[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0113293B2 - - Google Patents

Info

Publication number
JPH0113293B2
JPH0113293B2 JP57233862A JP23386282A JPH0113293B2 JP H0113293 B2 JPH0113293 B2 JP H0113293B2 JP 57233862 A JP57233862 A JP 57233862A JP 23386282 A JP23386282 A JP 23386282A JP H0113293 B2 JPH0113293 B2 JP H0113293B2
Authority
JP
Japan
Prior art keywords
line
phase
charging current
voltage
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57233862A
Other languages
Japanese (ja)
Other versions
JPS59127521A (en
Inventor
Yukinari Yamakoshi
Yoshifumi Oora
Shigefumi Maruyama
Chihiro Fukui
Atsumi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP57233862A priority Critical patent/JPS59127521A/en
Publication of JPS59127521A publication Critical patent/JPS59127521A/en
Publication of JPH0113293B2 publication Critical patent/JPH0113293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多回線多相送電線を保護する保護継電
装置に係り、特に対地充電電流及び線間充電電流
が大きい送電線の保護に好適な送電線充電電流の
補償方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a protective relay device for protecting multi-circuit, multi-phase power transmission lines, and is particularly suitable for protecting power transmission lines with large ground charging currents and line-to-line charging currents. This invention relates to a method for compensating for power transmission line charging current.

〔従来技術〕[Prior art]

近年の送電線は多導体化、長距離化の傾向があ
り、この様な送電線は例え架空送電線であつても
大量の浮遊対地静電容量及び浮遊線間静電容量が
存在する。この様な大量の静電容量は、常時の負
荷潮流電流に対し無視出来ない程の大きい充電電
流を送電線に流す原因となつている。
In recent years, there has been a trend toward multi-conductor and longer-distance power transmission lines, and such power transmission lines, even if they are overhead power transmission lines, have a large amount of floating ground capacitance and stray line-to-line capacitance. Such a large amount of capacitance causes a charging current that is too large to be ignored compared to the normal load current to flow through the power transmission line.

この様な大量の充電電量が流れる送電線で事故
が起ると、充電電流は内部事故電流と同様に送電
線内部に流れ込む電流として算出される為、送電
線の保護に電流差動方式を採用した場合、この充
電電流を補償しないと内部事故の検出感度が低下
する欠点があつた。そこで、この様な大量の充電
電流が流れる送電線に対する充電電量を補償する
方法として、母線電圧でなく線路電圧を用いて充
電電流を補償する方法が出願されている。この方
法は補償誤差が小さく精度は良いようであるが、
演算回数が多く装置構成が複雑となる問題があつ
た。即ち、多回線多相送電線においては、多くの
種類の対地及び線間静電容量が存在する為、全て
の静電容量による充電々流を補償しようとする
と、全ての相の対地電圧と、全ての相間の線間電
圧を求める必要がある。このことは演算回数を増
加させ、充電々流を補償する装置の複雑化、大規
模化を促す欠点を生じると共に、大量の補償演算
は保護継電装置の動作速度を遅くすると云う欠点
ももたらす。
If an accident occurs on a power transmission line through which such a large amount of charging electricity flows, the charging current is calculated as a current flowing into the transmission line, similar to the internal fault current, so a current differential method is adopted to protect the power transmission line. In this case, unless this charging current is compensated for, there is a drawback that the detection sensitivity for internal faults decreases. Therefore, as a method of compensating the amount of charging electricity for a power transmission line through which such a large amount of charging current flows, a method has been filed that uses line voltage instead of bus voltage to compensate for charging current. This method seems to have small compensation errors and good accuracy, but
There was a problem that the number of calculations was large and the device configuration was complicated. In other words, in a multi-circuit multi-phase power transmission line, there are many types of ground-to-ground and line-to-line capacitances, so if you try to compensate for the charging current due to all capacitances, the ground voltage of all phases and It is necessary to find the line voltage between all phases. This has the disadvantage that the number of calculations increases and the device for compensating for charging current becomes complicated and large-scale, and a large number of compensation calculations slows down the operating speed of the protective relay device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を解消し、大量の
充電々流を補償する保護継電装置の構成を簡単化
すると共に保護継電装置の応答速度を向上させる
送電線充電電流補償方法を提供することにある。
An object of the present invention is to provide a transmission line charging current compensation method that eliminates the above-mentioned drawbacks, simplifies the configuration of a protective relay device that compensates for a large amount of charging current, and improves the response speed of the protective relay device. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明は、送電線電流の異常を検出して送電線
両端の遮断器を開くことにより送電線を保護する
保護継電装置の送電線充電電流補償方法におい
て、自回線の充電電流は対地電圧及び線間電圧と
対地静電容量及び線間静電容量とを用いて算出
し、他回線との線間充電々流は自相の対地電極と
他回線内の他相との間の線間静電容量とを用いて
算出する近似計算を行うことにより、演算部を小
形化して装置の構成を簡単化する共に装置の応答
速度を向上させるものである。
The present invention provides a transmission line charging current compensation method for a protective relay device that protects a transmission line by detecting an abnormality in the transmission line current and opening circuit breakers at both ends of the transmission line. It is calculated using the line voltage, ground capacitance, and line capacitance, and the line-to-line charging current with other lines is the line-to-line static between the ground electrode of the own phase and the other phase in the other line. By performing approximate calculations using the capacitance, the calculation unit can be downsized, the configuration of the device can be simplified, and the response speed of the device can be improved.

