with a thickness of 100 yen. After that, it was cold-rolled twice with intermediate annealing at 950°C for 3 minutes to obtain a final cold-rolled sheet with a thickness of 0.20mm.
Decarburization and primary recrystallization annealing were performed in wet hydrogen at 0°C. After that, an annealing separator mainly composed of MgO was applied to the surface of the steel plate, and then secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification treatment at 1200"C for 18 hours in saturated hydrogen. .
その後鋼板表面上にりん酸マグネシウムとコロイダルシ
リカを主成分とする絶縁被膜を被成させた後、3 Xl
0−’torrの真空中でプラズマ・ジェット(ビーム
径:0.15mmφ、走査距離:10mm、プラズマエ
ネルギー: 5 X10’W/mmりを、圧延方向と直
角方向に線状に照射した。After that, an insulating film mainly composed of magnesium phosphate and colloidal silica was formed on the surface of the steel plate, and then 3Xl
In a vacuum of 0-'torr, a plasma jet (beam diameter: 0.15 mmφ, scanning distance: 10 mm, plasma energy: 5 x 10' W/mm) was irradiated linearly in a direction perpendicular to the rolling direction.
かくして得られた鋼板表面の熱処理領域のX線回折によ
るMgZp2o?の(022)面強度は49000cp
s、また未処理領域のそれは38000psであり、B
1゜は1.91T、 1L7zs。は0.88讐/ k
gであった。MgZp2o? by X-ray diffraction of the heat-treated region on the surface of the steel sheet thus obtained. The (022) plane strength of is 49000cp
s, and that of the unprocessed area is 38000 ps, and B
1° is 1.91T, 1L7zs. is 0.88/k
It was g.
ついで800°Cで5時間の歪取り焼鈍を施したところ
製品の磁気特性は
Boo : 1.92T、 W+tzs。: 0.7
5 W/kgとなった。Then, when strain relief annealing was performed at 800°C for 5 hours, the magnetic properties of the product were Boo: 1.92T, W+tzs. : 0.7
It became 5 W/kg.
(発明の効果)
かくしてこの発明によれば、従来歪取り焼鈍後に劣化が
余儀なくされた鉄損特性を、むしろ向上させ得る低鉄損
方向性けい素鋼板を得ることができる。(Effects of the Invention) Thus, according to the present invention, it is possible to obtain a low iron loss grain-oriented silicon steel sheet that can actually improve the iron loss characteristics, which conventionally had to deteriorate after strain relief annealing.
第1図a、b、cおよびdはそれぞれ、仕上げ焼鈍後り
ん酸塩系絶縁被膜をコーティングした表面、該絶縁被膜
コーティング後EB処理を施した表面、同じく該絶縁被
膜コーティング後EB処理ついで歪取り焼鈍を施した表
面および該絶縁被膜コーテイング後歪取り焼鈍を施した
表面の薄膜X線による構造解析結果を示したグラフ、
第2図は、この発明に従うけい素鋼板の断面図である。
へ O
CPS CPSどへ
^σ
勉Figure 1 a, b, c, and d respectively show a surface coated with a phosphate-based insulating film after final annealing, a surface subjected to EB treatment after coating with the insulating film, and a surface subjected to EB treatment after coating with the insulating film, followed by strain relief. FIG. 2 is a graph showing the results of structural analysis by thin film X-rays of an annealed surface and a surface subjected to strain relief annealing after being coated with the insulating film. FIG. 2 is a cross-sectional view of a silicon steel sheet according to the present invention. to O CPS CPS to
^σ
Tsutomu
Claims (1)
ルシリカとを主成分とする絶縁被膜をそなえる方向性け
い素鋼板であって、該絶縁被膜が局所的に生地よりも結
晶化度が大きい領域をそなえることを特徴とする歪取り
焼鈍による特性劣化がない方向性けい素鋼板。 2、りん酸塩とコロイダルシリカとを主成分とする絶縁
被膜が、フォルステライト被膜上に被成さたものである
特許請求の範囲第1項記載の方向性けい素鋼板。 3、りん酸塩とコロイダルシリカとを主成分とする絶縁
被膜が、Ti、Zr、Hf、V、Nb、Ta、Mn、C
r、Mo、W、Co、Ni、AlおよびSiの窒化物お
よび/または炭化物ならびにAl、Ni、Cu、W、S
iおよび/またはZnの酸化物のうちから選んだ少なく
とも1種からなる極薄張力被膜上に被成されたものであ
る特許請求の範囲第1項記載の方向性けい素鋼板。[Scope of Claims] 1. A grain-oriented silicon steel sheet having an insulating coating mainly composed of phosphate and colloidal silica on the surface of the finish-annealed steel sheet, wherein the insulating coating is locally separated from the fabric. A grain-oriented silicon steel sheet that is characterized by having a region with a high degree of crystallinity and which does not suffer from characteristic deterioration due to strain relief annealing. 2. The grain-oriented silicon steel sheet according to claim 1, wherein an insulating coating mainly composed of phosphate and colloidal silica is formed on a forsterite coating. 3. The insulating film mainly composed of phosphate and colloidal silica contains Ti, Zr, Hf, V, Nb, Ta, Mn, C.
