[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01131801A - Pressure controller in deaerator - Google Patents

Pressure controller in deaerator

Info

Publication number
JPH01131801A
JPH01131801A JP28737687A JP28737687A JPH01131801A JP H01131801 A JPH01131801 A JP H01131801A JP 28737687 A JP28737687 A JP 28737687A JP 28737687 A JP28737687 A JP 28737687A JP H01131801 A JPH01131801 A JP H01131801A
Authority
JP
Japan
Prior art keywords
pressure
deaerator
temperature
water
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28737687A
Other languages
Japanese (ja)
Other versions
JPH0554002B2 (en
Inventor
Teiichiro Akashi
明石 貞一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28737687A priority Critical patent/JPH01131801A/en
Publication of JPH01131801A publication Critical patent/JPH01131801A/en
Publication of JPH0554002B2 publication Critical patent/JPH0554002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE: To suppress flushing phenomenon of a deaerator by controlling an inner pressure regulation valve for the deaerator based on the output from a pressure regulator for proportionally integrating or differentiating the differential error between the outputs of a temperature/pressure conversion circuit and a pressure detector. CONSTITUTION: A temperature detector 12 detects the temperature of water stored in a water storage tank 8. The detected temperature is inputted to a temperature/pressure conversion circuit 13 outputting a corresponding pressure set value comprising a specified function. The pressure set value is inputted to a pressure regulator 6 along with the output from a pressure detector 5 for detecting actual pressure in a deaerator 1. They are compared with each other and an inner pressure regulation valve 3 for the deaerator is opened/closed by the output from the pressure regulator 6 thus controlling introduction of auxiliary steam to the deaerator. The inner pressure of the deaerator is controlled to a lower limit set level or to a level lower by a specified level than the saturated steam pressure of stored water for the range exceeding the lower limit set level.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、蒸気タービン発電設備の例えばボイラの火
勢急減による保護動作であるPCB (ファースト・カ
ット・バック)に伴なうタービン発電機の負荷遮断時や
負荷遮断直後のタービン発電機の起動時に発生し易い顕
著なフラッシング(フラッディング)と称する脱気器貯
水槽から脱気器への蒸発逆流現象を抑制できる脱気器器
内圧力制御装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to PCB (first cut back), which is a protective operation in steam turbine power generation equipment due to a sudden decrease in fire intensity of a boiler, for example. A deaerator that can suppress the backflow of evaporation from the deaerator water tank to the deaerator, known as flooding, which tends to occur when a turbine generator is load-shedded or when a turbine-generator is started immediately after load shedding. This invention relates to an internal pressure control device.

(従来の技術) 従来、蒸気タービン発電設備においては、給水を再使用
する関係上からランキンサイクルと称して閉サイクルを
形成しており、閉サイクルを流動する蒸気又は水には概
ね過不足は起こらないが、閉サイクルの系外に微量の漏
洩力1生じた場合でも、これを補給する補給水系統を備
えている。又、閉サイクルで大気圧以下の低圧力に至る
系統からは微量の大気の侵入があることも考慮される。
(Prior art) Conventionally, in steam turbine power generation equipment, a closed cycle called a Rankine cycle has been formed in order to reuse feed water, and there is generally no excess or deficiency of steam or water flowing through the closed cycle. However, even if a small amount of leakage force 1 occurs outside the closed cycle system, it is equipped with a make-up water system to replenish it. It is also taken into consideration that there may be a small amount of atmospheric air intrusion from systems that are closed cycles and reach low pressures below atmospheric pressure.

