[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01133928A - Production of powder mixture for material of superconductor - Google Patents

Production of powder mixture for material of superconductor

Info

Publication number
JPH01133928A
JPH01133928A JP62293728A JP29372887A JPH01133928A JP H01133928 A JPH01133928 A JP H01133928A JP 62293728 A JP62293728 A JP 62293728A JP 29372887 A JP29372887 A JP 29372887A JP H01133928 A JPH01133928 A JP H01133928A
Authority
JP
Japan
Prior art keywords
soln
component
precipitate
concn
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62293728A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP62293728A priority Critical patent/JPH01133928A/en
Publication of JPH01133928A publication Critical patent/JPH01133928A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a powder mixture to be used for a material for prepg. a superconductor having uniform characteristics and high current density by regulating the concn. of aq. soln. of HNO3 of elements belonging to specified three components to each specified value, and prepg. a powder mixture of metals via precipitate of carbonates of the metals from said solns. CONSTITUTION:Aq. solns. of powdery metals of elements belonging to a first component(at least one among Y, Sc, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu), a third component(Cu), are prepd. separately. The concns. of each component of the aq. HNO3 soln. are regulated in such a manner that the concn. of the high concn. soln. is <=5 times of that of the low concn. soln. A soln. of Na2CO3 or K2CO3 is added to the solns. to prepare precipitate of carbonates, thus a powder mixture of metals of the above described components is produced from the precipitate. Since the concn. of the high concn. soln. is regulated to <=5 times of the low concn. solns. by this method, the error in the compsn. in the stage of taking each portion of the soln. corresponding to a compositional ratio is kept at a small level. Accordingly, precipitate of carbonates can be formed securely.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は一定の温度で電気抵抗がゼロになる所謂超電導
体に係り、特に液体窒素温度以上で超電導現象を示す超
電導材料用混合粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to so-called superconductors whose electrical resistance becomes zero at a certain temperature, and in particular to the production of mixed powder for superconducting materials that exhibits superconducting phenomenon above liquid nitrogen temperature. Regarding the method.

83発明の概要 本発明は超電導材料用混合粉末の製造方法において、 複数の元素を含む金属粉末の水溶液に炭酸ナトリウムも
しくは炭酸カリウム溶液を添加して炭酸塩の沈澱物を得
るようにしたことにより、均一混合がなされるとともに
不純物の混入のおそれがなく、かつ焼成温度を下げるこ
とができるようにしたものである。
83 Summary of the Invention The present invention provides a method for producing a mixed powder for superconducting materials, in which a sodium carbonate or potassium carbonate solution is added to an aqueous solution of metal powder containing multiple elements to obtain a carbonate precipitate. Uniform mixing is achieved, there is no fear of contamination of impurities, and the firing temperature can be lowered.

C1従来の技術 西暦1911年カメリング・オンネスにより超電導現象
が発見されていらい、実用化に向けてさまざまな研究開
発が進められている。実用化には、臨界温度(Tc)が
高ければ高い程、冷却コストが安くて済むため、より高
温での超電導の可能性をめぐってその超電導材料の激し
い開発競争が展開されている。
C1 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been underway to put it into practical use. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

西暦1980年代までに明らかにされていた超電導材料
は、液体ヘリウム温度(Tc約4に、−269℃)で冷
却して使用するものがほとんどであり、これはヘリウム
ガスを液化した冷却剤で冷却しなければならない。ヘリ
ウムは希少材料で高価格であるうえ、臨界温度まで下げ
るための冷却コストが非常に高くつくため、超電導材料
の普及の障害となっていた。
Most of the superconducting materials discovered by the 1980s were cooled at liquid helium temperatures (Tc approximately 4, -269°C); Must. Helium is a rare and expensive material, and the cost of cooling it down to its critical temperature is extremely high, which has been an obstacle to the widespread use of superconducting materials.