次に本発明の原理について説明する。第1図は
a,b,c相とa′,b′,c相を有する3相2回線
の送電線路を示した概略図で、第2図は第1図に
示したた送電線路のa相の充電電流の位相を示し
たベクトル図である。第2図中、11はa相の対
地電圧V〓aを、12はb相を対地電圧V〓bを、13
はc相の対地電圧V〓cを、14はab相間の線圧電
圧V〓abを、15はac相間の線間電圧V〓acを、16
はa相の対地充電電流I〓aaを、17はab相間の線
間充電電流I〓abを、18はac相間の線間充電電流
I〓acを、19はI〓abとI〓acを合成した電流を、20

I〓aaとI〓abとI〓acを合成したa相の充電電流I〓a
示し
ている。この様な第2図における符号19で示す
I〓abとI〓bcを合成した他相の線間充電電流の合成ベ
クトルは、符号16で示すa相の対地充電電流ベ
クトルの位相とほぼ同じとなつている。本発明
は、この事実に着目し、他回線との線間充電電流
は自相の対地電圧V〓aと他回線との線間静電容量
の和Caa′+Cab′+Cac′を用いて算出し、計算回数
を減少させることにより装置の構成を簡単化する
と共に、算出時間を短縮して装置の応答性を向上
させようと云うものである。以下この様な近似計
算を行つた場合の誤差の大きさについて説明す
る。
Next, the principle of the present invention will be explained. Figure 1 is a schematic diagram showing a three-phase, two-circuit power transmission line with phases a, b, c and a', b', c, and Figure 2 is a schematic diagram of the transmission line shown in figure 1. FIG. 3 is a vector diagram showing phases of phase charging currents. In Fig. 2, 11 indicates the voltage to ground of the a phase V〓 a , 12 indicates the voltage to ground of the b phase V〓 b , 13
is the ground voltage V〓 c of the c phase, 14 is the line voltage V〓 ab between the ab phases, 15 is the line voltage V〓 ac between the ac phases, 16
is the a-phase ground charging current I〓 aa , 17 is the line-to-line charging current between the a-b phases I〓 ab , and 18 is the line-to-line charging current between the ac phases.
I〓 ac , 19 is the combined current of I〓 ab and I〓 ac , 20
teeth
It shows the a-phase charging current I〓 a , which is a composite of I〓 aa , I〓 ab , and I〓 ac . This is indicated by the reference numeral 19 in FIG.
The combined vector of line-to-line charging currents of other phases, which is a combination of I〓 ab and I〓 bc , has almost the same phase as the a-phase ground charging current vector indicated by reference numeral 16. The present invention focuses on this fact, and calculates the line-to-line charging current with other lines by using the sum of the ground voltage V〓 a of the own phase and the line-to-line capacitance with other lines, C aa ′ + C ab ′ + C ac ′. The aim is to simplify the configuration of the device by reducing the number of calculations, and to shorten the calculation time and improve the responsiveness of the device. The magnitude of the error when such approximate calculation is performed will be explained below.

a相の他回線との正確な線間充電電流は(1)式で
表わされる。
The accurate line-to-line charging current between the a-phase and other lines is expressed by equation (1).

I〓a′=jωCaa′(V〓a−V〓a′)+jωCab′(V〓a
V〓b′) +jωCac′(V〓a−V〓c) ……(1) この様な(1)式で表わされるI〓a′は従来の方法に
よるものであるが、上記した本発明の方法により
a相の他回線との充電々流I〓a″を近似計算すると
(2)式の如くなる。
I〓 a ′=jωC aa ′(V〓 a −V〓 a ′)+jωC ab ′(V〓 a
V〓 b ′) +jωC ac ′ (V〓 a −V〓 c ) ...(1) I〓 a ′ expressed by the equation (1) is obtained by the conventional method, but the present invention described above Approximately calculating the charging current I〓 a ″ with other lines of phase a using the method of
(2) becomes as follows.

I〓a″=jω(Caa′+Cab′+Cac′)Va ……(2) 従つて(1)式と(2)式の差ΔI〓a′が即ち本発明と従
来の正確な方法による計算との補償誤差となる。
I〓 a ″=jω(C aa ′+C ab ′+C ac ′)V a ……(2) Therefore, the difference ΔI〓 a ′ between equations (1) and (2) is the exact difference between the present invention and the conventional method. This will be a compensation error with the calculation by the method.

ΔI〓a′=I〓a′−I〓a″= −jωCaa′V〓a′−jωCab′V〓b′−jωCac′V〓c
……(3) このΔI〓a′を電圧ベクトルが平衡しているとし
て計算すると(4)式となる。
ΔI〓 a ′=I〓 a ′−I〓 a ″= −jωC aa ′V〓 a ′−jωC ab ′V〓 b ′−jωC ac ′V〓 c
...(3) If we calculate this ΔI〓 a ′ assuming that the voltage vector is balanced, we get equation (4).