この様なランキンサイクルにおける閉サイクル外部から
の補給水は空気侵入には、当然のことながら大気中の酸
素をとり込み、閉サイクル内を流動する水の溶存酸素と
して存在している。この溶存酸素は、炭素鋼の配管類、
特にボイラーチューブを腐食させる要因となる。そこで
、蒸気タービン発電設備では、復水器において溶存酸素
を真空脱気により14ρpb以下まで脱気し、更に脱気
器において7 PPb以下にまで過熱脱気させたのち、
ボイラ給水ポンプ群により昇圧しC数段の高圧給水加熱
器を経由し)でボイラへ給水する。
In such a Rankine cycle, makeup water from outside the closed cycle naturally takes in oxygen from the atmosphere when air enters the cycle, and exists as dissolved oxygen in the water flowing inside the closed cycle. This dissolved oxygen is removed from carbon steel piping,
In particular, it causes corrosion of boiler tubes. Therefore, in steam turbine power generation equipment, dissolved oxygen is degassed to below 14 PPb by vacuum degassing in the condenser, and then superheated and degassed to below 7 PPb in the deaerator.
The pressure is increased by a group of boiler feed water pumps, and water is supplied to the boiler via a several-stage high-pressure feed water heater (C).

ところで、溶存酸素を取り除くに当り1次の原理が適用
されている。すなわち、液体中のガス溶解度は、その液
面に作用するガスの分圧に比例しており、このためガス
の分圧を強制的に下げるか、あるいは酸素を含んだ液体
を加温し、その蒸発によって酸素と液とを分離する方法
が良く知られている。
By the way, the first-order principle is applied to remove dissolved oxygen. In other words, the solubility of a gas in a liquid is proportional to the partial pressure of the gas acting on the liquid surface. Methods of separating oxygen and liquid by evaporation are well known.

従来、蒸気タービン発電設備に使用されている脱気方法
には、真空脱気と加熱脱気がある。真空脱気は、一般に
加熱源の無い場合や、低温で脱気する場合等にしか用い
られず、復水器における脱気がこの方法であり、大気圧
に対し一722mHgまで真空側に圧力を下げて脱気す
る。これだけでは溶存酸素がまだ多いので更に脱気器に
おいて加熱脱気を行なう。
Conventionally, degassing methods used in steam turbine power generation equipment include vacuum degassing and heating degassing. Vacuum deaeration is generally used only when there is no heating source or when deaeration is performed at low temperatures.This method of deaeration in a condenser applies pressure on the vacuum side to -722mHg relative to atmospheric pressure. Lower and degas. Since there is still a lot of dissolved oxygen if this is done alone, further heat deaeration is performed in a deaerator.

この手法は溶存酸素を含む復水をスプレーパルプを介し
て微細化して噴霧し、噴霧水の下からあたかも加熱蒸気
を吹き上げるごとく直接接触させ、これによって噴霧水
を飽和温度まで上昇させることによってガス分圧を下げ
ると同時に噴霧水により表面積を大きくして酸素を噴霧
水から分割するものである。
In this method, condensate containing dissolved oxygen is atomized and atomized through a spray pulp, and heated steam is brought into direct contact with the water from beneath the spray, raising the water to its saturation temperature, thereby separating the gases. This method lowers the pressure and at the same time increases the surface area of the spray water to separate oxygen from the spray water.

噴霧水から酸素を分離する加熱蒸気は1通常。Heated steam to separate oxygen from spray water is usually 1.

蒸気タービンから抽気した蒸気を脱気器に送るようにな
っているが、蒸気タービン発電機の起動時から低負荷時
は蒸気温度が低いこともあって、他の補助蒸気源からの
蒸気が使用されている。
Steam extracted from the steam turbine is sent to the deaerator, but since the steam temperature is low from the time the steam turbine generator starts up to when the load is low, steam from other auxiliary steam sources is used. has been done.