ごく最近、超電導材料についての研究開発か世界的にも
進められ、これまで知られた超電導材料の最高のTcは
、ニオブ3ゲルマニウム(N b 3Ge)の22.3
Kにとどまっていたが、ランタン(La)の一部をバリ
ウム(Ba)で置換えしたランタン・ストロンチウム・
銅酸化物(LaSr)2Cu O4によって、これまで
の限界を超えた37にで超電導現象が始まり、33にで
電気抵抗がゼロになったことが発表され、続いて今年始
め同じくLa−8r−CuO4系で54Kを、更に続い
て、ランタン・ストロンチウムに代えてイツトリウム(
Y)バリウム(Ba)、銅、酸素の組み合わせによる新
物質でTc77Kを達成している。
Very recently, research and development on superconducting materials has been progressing worldwide, and the highest Tc of superconducting materials known so far is 22.3 of niobium 3 germanium (N b 3 Ge).
However, lanthanum, strontium, and
With copper oxide (LaSr)2CuO4, superconductivity began in 1937, exceeding previous limits, and it was announced that the electrical resistance had become zero in 1933, followed by La-8r-CuO4 at the beginning of this year. 54K in the system, and then yttrium (in place of lanthanum and strontium)
Y) Tc77K has been achieved with a new material that combines barium (Ba), copper, and oxygen.

現在は、このバリウム(Ba)、イツトリウム(Y)、
銅(Cu)、酸素による酸化物の超電導材料が最も関心
が高くその実用化に向けて活発な開発が進められている
Currently, barium (Ba), yttrium (Y),
Superconducting materials made of oxides of copper (Cu) and oxygen are of the greatest interest, and active development is underway to put them into practical use.

この超電導体の製造方法としては、例えばY。As a method for manufacturing this superconductor, for example, Y.

03(イツトリア)、BaC03(酸化バリウム)。03 (Ittria), BaC03 (barium oxide).

CuO(酸化銅)の原料を適当な配合比で、ボールミル
等で機械的に充分に混合し、原料粉体、水、玉石を入れ
数時間充分に混合し、加熱によって固相反応を進ませて
出発原料を得、これを焼結して超電導体を得る。
The raw materials for CuO (copper oxide) are thoroughly mixed mechanically using a ball mill, etc. in an appropriate mixing ratio, and the raw material powder, water, and cobblestones are added and thoroughly mixed for several hours, followed by heating to advance the solid phase reaction. A starting material is obtained and sintered to obtain a superconductor.

D1発明が解決しようとする問題点 上記のように超電導体は、焼結体であるため、出発原料
、焼結法、熱処理などによって組織が決まり、特性が決
まると出発原料の粉体が最適なものでないと焼結法や熱
処理にいくら工夫をこらしても均一で優れた特性のもの
が得られない。
D1 Problems to be Solved by the Invention As mentioned above, since superconductors are sintered bodies, their structure is determined by the starting materials, sintering method, heat treatment, etc. Once the characteristics are determined, the powder of the starting materials is optimal. Otherwise, no matter how ingenious the sintering method or heat treatment, it will not be possible to obtain a product with uniform and excellent properties.

上記の方法だと、YzOs、BaCO5,CuOの原料
粉体が充分に混合され難いため、長時間の混合時間を必
要とし、超時間混合すると玉石等からの不純物の混入は
避けられない。
In the above method, it is difficult to mix the raw material powders of YzOs, BaCO5, and CuO sufficiently, so a long mixing time is required, and if the mixing time is too long, impurities from cobbles etc. will inevitably be mixed.

また、一般に焼結1反応等は微粒子であるほど活性化さ
れ均一になされるが、上記の方法では、粒子の大きさは
、原料粉体の粒度により決まってしまう。また粒度はあ
る分布をもつため、大きな粒子と小さな粒子が混在する
ため焼成された超電導体が均一な組織になり難い等の問
題がある。
Furthermore, in general, the finer the particles, the more activated and uniform the sintering reaction, etc., can be, but in the above method, the size of the particles is determined by the particle size of the raw material powder. Furthermore, since the particle size has a certain distribution, there are problems such as a mixture of large particles and small particles, making it difficult for the fired superconductor to have a uniform structure.