即ちCac′=Cab′=Caa′ならばΔI〓a′=0となる

しかし、実際の送電線ではΔV〓a′は0とならない
が、Caa′,Cab′,Cac′は同程度の値であり、(4)式
は減算で成立つている為、ΔI〓aは極めて小さい値
をとることになる。
That is, if C ac ′=C ab ′=C aa ′, ΔI〓 a ′=0.
However, in an actual power transmission line, ΔV〓 a ′ is not 0, but C aa ′, C ab ′, and C ac ′ are comparable values, and equation (4) is established by subtraction, so ΔI〓 a will take an extremely small value.

そこで、このΔI〓a′がどの程度の値となるか以
下数値計算例を示す。
Therefore, an example of numerical calculation will be shown below to determine the value of ΔI〓 a ′.

|Va|=1000/√3(KV)、Caa=1.49(μF)、
Cab=0.74(μF)、Cac=0.22(μF)、Caa′=0.11
(μF)、Cab′=0.23(μF)、Cac′=0.40(μF)、 系統周波数を50Hzとし、この値を(1)式に入れて
a相の充電々流|I〓a|を求めてみると(5)式で示し
た値となる。
|V a | = 1000/√3 (KV), C aa = 1.49 (μF),
C ab = 0.74 (μF), C ac = 0.22 (μF), C aa ′ = 0.11
(μF), C ab ′ = 0.23 (μF), C ac ′ = 0.40 (μF), assuming the grid frequency to be 50Hz, enter these values into equation (1), and calculate the a-phase charging current |I〓 a | When calculated, the value shown in equation (5) is obtained.

|I〓a|=704.99(A) ……(5) 又前記数値例を(3)式に代入して本発明による補
償誤差|ΔI〓′a|を計算すると(6)式となる。
|I〓 a |=704.99(A) ...(5) Also, when the above numerical example is substituted into equation (3) to calculate the compensation error |ΔI〓′ a | according to the present invention, equation (6) is obtained.

|ΔI〓′a|=45.77(A) ……(6) 従つて、補償誤差|ΔI′a|/|I〓a|は6.5%にな
る。
|ΔI〓′ a |=45.77(A) ...(6) Therefore, the compensation error |ΔI′ a |/|I〓 a | becomes 6.5%.

以上は健全時での議論であるが、次に事故時の
事故相遮断後の議論を行う。尚、以下a相は事故
を起していない状態として議論する。これは、a
相、即ち自相が事故を起してしまつた場合は、大
量の差電流が発生し事故が検出される為、充電電
流の補償をあえて行う必要がないからである。問
題となるのは健全相の充電電流の補償である。
The above is a discussion under normal conditions, but next we will discuss after the accident phase is shut off in the event of an accident. Note that the following discussion will assume that phase a is in a state where no accident has occurred. This is a
This is because if a phase, that is, the own phase, causes a fault, a large amount of differential current is generated and the fault is detected, so there is no need to compensate for the charging current. The problem is compensation for the charging current of the healthy phase.

先ず第1段階として事故継続中を考察する。事
故が自回線内なら線間電圧を用いて線間充電電流
を求めるので誤差は発生しない。事故が他回線に
あると考えると、事故が地絡事故であるならば、
事故相と線間電圧は自相の対地電圧と等しくなる
為、本発明による近似値計算を行つても充電々流
の補償誤差は生じない。
First, as a first step, we will consider the ongoing accident. If the fault occurs within the own line, the line voltage is used to determine the line charging current, so no errors occur. Considering that the accident is on another line, if the accident is a ground fault,
Since the voltage between the fault phase and the line is equal to the ground voltage of the own phase, a compensation error of charging current does not occur even if the approximate value calculation according to the present invention is performed.

第3図は地絡事故時の電圧の位相を示したもの
で、21は自相の電圧ベクトル、22は他回線の
事故相の電圧ベクトルである。この図から解る様
に23と21はほぼ等しくなり、本発明の近似計
算を用いても誤差が少いことを意味している。
FIG. 3 shows the phase of the voltage at the time of a ground fault, where 21 is the voltage vector of the own phase, and 22 is the voltage vector of the fault phase of the other line. As can be seen from this figure, 23 and 21 are almost equal, which means that even if the approximate calculation of the present invention is used, there is little error.