第5図は、従来の脱気器器内圧力制御装置の概略系統図
である6第5図において、脱気器1は電動弁4、脱気器
器内圧力調節弁3を経て、補助蒸気管(乃至は補助蒸気
源)2に結ばれている。また脱気器1に復水器(図示せ
ず)から復水を送る復水管9と蒸気タービン抽気を送る
抽気管10が結ばれている。脱気器1で脱気された水は
脱気器貯水槽8へ数本の降水管(図示せず)で送られ、
また脱気器1と脱気器貯水槽8は数本のバランス管(図
示せず)によって通常運転時は器内圧力が等しくなるよ
うに結ばれている。また降水管11は貯水槽8の水をボ
イラ給水ポンプへ送る、脱気器1には圧力検出器5が取
り付けられており、圧力検出器5は脱気器1の器内実圧
力を検出して圧力調節計(又は圧力調節装置)6に送り
、ここで予め定められた圧力設定器7からの出力信号(
通常は0.35kg/aJ # )と突合せ、その偏差
分を比例、積分、微分等の演算を行ない、演算信号を脱
気器器内圧力調節弁3に与えて弁開度を調節し、補助蒸
気管2から補助蒸気を脱気器1に導入する量を加減して
脱気器lの器内圧力を制御する。
FIG. 5 is a schematic system diagram of a conventional deaerator internal pressure control device.6 In FIG. It is connected to a pipe (or auxiliary steam source) 2. Also connected to the deaerator 1 are a condensate pipe 9 that sends condensate from a condenser (not shown) and a bleed pipe 10 that sends steam turbine bleed air. The water degassed in the deaerator 1 is sent to the deaerator water tank 8 through several downcomer pipes (not shown).
Further, the deaerator 1 and the deaerator water tank 8 are connected by several balance pipes (not shown) so that the internal pressures are equal during normal operation. The downcomer pipe 11 sends water from the water storage tank 8 to the boiler feed pump.The deaerator 1 is equipped with a pressure detector 5, which detects the actual pressure inside the deaerator 1. A predetermined output signal (
Normally, 0.35 kg/aJ The internal pressure of the deaerator 1 is controlled by adjusting the amount of auxiliary steam introduced into the deaerator 1 from the steam pipe 2.

従来の脱気器器内圧力制御装置が有効に作用するのは、
プラント起動停止時に限定され、蒸気タービン発電機が
起動して負荷を増加してゆき、蒸気タービン抽気10の
圧力が前述の圧力設定0.35kg/dgを越えると脱
気器器内圧力調節弁3は全開し、それ以上の負荷では蒸
気タービン抽気圧力も増加し、蒸気タービン抽気10に
よって脱気器1の脱気が行なわれる。
Conventional deaerator internal pressure control devices work effectively because:
When the steam turbine generator starts up and the load increases, and the pressure of the steam turbine bleed air 10 exceeds the above-mentioned pressure setting of 0.35 kg/dg, the deaerator internal pressure control valve 3 is fully opened, and at higher loads, the steam turbine bleed air pressure also increases, and the deaerator 1 is degassed by the steam turbine bleed air 10.

(発明が解決しようとする問題点) ここで、蒸気タービン発電機の負荷遮断や、FC8発生
時に伴なう負荷遮断において、蒸気タービン抽気10の
圧力は急激に低下する。一方説気器貯水槽8の貯水の温
度は負荷遮断前の抽気圧力に対応した飽和温度から僅か
にアンダークールした温度であり、脱気器器内圧力が急
激に低下することによって一気に蒸発(フラッシュ)を
はじめる。
(Problems to be Solved by the Invention) Here, during load shedding of the steam turbine generator or load shedding accompanying the occurrence of FC8, the pressure of the steam turbine bleed air 10 drops rapidly. On the other hand, the temperature of the water stored in the deaerator water tank 8 is slightly undercooled from the saturation temperature corresponding to the extraction pressure before the load is cut off, and as a result of the sudden drop in the pressure inside the deaerator, it evaporates (flash). ).