E1問題点を解決するための手段 本発明の製造方法は第1成分(Y、Sc、La。Means to solve the E1 problem The manufacturing method of the present invention includes the first component (Y, Sc, La.

Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm。Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm.

Yb、Luのうち1種類以上)と、第2成分(Ba。one or more of Yb and Lu) and a second component (Ba.

Ca、Srのうち1種類以上)と、第3成分(Cu)に
属す各元素を含む金属粉末の各成分ごとの硝酸水溶液を
作り、これら各成分の硝酸水溶液における濃度比は高濃
度液が低濃度液の5倍以下とし、これに炭酸ナトリウム
もしくは炭酸カリウム溶液を加えながら、炭酸塩の沈澱
物を生成し、この沈澱物から前記各成分を含む金属の混
合粉末を作るものである。
A nitric acid aqueous solution is prepared for each component of the metal powder containing one or more of Ca, Sr) and each element belonging to the third component (Cu), and the concentration ratio of each component in the nitric acid aqueous solution is such that the higher the The concentration of the solution is 5 times or less, and a sodium carbonate or potassium carbonate solution is added to the solution to form a carbonate precipitate, and from this precipitate, a metal mixed powder containing the above-mentioned components is made.

F1作用 硝酸溶液の濃度比を高濃度液が低濃度液の5倍以下とし
たため、組成比を分取する際の組成の誤差が大きくなら
なくなる。このため、炭酸ナトリウムもしくは炭酸カリ
ウム溶液を上記硝酸溶液に加えることによって炭酸塩の
沈澱物が確実に生成できるようになる。
Since the concentration ratio of the F1-acting nitric acid solution is set to 5 times or less of the high concentration solution to the low concentration solution, errors in the composition when fractionating the composition ratio do not become large. Therefore, adding a sodium carbonate or potassium carbonate solution to the nitric acid solution ensures the formation of a carbonate precipitate.

G、実施例 以下、本発明を1実施例に基づいて説明する。G. Example The present invention will be explained below based on one embodiment.

まず、第1成分(Y、Sc、La、Nd、Sm。First, the first components (Y, Sc, La, Nd, Sm.

Eu、Gd、Dy、Ho、Er、Tm、Yb、Luのう
ち1種類以上)、第2成分(Ba、Ca、Srのうち1
種類以上)、第3成分(Cu)に属す各元素を含む金属
粉末を各成分ごとに硝酸で溶解し、各成分の硝酸水溶液
を個々に作る。作られた個々の硝酸水溶液から所定の組
成量を分取して第1〜第3成分の硝酸混合水溶液を作る
。このとき、水溶液の濃度比を高濃度溶液が低濃度溶液
の5倍以下(この理由は後述する)となるように設定す
る。
one or more of Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu), second component (one of Ba, Ca, Sr)
Metal powder containing each element belonging to the third component (Cu) is dissolved in nitric acid for each component to prepare a nitric acid aqueous solution of each component individually. A predetermined composition amount is separated from each of the produced nitric acid aqueous solutions to prepare a nitric acid mixed aqueous solution of the first to third components. At this time, the concentration ratio of the aqueous solutions is set so that the high concentration solution is 5 times or less the low concentration solution (the reason for this will be described later).

上記のようにして作られた硝酸混合水溶液を撹拌した後
、その溶液に炭酸ナトリウム溶液もしくは炭酸カリウム
溶液を計算量の約1.3倍はど撹拌しながら添加する。
After stirring the nitric acid mixed aqueous solution prepared as described above, approximately 1.3 times the calculated amount of sodium carbonate solution or potassium carbonate solution is added to the solution while stirring.

炭酸ナトリウムもしくは炭酸。Sodium carbonate or carbonic acid.