次に事故が短絡事故の場合を考えるとこの場合
の電圧ベクトルは第4図に示した如くなる。24
は自相の電圧ベクトル、25b,25cは事故前
の多相電圧ベクトル、26は事故時の25b及び
25cの電圧ベクトルを示している。24と26
に注目すると解る様に、事故前の位相は健全相に
対し180度進みとなり、送電圧の大きさは1/2とな
る。従つて、線間電圧の位相は健全相の対地電圧
と等しく、大きさは1.5倍となる。このことは本
発明の近似計算による充電々流補償方法による
と、自相の対地電圧に対し50%の補償不足を来す
ことを意味している。しかしながら、健全時の議
論と同様に健全相全体の充電々流からみれば、こ
の補償不足による誤差は実用上無視出来る程小さ
くなる。例として、第2回線のb′相とc′相に2線
短絡事故が発生した場合の充電補償誤差を計算し
てみる。健全時と同じデータを用いると、前記(1)
及び(3)式から、前記事故時のa相の充電々流は(7)
式で示した値となり、この時の補償誤差は(8)式で
示した値となる為、充電電流に対する補償誤差の
比率は8.13%となり、補償誤差は極めて小さく実
用上問題となることはない。
Next, if we consider the case where the accident is a short circuit accident, the voltage vector in this case will be as shown in FIG. 24
25b and 25c are multiphase voltage vectors before the accident, and 26 is the voltage vector of 25b and 25c at the time of the accident. 24 and 26
As you can see, the phase before the accident is 180 degrees ahead of the healthy phase, and the magnitude of the transmission voltage is 1/2. Therefore, the phase of the line voltage is equal to the ground voltage of the healthy phase, and the magnitude is 1.5 times. This means that according to the charging current compensation method using approximate calculation of the present invention, there is a 50% undercompensation for the ground voltage of the own phase. However, as in the case of a healthy phase, when viewed from the charging current of the whole healthy phase, the error due to this lack of compensation becomes so small that it can be ignored in practical terms. As an example, let us calculate the charging compensation error when a two-wire short circuit occurs between the b' and c' phases of the second line. Using the same data as in the healthy state, the above (1)
From equation (3), the a-phase charging current at the time of the accident is (7)
Since the compensation error at this time is the value shown in formula (8), the ratio of the compensation error to the charging current is 8.13%, and the compensation error is extremely small and does not pose a problem in practice. .

|I〓a|=702.85(A) ……(7) |ΔI′a|=57.13(A) ……(8) 次に第2段階として事故相の遮断後を考える。
事故時に保護継電装置により送電線の両端の遮断
器が開放される為、事故相の母線電圧と送電線電
圧が異なつてくる。このため、各相の対地電圧を
母線で測定するか、遮断器の送電線側で測定する
かにて前述の本発明による近似計算による補償誤
差の値が異なつてくる。先ず、各相の対地電圧を
送電線側で測定する場合を考える。事故相が自回
線内なら線間電圧が正しく測定される為問題は起
きない。事故相が他回線内にある場合には第5図
に示す様に遮断相を介して自相から対地へ対地充
電電流Iabが流れる。従つて、本発明の補償方法
では充電電流の位相は正確であるが、その絶対値
つまり大きさに誤差が生じる。第5図におけるa
相からb′相に向う線間充電々流は(9)式で示され、
本発明の近似計算による補償量は(10)式で示され
る。
|I〓 a |=702.85(A) ……(7) |ΔI′ a |=57.13(A) ……(8) Next, consider what happens after the fault phase is shut off as the second stage.
In the event of an accident, the circuit breakers at both ends of the transmission line are opened by the protective relay device, resulting in a difference between the bus voltage of the fault phase and the transmission line voltage. Therefore, the compensation error value obtained by the above-described approximate calculation according to the present invention differs depending on whether the ground voltage of each phase is measured at the bus bar or on the transmission line side of the circuit breaker. First, consider the case where the ground voltage of each phase is measured on the power transmission line side. If the faulty phase is within the own line, no problem will occur because the line voltage will be measured correctly. If the fault phase is in another circuit, the ground charging current I ab flows from the own phase to the ground via the cutoff phase, as shown in FIG. Therefore, in the compensation method of the present invention, although the phase of the charging current is accurate, an error occurs in its absolute value, that is, its magnitude. a in Figure 5
The line-to-line charging current from the phase to the b′ phase is shown by equation (9),
The amount of compensation based on the approximate calculation of the present invention is expressed by equation (10).

Iab′=jωCab′Cbb′/Cab′+Cbb′V〓a……
(9) I″ab′=iωCab′V〓a ……(10) 上記(9)から(10)を引くと(11)式に示す補償誤差を求
めることが出来る。
I ab ′=jωC ab ′C bb ′/C ab ′+C bb ′V〓 a ……
(9) I″ ab ′=iωC ab ′V〓 a ...(10) By subtracting (10) from the above (9), the compensation error shown in equation (11) can be obtained.

|ΔIab′|=|ωC2 ab′/Cab′+Cbb′V〓a|…
…(11) この(11)式に前例の数値を入れて数値計算を行え
ば|Iab′|=7.44Aとなる。この値はa相の充電
電流全体に比較すれば1/100程度に極めて小さい
値となり誤差は実用上殆んど無視することが出来
る。尚以上説明した状態は、送電線両端の遮断器
が開放され今だ開放されていない状態である。
|ΔI ab ′|=|ωC 2 ab ′/C ab ′+C bb ′V〓 a |…
...(11) If we insert the previous value into equation (11) and perform a numerical calculation, we get |I ab ′| = 7.44A. This value is extremely small, about 1/100 compared to the entire a-phase charging current, and the error can be practically ignored. The state described above is a state in which the circuit breakers at both ends of the power transmission line have been opened but have not yet been opened.

次に、送電線両端の遮断器が開放されて送電電
流を遮断された相が接地開閉器で接地された場合
は、事故相の電位は零となる為、本発明の近似計
算による補償方法に誤差は生じない。
Next, if the circuit breakers at both ends of the transmission line are opened and the phase whose transmission current is cut off is grounded by a grounding switch, the potential of the faulty phase becomes zero, so the compensation method using the approximate calculation of the present invention is applied. No errors occur.