このとき脱気器器内圧力制御装置は圧力設定0.35k
g/diであり、フラッシュを抑えるに足る圧力(数k
g/a1グ乃至十数kg/cd法)には程遠い圧力設定
である。このためにその比例、積分機能はその設定値以
下に脱気器器内圧力が低下してこないと調節弁■を開け
るように作用しないので作動が遅れるが、その微分機能
が圧力降下を把えて調節弁3を開けて補助蒸気を脱気器
1に導入し、脱気器器内圧力の低下を緩和する。しかし
フラッシュを抑えるに足る脱気器lの器内圧力を確保す
るだけの補助蒸気量を導入するようになっていないので
、フラッシュ現象は継続する。
At this time, the pressure control device in the deaerator is set to 0.35k.
g/di, and the pressure (several kilograms) is sufficient to suppress flash.
The pressure setting is far from that (g/a1g to more than 10 kg/cd method). For this reason, the proportional and integral functions do not open the control valve until the pressure inside the deaerator falls below the set value, so the operation is delayed, but the differential function detects the pressure drop. The control valve 3 is opened to introduce auxiliary steam into the deaerator 1 to alleviate the drop in pressure inside the deaerator. However, since the amount of auxiliary steam is not introduced to ensure the internal pressure of the deaerator l sufficient to suppress the flash, the flash phenomenon continues.

他方では、蒸気タービン抽気温度、圧力が低下すること
により、脱気器1に至る給水加熱器(図示せず)の加熱
作用が減少し、復水器(図示せず)の下部ホットウェル
の復水(約40℃)があまり加熱されない冷たい復水の
状態で復水管9から脱気器1に流入するため、ますます
脱気器1の器内圧力を低下させる。脱気器1より貯水槽
8の圧力が高いフラッシュ時は、脱気器1下部に溜った
水は貯水槽8に流下しなくなるが、貯水槽8からボイラ
への給水は比較的少量ながら継続されており。
On the other hand, due to the reduced steam turbine bleed air temperature, pressure, the heating effect of the feedwater heater (not shown) leading to the deaerator 1 is reduced and the heating effect of the lower hot well of the condenser (not shown) is reduced. Since the water (approximately 40° C.) flows into the deaerator 1 from the condensate pipe 9 in the form of cold condensate that is not heated much, the internal pressure of the deaerator 1 is further reduced. During flushing, when the pressure in the water tank 8 is higher than that in the deaerator 1, the water accumulated at the bottom of the deaerator 1 stops flowing into the water tank 8, but water continues to be supplied from the water tank 8 to the boiler in a relatively small amount. I'm here.

貯水槽8の水位は異常低下に至る。The water level in the water tank 8 becomes abnormally low.

脱気器水位制御装置(図示せず)がこの水位低下に応じ
た多量の復水を脱気器に送り、脱気器1に溜る水はフラ
ッシュ現象が続くと増加の一途をたどるが、この静水頭
と圧力差とがバランスすると貯水槽8に流下し、貯水皿
も低下しフラッシュを抑制するが、この変化が急激なた
め、脱気器1から貯水槽8へ一気に水が落下して貯水槽
8の水位を異常高にしてフラッシュ現象も終おるが、貯
水槽8の水位が異常低から異常高に激変するために、脱
気器水位制御装置は大きくスウィングする。
A deaerator water level control device (not shown) sends a large amount of condensate to the deaerator in response to this water level drop, and the amount of water accumulated in the deaerator 1 continues to increase as the flush phenomenon continues. When the static water head and the pressure difference are balanced, water flows into the water tank 8, and the water storage tray also lowers, suppressing flushing. However, because this change is rapid, water falls all at once from the deaerator 1 to the water storage tank 8, causing water to accumulate. Although the flush phenomenon ends when the water level in the tank 8 is raised to an abnormally high level, the water level in the water storage tank 8 drastically changes from abnormally low to abnormally high, causing the deaerator water level control device to swing significantly.