カリウム溶液の添加により硝酸混合水溶液に炭酸塩の沈
澱物が生成される。沈殿物生成後も沈澱が充分熟成され
るように数時間撹拌する。また、加熱しながら行うには
加熱温度40〜80℃が熟成されやすい。この沈澱物か
ら前記各成分を含む金属の混合粉末を作って以下の工程
を経て超電導体が製造される。
Addition of the potassium solution produces a carbonate precipitate in the aqueous nitric acid mixture. After the precipitate is formed, the mixture is stirred for several hours so that the precipitate is sufficiently matured. In addition, when heating is carried out, a heating temperature of 40 to 80° C. facilitates ripening. A mixed powder of metal containing the above-mentioned components is prepared from this precipitate, and a superconductor is manufactured through the following steps.

上記炭酸塩の沈澱物は濾過され、pH=7になるまで水
洗される。水洗後、沈澱物を乾燥させてアルミナ容器に
入れて大気または酸化性雰囲気中800〜900℃の温
度にて約10時間仮焼する。
The carbonate precipitate is filtered and washed with water until pH=7. After washing with water, the precipitate is dried, placed in an alumina container, and calcined in air or an oxidizing atmosphere at a temperature of 800 to 900° C. for about 10 hours.

その後、充分に粉砕する。粉砕後、バインダーとしてポ
リビニルアルコールを原料粉末に対し1wt%となるよ
うにポリビニルアルコール水溶液を添加する。そして、
水またはアルコールを加え、十分混練後、乾燥させ、ふ
るいにて150メツシユ以下の顆粒の造粒粉を得る。
Then, grind thoroughly. After pulverization, an aqueous polyvinyl alcohol solution is added as a binder so that the amount of polyvinyl alcohol is 1 wt % based on the raw material powder. and,
Water or alcohol is added, thoroughly kneaded, dried, and sieved to obtain granulated powder of 150 mesh or less.

得られた造粒粉を金型に充填した後、例えば、700 
Kg/cmffiの圧力で圧縮成形して成形体を作る。
After filling the obtained granulated powder into a mold, for example, 700
A molded body is made by compression molding at a pressure of Kg/cmffi.

この成形体を焼成容器に設置し、大気または酸化性雰囲
気中で900−1200°Cの温度で数時間加熱して焼
結体を得る。
This molded body is placed in a firing container and heated at a temperature of 900-1200° C. for several hours in the air or an oxidizing atmosphere to obtain a sintered body.

この焼結体は 2.5≦第1の成分≦15moC% 20≦第2の成分≦50moC% 30≦第3の成分≦65moQ% 残り酸素(0)の成分からなるものである。This sintered body 2.5≦first component≦15moC% 20≦Second component≦50moC% 30≦Third component≦65moQ% The remaining component consists of oxygen (0).

上記の製造方法により得られた焼結体を、巾4R11,
厚さ4zz、長さ40xxの形状に切り出して第1図に
示すように電極を設けて4端子法により、焼結体の抵抗
を測定した。
The sintered body obtained by the above manufacturing method was
The sintered body was cut into a shape with a thickness of 4zz and a length of 40xx, electrodes were provided as shown in FIG. 1, and the resistance of the sintered body was measured by a four-terminal method.

即ち、第1図は、抵抗値を測定するための説明図で、焼
結体Sの長手方向の両端側に電流を流すための端子a、
 a’を設け、その内側に抵抗値を測定するための電圧
端子す、b’を設ける、これを液体窒素の低温槽に入れ
、端子&、a′に1アンペアの安定化電流を流して端子
す、b’間の電圧を電圧計(V)で測定降下によって抵
抗値を測定する。なお、Aは電流計を示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, and there are terminals a for passing current through both ends of the sintered body S in the longitudinal direction,
A' is provided, and a voltage terminal S and b' are provided inside it to measure the resistance value.Place this in a liquid nitrogen cryostat, and apply a stabilized current of 1 ampere to terminals & and a' to connect the terminals. Measure the voltage between B and b' with a voltmeter (V).Measure the resistance value by the drop. Note that A indicates an ammeter.