次に、各相の対地電圧を母線側から取る場合を
考える。この場合は事故相と自相との線間電圧は
事故相の個所にも拘らず正確に求まらない。従つ
て前述の(9)式、(10)式、(11)式の議論は事故相が自回
線内でも他回線内でも成立し、その誤差は上記(11)
式の所で述べた様に実用上無視し得る程小さい。
Next, consider the case where the ground voltage of each phase is taken from the bus bar side. In this case, the line voltage between the fault phase and its own phase cannot be determined accurately, regardless of the location of the fault phase. Therefore, the discussion of equations (9), (10), and (11) above holds true whether the fault phase is within the own line or another line, and the error is the same as (11) above.
As mentioned in the equation, it is so small that it can be ignored in practice.

以上述べた様に、本発明の特徴は、充電電流の
補償方法を、自回線内充電電流と、他回線との充
電電流とに分けて、自回線内は線間電圧を用いて
従来通り正確な線間充電電流を算出するのに対
し、他回線との線間充電電流は線間電圧を測定せ
ず、自相の対地電圧を線間電圧に代用して近似計
算することにより、演算部を簡略化し、これによ
り装置を簡単化すると共に演算時間を短縮して保
護継電装置の応答度を向上させるものであり、近
似計算に伴なう誤差は上記した様に実用上問題と
ならない範囲となつている。
As described above, the feature of the present invention is that the charging current compensation method is divided into the charging current within the own line and the charging current between other lines, and the compensation method for the charging current within the own line is as accurate as before using the line voltage. In contrast, when calculating the line-to-line charging current with other lines, the calculation unit calculates the line-to-line charging current by approximating the line-to-ground voltage instead of the line-to-line voltage without measuring the line-to-line voltage. This simplifies the device, shortens calculation time, and improves the response of the protective relay device.As mentioned above, the error associated with the approximate calculation is within a range that does not pose a practical problem. It is becoming.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第6図乃至第8図に従つ
て説明する。第6図は本発明の送電線充電電流の
補償方法を適用した保護継電装置の一実施例の概
要を示した構成図である。送電線31の両端はそ
れぞれ遮断器32,33を介して変電所母線3
4,35に接続されている。送電線31の電圧は
変圧器36,37により検出されてそれぞれ演算
装置38,39に入力される。前記演算装置3
8,39では送電電圧より自相及び各相の補償充
電電流を算出するが、特に各相の補償充電電流は
(2)式に従つて近似計算を行つて算出する。母線側
に取付けられた変成器40,41により送電電流
を検出し、これら送電電流は減算器42,43に
入力される。この減算器42,43では変成器4
0,41が検出した送電電流より前記演算装置3
8,39で演算した補償充電々流を差引いた真の
送電電流44,45が遮断器開閉装置46,47
に入力され、この遮断器開閉装置46,47は入
力された電流に基づいて遮断指令48,49をそ
れぞれの遮断器32,33に指令する。尚、減算
器42の出力である真の送電電流44は送信器5
0によつて他端の受信器51に送信され、他端の
遮断器開閉装置47に入力される。又、減算器4
3の出力である真の送電電流45は送信器52に
より相手端の受信器53に送信されて遮断器開閉
装置46に入力される。
Embodiments of the present invention will be described below with reference to FIGS. 6 to 8. FIG. 6 is a block diagram showing an outline of an embodiment of a protective relay device to which the power transmission line charging current compensation method of the present invention is applied. Both ends of the power transmission line 31 are connected to the substation busbar 3 via circuit breakers 32 and 33, respectively.
4,35. The voltage of the power transmission line 31 is detected by transformers 36 and 37 and input to arithmetic units 38 and 39, respectively. The arithmetic device 3
In 8 and 39, the compensation charging current of the own phase and each phase is calculated from the power transmission voltage, but especially the compensation charging current of each phase is calculated from the transmission voltage.
Calculate by performing approximate calculation according to equation (2). Transmission currents are detected by transformers 40 and 41 attached to the busbar side, and these transmission currents are input to subtracters 42 and 43. In these subtracters 42 and 43, the transformer 4
From the power transmission current detected by 0 and 41, the arithmetic unit 3
The true transmission current 44, 45 after subtracting the compensation charging current calculated in 8, 39 is the true transmission current 44, 45 of the circuit breaker switching device 46, 47.
The circuit breaker switching devices 46 and 47 issue interrupt commands 48 and 49 to the respective circuit breakers 32 and 33 based on the input current. Note that the true power transmission current 44, which is the output of the subtracter 42, is the output of the transmitter 5.
0 to the receiver 51 at the other end, and is input to the circuit breaker switching device 47 at the other end. Also, subtractor 4
The true power transmission current 45, which is the output of the circuit breaker 3, is transmitted by the transmitter 52 to the receiver 53 at the other end and input to the circuit breaker switching device 46.