これら一連のフラッシュに伴なう現象のうち、フラッシ
ュにより脱気器1および貯水槽8が冷たい復水の飽和蒸
気圧(最大−722amHg gauge)になるため
脱気器貯水槽8からBFPまでの水頭差10mにほぼ近
づき降水管11から水が降りてこなくなる危険があり、
BFPの必要正味吸込水頭(NPSH)を確保できなく
なる危険もある。また、脱気器1に異常に溜った水は、
抽気管10を通って途中の逆止弁で止まらない場合、蒸
気タービンに流入してウォーターインダクションによる
不測のトラブルを発生させる危険性を有している。
Among the phenomena accompanying these series of flashes, the flush causes the deaerator 1 and water tank 8 to reach the saturated vapor pressure of cold condensate (maximum -722 amHg gauge), so the water head from the deaerator water tank 8 to the BFP increases. The difference is almost 10 meters, and there is a danger that water will not come down from downpipe 11.
There is also a risk that the required net suction head (NPSH) of BFP may not be secured. In addition, water that has accumulated abnormally in the deaerator 1,
If the water passes through the bleed pipe 10 and is not stopped by a check valve on the way, there is a risk that the water may flow into the steam turbine and cause unexpected troubles due to water induction.

本発明の目的は、危険性の多い脱気器のフラッシュ現象
を抑制できる脱気器器内圧力制御装置を提供するもので
ある。
An object of the present invention is to provide a deaerator internal pressure control device that can suppress the highly dangerous deaerator flash phenomenon.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の脱気器器内圧力制御装置は、タービンの抽出や
その他の補助蒸気によって復水を直接接触加熱し、復水
中の溶解ガスを分離除去する脱気器系統において、前記
脱気器貯水槽の温度に対応する圧力設定値を一定の関数
として出力する温度/圧力変換回路と、脱気器の器内実
圧力を検知する圧力検出器とを備え、この温度/圧力変
換回路の出力と圧力検出器の出力とを入力しその両出力
に偏差が生じたときにその誤差分を比例、積分。
(Means for Solving the Problems) The deaerator internal pressure control device of the present invention directly contact heats condensate using turbine extraction or other auxiliary steam, and separates and removes dissolved gas in the condensate. The gas system includes a temperature/pressure conversion circuit that outputs a pressure setting value corresponding to the temperature of the deaerator water tank as a constant function, and a pressure detector that detects the actual pressure inside the deaerator, The output of this temperature/pressure conversion circuit and the output of the pressure detector are input, and when a deviation occurs between the two outputs, the error is proportional and integrated.

微分する圧力調節計の出力によって脱気器器内圧力調節
弁を開閉して補助蒸気の脱気器への導入を制御するよう
構成したことを特徴とするものである。
The present invention is characterized in that the pressure regulating valve in the deaerator is opened and closed in accordance with the output of the differentiating pressure regulator to control the introduction of auxiliary steam into the deaerator.

(作 用) 本発明においては、温度/圧力変換回路の出力と脱気器
器内実圧力を検出する圧力検出器の出力とを圧力調節計
で突き合せ、その両出力に偏差が生じたときにその誤差
分を比例、積分、微分した出力によって脱気器器内圧力
調節弁を開閉駆動し、補助蒸気を脱気器に導入する。こ
れにより脱気器器内圧力をプラント起動時には下限圧力
設定値になるように、また下限圧力設定値を超える範囲
については、貯水の飽和蒸気圧力値から一定値を差し引
いた圧力値になるように圧力制御する。
(Function) In the present invention, the output of the temperature/pressure conversion circuit and the output of the pressure detector that detects the actual pressure inside the deaerator are compared using a pressure regulator, and when a deviation occurs between the two outputs, The output obtained by proportionally, integrally, and differentiated the error amount opens and closes the pressure control valve in the deaerator, and auxiliary steam is introduced into the deaerator. As a result, the pressure inside the deaerator will be set to the lower limit pressure setting value when starting the plant, and in the range exceeding the lower limit pressure setting value, the pressure will be set to the saturated steam pressure value of the stored water minus a certain value. Pressure control.