第2図はその測定結果を示すもので、絶対温度85にで
超電導現象が始まり、約83Kに至って電気抵抗間がゼ
ロになることが確認された。
Figure 2 shows the measurement results, and it was confirmed that the superconducting phenomenon began at an absolute temperature of 85 K, and that the electrical resistance became zero at about 83 K.

次に上記第1成分のY、第2成分のBa、第3成分のC
uを例にした基準溶液の具体例を示す。
Next, Y as the first component, Ba as the second component, and C as the third component.
A specific example of a standard solution using u as an example is shown below.

Yの基準溶液は硝酸イツトリウムY (No3) 3を
水に溶かし5 x 10−’mo12/ mQにする。
The standard solution for Y is made by dissolving yttrium nitrate Y (No3) 3 in water to give a solution of 5 x 10-'mo12/mQ.

Baの基準溶液は硝酸バリウムB a (NOa) t
に溶かし1 、25 X 10−’mo(!/ mQに
する。
The standard solution of Ba is barium nitrate B a (NOa) t
to make 1,25 x 10-'mo(!/mQ).

Cuの基準溶液は硝酸銅Cu (NO3) tを水に溶
かし5 X l O−’mo(!/ mQにする。
The reference solution for Cu is prepared by dissolving copper nitrate Cu (NO3) t in water to give 5 X l O-'mo(!/mQ).

Na2CO3を水に溶かし5 x l O−’mo12
/ m(lにする。
Dissolve Na2CO3 in water and make 5 x l O-'mo12
/ m (make it l.

次に次長の組成となるようにY、Ba、Cu溶液を混合
し、Na2CO3にて沈澱物を生成させた。
Next, Y, Ba, and Cu solutions were mixed so as to have the following composition, and a precipitate was formed using Na2CO3.

生成された沈澱物を十分水洗し得られた沈澱物の組成を
プラズマ発光分析(zcp)で溶存量を測定した結果を
示す。
The generated precipitate was thoroughly washed with water, and the composition of the obtained precipitate was measured by plasma emission spectrometry (ZCP). The results are shown below.

前述したように硝酸塩濃度の高濃度溶液は低濃度溶液の
5倍以下とする理由は濃度差が大きいと混合粉末におけ
る所望の組成比になるよう各溶液を分取する際の分子量
の誤差が大きくなるからである。例えばB a (NO
3) 2は溶解度が約59/100 mocのとき1.
9 X I O−’moσ/m&、Y(NO3)3は溶
解度が約133f!/ I 00mo(lのとき、48
.7 X I O−’m0(1/m(1,Cu (NO
3) tは溶解度が約243.7”i/ I 00mo
ρのとき129.9X 10−’mo(1/ m(lと
なる。飽和溶液付近の濃度溶液を作成すると、Ba”の
濃度が低いためY 、Cu溶液に対し、数十倍添加しな
くてはならないため、組成比の誤差が大きくなる。
As mentioned above, the reason why the high concentration of nitrate solution should be 5 times or less that of the low concentration solution is that if the concentration difference is large, there will be a large error in the molecular weight when separating each solution to obtain the desired composition ratio in the mixed powder. Because it will be. For example, B a (NO
3) 2 is 1. when the solubility is about 59/100 moc.
9 X I O−'moσ/m&, Y(NO3)3 has a solubility of about 133f! / I 00mo (when l, 48
.. 7 X I O-'m0(1/m(1, Cu (NO
3) t has a solubility of approximately 243.7”i/I 00mo
When ρ, it becomes 129.9X 10-'mo(1/m(l). If you create a solution with a concentration near the saturated solution, the concentration of Ba" will be low, so you will have to add several tens of times more than the Y and Cu solution. Therefore, the error in the composition ratio becomes large.