第7図は第6図で示した保護継電装置の一部を
更に詳しく示した構成図である。第1回線の送電
線31aと第2回線の送電線31bがそれぞれ遮
断器32a,32bを介して母線34の各相に接
続されている。第1回線の送電線31aの各相に
変圧器36aが取付けられ、同様に第2回線の送
電線31bの各相に変圧器36bが取付けられて
いる。これら変圧器36a,36bの検出電圧は
それぞれ演算装置38a,38bに入力される。
これ等演算装置38a,38bにおいて、自相は
従来例の方法で各相は本発明の近似計算で充電電
流が算出され、これを減算器42a,42bに出
力する。一方、第1回線、第2回線の母線側の各
相にはそれぞれ変流器40a,40bが取付けら
れ、これらの変流器40a,40bで検出された
送電電流は加算器42a,42bに入力され、こ
れら減算器42a,42bで充電電流を差引かれ
た真の送電電流44a,44bが第7図では図示
されない遮断器開閉装置に入力される。
FIG. 7 is a block diagram showing a part of the protective relay device shown in FIG. 6 in more detail. A first line power transmission line 31a and a second line power transmission line 31b are connected to each phase of the bus bar 34 via circuit breakers 32a and 32b, respectively. A transformer 36a is attached to each phase of the power transmission line 31a of the first line, and a transformer 36b is similarly attached to each phase of the power transmission line 31b of the second line. The detected voltages of these transformers 36a and 36b are input to arithmetic units 38a and 38b, respectively.
In these arithmetic units 38a and 38b, charging currents are calculated for the own phase using the conventional method and for each phase using the approximate calculation according to the present invention, and these are output to subtracters 42a and 42b. On the other hand, current transformers 40a and 40b are attached to each phase on the bus side of the first line and second line, respectively, and the transmission currents detected by these current transformers 40a and 40b are input to adders 42a and 42b. The true transmission currents 44a, 44b from which the charging current has been subtracted by these subtracters 42a, 42b are input to a circuit breaker switching device (not shown in FIG. 7).

次に、演算装置38a,38bで演算を行う為
の関係式について説明する。即ち、演算装置38
a,38bでは以下に示す(12)式に基づいて充電電
流が算出される。
Next, the relational expressions for performing calculations in the calculation devices 38a and 38b will be explained. That is, the arithmetic unit 38
In a and 38b, the charging current is calculated based on equation (12) shown below.

但し、(12)式においてI〓′a〜I〓′a′は各相の充電

流、V〓a〜V〓a′は各相の送電線電圧を示し、アドミ
ツタンスY1j{i∈(a、b、c、c′、b′、a′)}は
以下に示す(13)式により求められる。
However, in equation (12), I〓′ a ~ I〓′ a ′ represents the charging current of each phase, V〓 a ~ V〓 a ′ represents the transmission line voltage of each phase, and the admittance Y 1j {i∈( a, b, c, c', b', a')} are determined by equation (13) shown below.

例えば、a相のI〓aについて(12)式を展開し(13)
式に基づいて変形すれば(14)式の如くなる。
For example, by expanding equation (12) for I〓 a of phase a, we get (13)
If we transform it based on the equation, we get equation (14).

I〓′a=Y〓aaV〓a+Y〓abV〓b+Y〓acV〓c =jωCaaV〓a+jωCab(V〓a−V〓b)+jωCac(V〓a
−V〓c) +jωCac′V〓a+jωab′V〓a+jωCac′V〓a……(1
4) 上記(14)式は発明の原理の所で述べた(2)式に
相当するもので、I〓′aは演算装置38a,38b
の出力である。従つて、I〓aを変成器40a,40
bから得られる送電電流とすれば、減衰器42
a,42bでは(15)式で示される計算が行われ
る。
I〓′ a =Y〓 aa V〓 a +Y〓 ab V〓 b +Y〓 ac V〓 c =jωC aa V〓 a +jωC ab (V〓 a −V〓 b )+jωC ac (V〓 a
−V〓 c ) +jωC ac ′V〓 a +jω ab ′V〓 a +jωC ac ′V〓 a ……(1
4) The above equation (14) corresponds to the equation (2) described in the principle of the invention, and I〓′ a is the arithmetic unit 38a, 38b.
This is the output of Therefore, I〓 a is the transformer 40a, 40
If the transmission current is obtained from b, then the attenuator 42
In a and 42b, the calculation shown by equation (15) is performed.

I〓″a=I〓a−I〓′a ……(15) この(15)式で得られたI〓a″は送電線電流から
充電電流を除去した真のa相送電電流である。第
6図で示した遮断器開閉装置46はこのI〓″aと相
手端の電流情報より、遮断器32a或は32bの
引外しを決定する。
I〓'' a = I〓 a −I〓′ a ... (15) I〓 a '' obtained by this equation (15) is the true a-phase transmission current obtained by removing the charging current from the transmission line current. The circuit breaker switching device 46 shown in FIG. 6 determines whether to trip the circuit breaker 32a or 32b based on this I〓''a and the current information at the opposite end.