(実施例) 以下本発明を第1図を参照して説明する。第1図は本発
明の一実施例を示す系統図で、第5図と同一部分には同
一符号を符してその説明を省略する。すなわち第1図に
おいて符号12は温度検出器を示し、貯水槽8の貯水温
度を検出する。この検出温度は符号13の温度/圧力変
換回路(又は温度/圧力変換器)に入力され、一定の関
数から成る貯水温度にみあった圧力設定値が出力される
(Example) The present invention will be described below with reference to FIG. FIG. 1 is a system diagram showing an embodiment of the present invention, and the same parts as in FIG. 5 are denoted by the same reference numerals, and the explanation thereof will be omitted. That is, in FIG. 1, reference numeral 12 indicates a temperature detector, which detects the temperature of water stored in the water tank 8. This detected temperature is input to a temperature/pressure conversion circuit (or temperature/pressure converter) 13, which outputs a pressure setting value that is a constant function and matches the storage water temperature.

この圧力設定値は圧力調節計(又は演算回路)6に入力
される。またこの圧力調節計(又は演算回路)6には脱
気器1の器内実圧力を検出する圧力検出器5の出力も入
力され、前記の貯水温度にみあった圧力設定値と比較、
演算され、この圧力調節計(又は演算回路)6の出力で
脱気器器内圧力調節弁3を開閉駆動する。
This pressure set value is input to the pressure regulator (or calculation circuit) 6. In addition, the output of the pressure detector 5 that detects the actual internal pressure of the deaerator 1 is also input to this pressure regulator (or calculation circuit) 6, and the output is compared with the pressure setting value that matches the storage water temperature.
The output of this pressure regulator (or arithmetic circuit) 6 drives the deaerator internal pressure regulating valve 3 to open and close.

第2図は、温度/圧力変換回路13の詳細構成を示す一
実施例である。符号14は温度/圧力変換器(又は温度
/圧力変換部)であり、貯水槽8の貯水温度にみあった
飽和蒸気圧力値を出力する関数が組込まれている。この
出力は加算器15に送られ、圧力降下バイアスを付加す
るバイアス設定器16の出力を減算させた出力と、圧力
の下限を設定する下限圧力設定器18とのいずれかの高
値が通過できるハイセレクター17を介して圧力調節計
(又は演算回路)6に送られる。
FIG. 2 is an embodiment showing the detailed configuration of the temperature/pressure conversion circuit 13. Reference numeral 14 denotes a temperature/pressure converter (or temperature/pressure converter) in which a function for outputting a saturated steam pressure value suitable for the storage temperature of the water tank 8 is incorporated. This output is sent to the adder 15, and the output from the bias setter 16 that adds a pressure drop bias is subtracted, or the lower limit pressure setter 18 that sets the lower limit of the pressure. It is sent to the pressure regulator (or calculation circuit) 6 via the selector 17.

次に以上の構成による本発明の脱気器器内圧力制御装置
の作用を説明する。プラントの起動時又は停止時におい
ては、下限圧力設定器18の設定する下限圧力設定値(
通常はo、35kg/Jy)で脱気器1の器内圧力を制
御する。また蒸気タービン発電機が起動して負荷をとり
、蒸気タービンの抽気圧力が前記の下限設定圧力を越え
ると、脱気器器内圧力調節弁3は閉まり、蒸気タービン
抽気による脱気に切替わる。この様に、通常運転におい
ては従来と全く同様に作用する。
Next, the operation of the deaerator internal pressure control device of the present invention having the above configuration will be explained. When starting or stopping the plant, the lower limit pressure set value (
Normally, the pressure inside the deaerator 1 is controlled at 35 kg/Jy). Further, when the steam turbine generator starts up and takes on a load and the steam turbine extraction pressure exceeds the lower limit set pressure, the deaerator internal pressure control valve 3 closes and the deaeration is switched to steam turbine extraction. In this way, during normal operation, it functions in exactly the same way as before.