上記本実施例による製造方法とシュウ酸塩共沈法を比較
して見るとシュウ酸塩法ではBaが沈澱しにくかったが
、本実施例の場合にはBaも十分沈澱し均一組成の原料
となる。また、多様の組成に対し、各溶液を任意に適量
分取すればよいため、作業も容易であり、かつ組成のず
れが少なくなる。
Comparing the production method according to this example above with the oxalate coprecipitation method, Ba was difficult to precipitate in the oxalate method, but Ba was also sufficiently precipitated in the case of this example, resulting in a raw material with a uniform composition. Become. Further, since it is sufficient to arbitrarily take appropriate amounts of each solution for various compositions, the work is easy and deviations in composition are reduced.

上記実施例において、第1成分〜第3成分に属する各元
素を含む金属粉末にした後硝酸で溶解した場合について
述べたが、予め元素を硝酸で溶解した溶液を使用しても
よい。
In the above embodiment, a case has been described in which metal powder containing each element belonging to the first to third components is prepared and then dissolved in nitric acid, but a solution in which the elements are dissolved in nitric acid in advance may be used.

なお、本実施例の製造方法による沈澱は次の反応式のよ
うに行われる。
Incidentally, the precipitation according to the production method of this example is carried out as shown in the following reaction formula.

Y(NO3)3→Y”+3NO3−− この混合溶液にN a t CO3を添加するとNat
CO3→2Na’+CO3’−になり、次の沈澱反応が
起こる。
Y(NO3)3→Y"+3NO3-- When Nat CO3 is added to this mixed solution, Nat
CO3 → 2Na'+CO3'-, and the next precipitation reaction occurs.

コ なお、NazCO3の必要量は次のようになる。Ko Note that the required amount of NazCO3 is as follows.

Y  1mo(!に対し、 Na、CO31,5moρ
Ba   “        “  1 mocCu〃
〃1moQ 実際には計算量より過剰にN a 2 CO3を加え十
分に沈澱濾過中に多量の水で流出されるが不足すると沈
澱されなくなる。過剰量は20〜50%でよい。
Y 1mo(!, Na, CO31,5moρ
Ba “ “ 1 mocCu〃
〃1moQ Actually, Na 2 CO3 is added in excess of the calculated amount to ensure sufficient precipitation and is washed out with a large amount of water during filtration, but if insufficient, no precipitation occurs. The excess amount may be 20-50%.

H4発明の効果 以上のように本発明は液体窒素温度(77度K)におい
て超電導状態を示し、現在明らかにされている液体ヘリ
ウム温度条件による超電導材料に比較して保温条件及び
経済性(ヘリウムI−1eは窒素N2の20倍のコスト
高となる)にすぐれている。
Effects of the H4 Invention As described above, the present invention exhibits a superconducting state at liquid nitrogen temperature (77 degrees K), and has better heat retention conditions and economic efficiency (helium I -1e is 20 times more expensive than nitrogen N2).

従って、本発明を用いることにより、安価で性能のすぐ
れた電気機器や精密計測素子、その他エネルギー変化な
どの分野に利用可能となる。
Therefore, by using the present invention, it becomes possible to use it in fields such as inexpensive and high-performance electrical equipment, precision measurement elements, and other energy change fields.

また、本発明は炭酸塩の沈澱物を用いるため、従来の機
械的混合方法に比較して、均一混合が可能で、玉石等か
らの不純物の混入のおそれもなく、微粒子であるため反
応焼結が均一となり、得られた焼結体の均一化を図るこ
とができ、電流密度の向上も図ることができ、しかも焼
成温度を下げることができる等の効果がある。原子レベ
ルの均一の混合物となる。
In addition, since the present invention uses carbonate precipitates, it is possible to mix uniformly compared to conventional mechanical mixing methods, there is no risk of contamination with impurities from cobblestones, etc., and because the present invention is fine particles, reaction sintering is possible. is uniform, the obtained sintered body can be made uniform, the current density can be improved, and the firing temperature can be lowered. It becomes a homogeneous mixture at the atomic level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導材料により製造された焼結
体の抵抗値測定の方法を説明するための説明図、第2図
は本発明による超電導材料により製造された焼結体の絶
対温度(K)に対する抵抗値(10−3Ωcm)の特性
曲線図である。 a、a′・・・電流供給用端子、b、b’ ・・・電圧
測定端子、S・・・焼結体。 第1図 お11豆n須I!定方伝 第2図 絶対温度(に)□
FIG. 1 is an explanatory diagram for explaining the method of measuring the resistance value of a sintered body manufactured using the superconducting material according to the present invention, and FIG. 2 is an explanatory diagram showing the absolute temperature ( It is a characteristic curve diagram of resistance value (10-3 Ωcm) with respect to K). a, a'... Current supply terminals, b, b'... Voltage measurement terminals, S... Sintered body. Figure 1 11 Beans I! Teikaden Figure 2 Absolute temperature (ni) □