r, Mo, W, Co, Ni, Al and Si nitrides and/or carbides and Al, Ni, Cu, W, S
The grain-oriented silicon steel sheet according to claim 1, which is formed on an ultra-thin tensile coating consisting of at least one selected from oxides of i and/or Zn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30320587A JPH01147074A (en) | 1987-12-02 | 1987-12-02 | Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30320587A JPH01147074A (en) | 1987-12-02 | 1987-12-02 | Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01147074A true JPH01147074A (en) | 1989-06-08 |
Family
ID=17918145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30320587A Pending JPH01147074A (en) | 1987-12-02 | 1987-12-02 | Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01147074A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136115A1 (en) | 2006-05-19 | 2007-11-29 | Nippon Steel Corporation | Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film |
WO2013099455A1 (en) | 2011-12-28 | 2013-07-04 | Jfeスチール株式会社 | Directional electromagnetic steel sheet with coating, and method for producing same |
JP6394837B1 (en) * | 2016-12-21 | 2018-09-26 | Jfeスチール株式会社 | Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet |
WO2019013348A1 (en) * | 2017-07-13 | 2019-01-17 | 新日鐵住金株式会社 | Oriented electromagnetic steel sheet |
CN109983158A (en) * | 2016-10-31 | 2019-07-05 | 日本制铁株式会社 | Grain-oriented magnetic steel sheet |
EP3546614A4 (en) * | 2016-11-28 | 2019-10-02 | JFE Steel Corporation | ORIENTED GRAIN ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCING SAME |
-
1987
- 1987-12-02 JP JP30320587A patent/JPH01147074A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136115A1 (en) | 2006-05-19 | 2007-11-29 | Nippon Steel Corporation | Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film |
US7998284B2 (en) | 2006-05-19 | 2011-08-16 | Nippon Steel Corporation | Grain-oriented electrical steel sheet having high tensile strength insulating film and method of treatment of such insulating film |
JP5026414B2 (en) * | 2006-05-19 | 2012-09-12 | 新日本製鐵株式会社 | Grain-oriented electrical steel sheet having high-tensile insulation coating and method for treating the insulation coating |
WO2013099455A1 (en) | 2011-12-28 | 2013-07-04 | Jfeスチール株式会社 | Directional electromagnetic steel sheet with coating, and method for producing same |
US11535943B2 (en) | 2016-10-31 | 2022-12-27 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
CN109983158A (en) * | 2016-10-31 | 2019-07-05 | 日本制铁株式会社 | Grain-oriented magnetic steel sheet |
US11781196B2 (en) | 2016-11-28 | 2023-10-10 | Jfe Steel Corporation | Grain-oriented electromagnetic steel sheet and method of producing grain-oriented electromagnetic steel sheet |
EP3546614A4 (en) * | 2016-11-28 | 2019-10-02 | JFE Steel Corporation | ORIENTED GRAIN ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCING SAME |
EP3533902A4 (en) * | 2016-12-21 | 2019-09-04 | JFE Steel Corporation | ORIENTED GRAIN ELECTRIC STEEL SHEET AND METHOD FOR PRODUCING AN ORIENTED GRAIN ELECTRIC STEEL SHEET |
KR20190083351A (en) * | 2016-12-21 | 2019-07-11 | 제이에프이 스틸 가부시키가이샤 | METHOD FOR MANUFACTURING ORGANIC ELECTRON SHEET |
US10968521B2 (en) | 2016-12-21 | 2021-04-06 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet |
JP6394837B1 (en) * | 2016-12-21 | 2018-09-26 | Jfeスチール株式会社 | Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet |
RU2726527C1 (en) * | 2017-07-13 | 2020-07-14 | Ниппон Стил Корпорейшн | Electrotechnical steel sheet with oriented grain structure |
JPWO2019013348A1 (en) * | 2017-07-13 | 2020-08-13 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
WO2019013348A1 (en) * | 2017-07-13 | 2019-01-17 | 新日鐵住金株式会社 | Oriented electromagnetic steel sheet |
US12305252B2 (en) | 2017-07-13 | 2025-05-20 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63186826A (en) | Production of grain-orientated silicon steel plate having super low iron loss | |
EP0910101A1 (en) | Ultra-low iron loss unidirectional silicon steel sheet | |
JPH01147074A (en) | Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing | |
JPS6335684B2 (en) | ||
JPH07320922A (en) | One directional electromagnetic steel sheet at low iron loss | |
JP4331900B2 (en) | Oriented electrical steel sheet and method and apparatus for manufacturing the same | |
JPH0765106B2 (en) | Method for manufacturing low iron loss unidirectional silicon steel sheet | |
JP2683036B2 (en) | Annealing agent | |
JPS6396218A (en) | Production of extremely low iron loss grain oriented silicon steel sheet | |
JPH0619113B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely low iron loss | |
JPH10245667A (en) | Production of grain oriented extremely thin silicon steel sheet having ultralow core loss | |
JP3067164B2 (en) | Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet | |
JPS63227719A (en) | Manufacture of grain-oriented magnetic steel sheet having very small iron loss | |
JPH0375354A (en) | Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing | |
JPS621822A (en) | Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss | |
JPS62290844A (en) | Grain-oriented silicon steel sheet having very small iron loss | |
JP3176646B2 (en) | Manufacturing method of non-oriented electrical steel sheet for high frequency | |
JPH0453084B2 (en) | ||
JPH01159322A (en) | Production of ultra-low iron loss grain oriented silicon steel sheet | |
JPS6324018A (en) | Production of extra-low iron loss grain oriented silicon steel sheet | |
JPS61246321A (en) | Manufacture of grain-oriented silicon steel sheet with extremely small iron loss | |
JPS6335687B2 (en) | ||
JPS6229107A (en) | Manufacture of ultralow iron loss unidirectional silicon steel plate | |
JPS63278209A (en) | Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties | |
JPH0374486B2 (en) |