ところで、蒸気タービン発電機が負荷遮断した場合には
、蒸気タービン抽気圧力は急激に低下する。一方、脱気
器貯水槽8の貯水は、負荷遮断前の抽気圧力にみあった
飽和蒸気温度になっているので、負荷遮断前の抽気圧力
つまり貯水温度にみあった飽和蒸気圧力を大幅に下回ら
ないように補助蒸気を導入して激しいフラッシュ現象が
発生しないようにする。
By the way, when the steam turbine generator undergoes load shedding, the steam turbine extraction pressure rapidly decreases. On the other hand, since the water stored in the deaerator water tank 8 has a saturated steam temperature that matches the bleed pressure before load shedding, the saturated steam pressure that matches the bleed pressure before load shedding, that is, the water storage temperature, can be significantly increased. Introduce auxiliary steam to prevent a severe flash phenomenon from occurring.

このように本発明の制御装置では、貯水槽8の貯水温度
を常時、温度検出器12で検出し、その貯水温度にみあ
った飽和蒸気圧力に僅かな圧力降下でバイアスを減じた
圧力設定値になるように調節弁3を駆動して補助蒸気を
脱気器1に導入することができる。また圧力降下バイア
スによって除々に脱気器器内圧力を降下させて補助蒸気
量を除々に絞り込む経済的な運用ができる。
In this way, in the control device of the present invention, the temperature of the water stored in the water storage tank 8 is constantly detected by the temperature detector 12, and the pressure set value is set by reducing the bias by a slight pressure drop to the saturated steam pressure that matches the storage water temperature. The auxiliary steam can be introduced into the deaerator 1 by driving the control valve 3 so that Furthermore, economical operation is possible in which the pressure in the deaerator is gradually reduced by the pressure drop bias, and the amount of auxiliary steam is gradually reduced.

この様にして、負荷遮断時の激しいフラッシュ現象が回
避できるので、従来の激しいフラッシュ現象に伴なう脱
気器貯水槽の水位異常低下や、これに引き続いて発生す
る水位異常高や、降水管から水が降りにくくなる現象は
回避でき、ボイラ給水ポンプのNPSHも確保でき、脱
気器1に異常に水が溜ることもないので、ウォーターイ
ンダクションの危険性も避けられる等の効果がある。
In this way, the severe flash phenomenon during load shedding can be avoided, so the abnormal drop in water level in the deaerator water tank that accompanies the conventional severe flash phenomenon, the abnormally high water level that occurs subsequently, and the downcomer pipe It is possible to avoid the phenomenon in which water becomes difficult to fall, the NPSH of the boiler feed pump can be ensured, and water does not accumulate abnormally in the deaerator 1, so the risk of water induction can be avoided.

なお、第3図に示す本発明の他の実施例においても、符
号12.12’、 12’はそれぞれ温度検出器であり
、検出箇所は貯水槽8の温度分布の差異の少ない他の箇
所あるいは降水管11であってもよい。
In addition, also in the other embodiment of the present invention shown in FIG. It may also be a downcomer pipe 11.

この検出温度は、温度演算回路19に送られ、中間値又
は平均値を演算し、その出力を温度/圧力変換回路13
に送るようにしたもので、この構成によって温度検出の
信頼性が向上できる。
This detected temperature is sent to the temperature calculation circuit 19, which calculates an intermediate value or average value, and sends the output to the temperature/pressure conversion circuit 13.
This configuration improves the reliability of temperature detection.