本実施例によれば、演算回路38a,38bに
おいて、他回線との線間充電電流を、線間電圧を
測定せず(12)、(13)式より算出する近似計算を
行う為、演算に使用する情報が減少し、演算回路
38a,38bの構成を簡単化する効果があると
共に演算装置の信頼性を向上させる効果がある。
又、近似計算による演算回路の減少により、演算
をデジタル回路で行う場合、演算時間を短縮して
保護継電装置の応答性を高める効果がある。この
演算時間の短縮は従来の正確な充電電流の計算を
行う場合に比べ約1/2となる。
According to this embodiment, the calculation circuits 38a and 38b perform approximate calculation of the line-to-line charging current with other lines using equation (13) without measuring the line-to-line voltage. This reduces the amount of information used, simplifies the configuration of the arithmetic circuits 38a and 38b, and improves the reliability of the arithmetic device.
Further, by reducing the number of calculation circuits through approximate calculation, when calculations are performed using digital circuits, there is an effect of shortening the calculation time and improving the responsiveness of the protective relay device. This reduction in calculation time is approximately 1/2 compared to the conventional method of calculating accurate charging current.

第8図は本発明の送電線充電電流の補償方法を
実現する保護継電装置の他の実施例を示した構成
図である。第1回線の送電線31aは遮断器32
aを介して母線34に接続され、第2回線の送電
線31bは遮断器32bを介して母線34に接続
されている。母線34と遮断器32a,32bと
の間には送電線31a,31bの各相の送電電流
を検出する変流器40a,40bが取付けられ、
これら変流器40a,40bで検出された送電電
流は減算器42a,42bに入力される。母線3
4の各相には変圧器36が取付けられ、これら変
圧器36により検出された母線電圧は演算装置3
8a,38bに入力されている。演算装置38
a,38bで演算された補償充電電流は減算器4
2a,42bに出力され、これら減算器42a,
42bは真の送電電流44a,44bを出力す
る。本実施例における演算装置38a,38bで
は(16)式に基づいて近似計算が行われる。
FIG. 8 is a block diagram showing another embodiment of a protective relay device that implements the power transmission line charging current compensation method of the present invention. The power transmission line 31a of the first circuit has a circuit breaker 32
The power transmission line 31b of the second circuit is connected to the bus bar 34 via a circuit breaker 32b. Current transformers 40a and 40b are installed between the bus bar 34 and the circuit breakers 32a and 32b to detect the transmission current of each phase of the power transmission lines 31a and 31b,
The transmission currents detected by these current transformers 40a, 40b are input to subtracters 42a, 42b. Bus line 3
A transformer 36 is attached to each phase of 4, and the bus voltage detected by these transformers 36 is sent to the arithmetic unit 3.
8a and 38b. Arithmetic device 38
The compensation charging current calculated in a and 38b is subtracted by subtractor 4.
2a, 42b, and these subtracters 42a,
42b outputs true power transmission currents 44a and 44b. The arithmetic units 38a and 38b in this embodiment perform approximate calculations based on equation (16).

上記(16)式は前実施例の(12)式に相当するもの
であるが、その違いは右辺の第2項が全て母線電
圧V〓a,V〓b,V〓cを用いている所にある。これは第
8図で示す様に変流器40が前実施例の6台から
3台に減少した為である。尚、(16)式中の他の
記号は(12)式と同じである。
The above equation (16) corresponds to the equation (12) in the previous embodiment, but the difference is that the second term on the right side all uses the bus voltages V〓 a , V〓 b , V〓 c It is in. This is because the number of current transformers 40 is reduced from six in the previous embodiment to three, as shown in FIG. Note that the other symbols in equation (16) are the same as in equation (12).

本実施例によれば、変流器40を3台用い、前
実施例に比べて変流器の数を半減している為、保
護継電装置の構成をより簡単にする効果があると
共に、演算装置38a,38bの構成もより簡単
となり、且つ演算回数も減少する為、前実施例よ
りも保護継電装置の応答性はより高くなる効果が
ある。但し、補償誤差については前実施例よりも
増加するが前実施例も元々近似計算である為、誤
差が許容範囲であれば充分本実施例を使用するこ
とが出来る。
According to this embodiment, three current transformers 40 are used, which reduces the number of current transformers by half compared to the previous embodiment, which has the effect of simplifying the configuration of the protective relay device. Since the configuration of the calculation devices 38a and 38b is also simpler and the number of calculations is reduced, there is an effect that the responsiveness of the protective relay device is higher than that of the previous embodiment. However, although the compensation error increases compared to the previous embodiment, since the previous embodiment is originally an approximate calculation, the present embodiment can be fully used as long as the error is within an allowable range.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明の送電線充電電流の補
償方法によれば、他回線との線間充電電流を自相
の対地電圧と、他回路内の他相との間の線間静電
容量とを用いて算出する為、送電線保護継電装置
の構成を簡単化し且つその応答性を向上させるこ
とが出来る。
As described above, according to the power transmission line charging current compensation method of the present invention, the line-to-line charging current with other lines can be calculated by adjusting the line-to-ground voltage of the own phase and the line-to-line capacitance between the other phases in the other circuits. Since the calculation is performed using , it is possible to simplify the configuration of the power transmission line protection relay device and improve its responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3相2回線送電線路におけるa相から
みた静電容量分布説明図、第2図はa相の充電電
流ベクトル図、第3図は1線地絡事故時の各相の
相電圧ベクトル図、第4図は2線短絡事故時の各
相の相電圧ベクトル図、第5図はb′相遮断時の
ab′相間の静電容量関係を示した説明図、第6図
は本発明の送電線充電電流の補償方法を実現する
保護継電装置の一実施例を示した構成図、第7図
は第6図に示した保護継電装置の一部詳細構成
図、第8図は本発明の送電線充電電流の補償方法
を実現する保護継電装置の他の実施例を示した要
部構成図である。 31……送電線、32,33……遮断器、3
4,35……母線、36,37……変圧器、3
8,39……演算装置、40,41……変成器、
42,43……減算器、46,47……遮断器開
閉装置。
Figure 1 is an explanatory diagram of the capacitance distribution seen from the a-phase in a three-phase two-circuit transmission line, Figure 2 is a charging current vector diagram of the a-phase, and Figure 3 is the phase voltage of each phase at the time of a one-line ground fault. Vector diagram, Figure 4 is a phase voltage vector diagram of each phase at the time of a two-wire short circuit accident, and Figure 5 is the phase voltage vector diagram for each phase when the b' phase is cut off.
FIG. 6 is an explanatory diagram showing the capacitance relationship between phases ab', FIG. FIG. 6 is a partial detailed configuration diagram of the protective relay device shown in FIG. 6, and FIG. be. 31...Power transmission line, 32, 33...Breaker, 3
4, 35... Bus bar, 36, 37... Transformer, 3
8, 39... Arithmetic device, 40, 41... Transformer,
42, 43... Subtractor, 46, 47... Circuit breaker switching device.