Claims (1)

【特許請求の範囲】[Claims] (1)第1成分(Y,Sc,La,Nd,Sm,Eu,
Gd,Dy,Ho,Er,Tm,Yb,Luのうちの1
種類以上)、第2成分(Ba,Ca,Srのうち1種類
以上)、第3成分(Cu)に属す各元素を含む金属粉末
の各成分ごとの硝酸水溶液を作り、これら各成分の硝酸
水溶液における濃度は高濃度液が低濃度液の5倍以下と
し、これに炭酸ナトリウムもしくは炭酸カリウム溶液を
加えながら、炭酸塩の沈澱物を生成し、この沈澱物から
前記各成分を含む金属の混合粉末を作ることを特徴とし
た超電導材料用混合粉末の製造方法。
(1) First component (Y, Sc, La, Nd, Sm, Eu,
One of Gd, Dy, Ho, Er, Tm, Yb, Lu
nitric acid aqueous solution for each component of the metal powder containing each element belonging to (1 or more types), 2nd component (1 or more types of Ba, Ca, Sr), and 3rd component (Cu), and The concentration of the high concentration liquid is 5 times or less that of the low concentration liquid, and a sodium carbonate or potassium carbonate solution is added to this to form a carbonate precipitate, and from this precipitate, a mixed powder of metal containing each of the above components is produced. A method for producing a mixed powder for superconducting materials, characterized by producing a mixed powder for superconducting materials.
JP62293728A 1987-11-20 1987-11-20 Production of powder mixture for material of superconductor Pending JPH01133928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62293728A JPH01133928A (en) 1987-11-20 1987-11-20 Production of powder mixture for material of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293728A JPH01133928A (en) 1987-11-20 1987-11-20 Production of powder mixture for material of superconductor

Publications (1)

Publication Number Publication Date
JPH01133928A true JPH01133928A (en) 1989-05-26

Family

ID=17798474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293728A Pending JPH01133928A (en) 1987-11-20 1987-11-20 Production of powder mixture for material of superconductor

Country Status (1)

Country Link
JP (1) JPH01133928A (en)

Similar Documents

Publication Publication Date Title
JPH01133928A (en) Production of powder mixture for material of superconductor
JPH01138125A (en) Production of mixed powder for superconductor
JPH01133929A (en) Production of powder mixture for material of superconductor
JPH01133932A (en) Production of powder mixture for superconductor
JPH01138122A (en) Production of mixed powder for superconductor
JPH01138120A (en) Production of mixed powder for superconducting material
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPH01138126A (en) Production of mixed powder for superconductor
JPH01133931A (en) Paste material for superconductor
JPH01133933A (en) Production of powder mixture for superconductor
JP2596021B2 (en) Manufacturing method of superconducting material
JPH01133925A (en) Production of powder mixture to be used for superconductor
JPH03265561A (en) Production of high-density oxide superconductor
JPH01138124A (en) Paste for superconductor
JPH01278464A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01133927A (en) Paste material for superconductor
JPH01133930A (en) Spray material for superconductor
JPH07247120A (en) Bi series superconductor and method for producing the same
JPH0446015A (en) Oxide superconducting material and its production
JPH01294568A (en) Production of superconductor
JPH02196058A (en) Production of superconductor
JPS63291853A (en) Production of superconductor
JPH01138123A (en) Spraying material for superconductor