Claims (1)

【特許請求の範囲】[Claims] 1 多回線多相送電線の母線側両端に挿介される
遮断器と、前記多回線の多相送電線電圧を基にし
て自回線及び他回線に対する充電電流を算出する
演算装置と、前記多回線多相送電線の電流から前
記演算回路で算出された充電電流を減じた送電線
電流を基にして前記遮断器の開閉を行なう遮断器
開閉装置とを備えた保護継電装置において、前記
演算装置では、自回線に対する充電電流を自回線
の対地電圧、線間電圧、対地静電容量及び線間静
電容量を用いて算出し、他回線に対する線間充電
電流を自回線の対地電圧と、他回線内の他相との
間の線間静電容量とを用いて算出することを特徴
とする送電線充電電流の補償方法。
1. A circuit breaker inserted at both ends of the busbar side of a multi-circuit multi-phase power transmission line, an arithmetic device that calculates charging current for the own line and other lines based on the multi-phase power transmission line voltage of the multi-line, and the multi-circuit and a circuit breaker switching device that opens and closes the circuit breaker based on the transmission line current obtained by subtracting the charging current calculated by the calculation circuit from the current of the multiphase transmission line, the calculation device In this example, the charging current for the own line is calculated using the ground voltage, line voltage, ground capacitance, and line capacitance of the own line, and the line charging current for other lines is calculated using the ground voltage of the own line, and the line-to-line capacitance. A method of compensating for a power transmission line charging current, characterized in that calculation is performed using line capacitance between lines and other phases within the line.
JP57233862A 1982-12-29 1982-12-29 Method of compensating transmission line charging current Granted JPS59127521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233862A JPS59127521A (en) 1982-12-29 1982-12-29 Method of compensating transmission line charging current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233862A JPS59127521A (en) 1982-12-29 1982-12-29 Method of compensating transmission line charging current

Publications (2)

Publication Number Publication Date
JPS59127521A JPS59127521A (en) 1984-07-23
JPH0113293B2 true JPH0113293B2 (en) 1989-03-06

Family

ID=16961732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233862A Granted JPS59127521A (en) 1982-12-29 1982-12-29 Method of compensating transmission line charging current

Country Status (1)

Country Link
JP (1) JPS59127521A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280613A (en) * 1989-04-21 1990-11-16 Mitsubishi Electric Corp Protective relay

Also Published As

Publication number Publication date
JPS59127521A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US6584417B1 (en) Method and directional element for fault direction determination in a capacitance-compensated line
US4261038A (en) Protection of electrical power supply systems
JPS6039312A (en) Protective relaying device
JPS59226615A (en) Offset compensator
US3732464A (en) Distance relay system
KR100425417B1 (en) Method for detecting line to line fault location for power systems
JP2000261958A (en) Protective device for grounding current suppressing device and grounding suppressing method
Phadke et al. A Microcomputer Based Ultra-High-Speed Dostance Relay: Field Tests
JPH0113293B2 (en)
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JP6362569B2 (en) Distance relay device and power line protection method
JP2596671B2 (en) Digital ground fault overvoltage relay for high voltage distribution lines.
JPH11341676A (en) Bus protection relaying device
Ma et al. An AC line pilot protection scheme for AC/DC hybrid system based on composite mode power difference
JPH08265957A (en) Matrix operation type system protector
JP2863952B2 (en) Ground fault fault location method and device, ground fault distance relay
JPH0428065Y2 (en)
JPH04225176A (en) Ground distance detecting method, ground distance detector and ground distance relay
JPS59127526A (en) Method of protecting transmission line of current differential type
JP4738288B2 (en) Distribution system ground fault protective relay device
JP2874316B2 (en) Distance relay
Waikar Mathematical basis for modal-transformation based improved digital distance relaying algorithm
JP2721166B2 (en) Ground fault distance relay method
Kolla Application of Modal Tmasformation for Fault Analysis and Digital Distance Relaying
JPS6236453B2 (en)