さらに第4図に示す他の実施例においては、従来構成の
脱気器器内圧力制御装置(第5図)に本発明の脱気器器
内圧力制御装置を追設する場合の実施例であり、第1図
及び第2図の構成要素を−7部組替え、調節弁3の開方
向信号を優先するハイセレクター(17’)で組み合せ
た制御系としたものである。
Furthermore, in another embodiment shown in FIG. 4, the deaerator internal pressure control device of the present invention is additionally installed in the deaerator internal pressure control device of the conventional configuration (FIG. 5). A control system is created in which seven parts of the components shown in FIGS. 1 and 2 are rearranged and combined with a high selector (17') that gives priority to the opening direction signal of the control valve 3.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、脱気器貯水槽の温度に
みあった圧力設定値を一定の関数として出力する温度/
圧力変換回路の出力と脱気器の器内実圧力を検知する圧
力検出器の出力とを突き合せ、その間に偏差が生じたと
きにその誤差分を比例、積分、微分する圧力調節計の出
力により脱気器器内圧力調節弁を開閉駆動して補助蒸気
の脱気器への導入を制御するよう構成したことにより。
As described above, in the present invention, the temperature/
The output of the pressure conversion circuit is compared with the output of the pressure detector that detects the actual pressure inside the deaerator, and when a deviation occurs between them, the output of the pressure controller is used to proportionally, integrate, and differentiate the error. By opening and closing the deaerator internal pressure control valve to control the introduction of auxiliary steam into the deaerator.

脱気器器内圧力をプラント起動時には下限圧力設定値に
なるように、また下限圧力設定値を超える範囲について
は貯水の飽和蒸気圧力値から一定値を差し引いた圧力値
になるように圧力制御せられ。
The pressure inside the deaerator is controlled so that it reaches the lower limit pressure set value when starting the plant, and in the range that exceeds the lower limit pressure set value, the pressure is controlled so that it becomes the pressure value obtained by subtracting a certain value from the saturated steam pressure of the stored water. Rare.

脱気器器内圧力が貯水槽の貯水の飽和蒸気圧力から大幅
に下がらなければ、激しいフラッシュ現象の発生を回避
することができる。
If the pressure inside the deaerator does not drop significantly from the saturated steam pressure of the water stored in the water tank, the occurrence of a severe flash phenomenon can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の脱気器器内圧力制御装置の一実施例を
示す系統構成図、第2図は本発明に使用する温度/圧力
変換回路を示す構成回路図、第3図および第4図は本発
明のそれぞれ異なる他の実施例を示す系統構成図、第5
図は従来の脱気器器内圧力制御装置を示す概略系統図で
ある。 1・・・脱気器 2・・・補助蒸気管 3・・・脱気器器内圧力調節弁 5.5′・・・圧力検出器 6.6′・・・圧力調節計(又は演算回路)7・・・圧
力設定器 8・・・脱気器貯水槽 9・・・復水管 10・・・抽気管 11・・・降水管 12、12’、 12’・・・温度検出器13・・・温
度/圧力変換回路 14・・・温1度/圧力変換器 15・・・加算器 16・・・バイアス設定器 17、17’・・・ハイセレクター 18・・・下限圧力設定器 19・・・温度演算回路 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a system configuration diagram showing an embodiment of the deaerator internal pressure control device of the present invention, FIG. 2 is a configuration circuit diagram showing a temperature/pressure conversion circuit used in the present invention, and FIGS. Figure 4 is a system configuration diagram showing other different embodiments of the present invention;
The figure is a schematic system diagram showing a conventional deaerator internal pressure control device. 1... Deaerator 2... Auxiliary steam pipe 3... Deaerator internal pressure control valve 5.5'... Pressure detector 6.6'... Pressure regulator (or calculation circuit ) 7... Pressure setting device 8... Deaerator water tank 9... Condensate pipe 10... Bleed pipe 11... Downpipe pipes 12, 12', 12'... Temperature detector 13. ...Temperature/pressure conversion circuit 14...Temperature 1 degree/pressure converter 15...Adder 16...Bias setter 17, 17'...High selector 18...Lower limit pressure setter 19... ...Temperature calculation circuit Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)タービンの抽気やその他の補助蒸気によって復水
を直接接触加熱し、復水中の溶解ガスを分離除去する脱
気器系統において、前記脱気器貯水槽の温度に対応する
圧力設定値を一定の関数として出力する温度/圧力変換
回路と、脱気器の器内実圧力を検知する圧力検出器とを
備え、この温度/圧力変換回路の出力と圧力検出器の出
力とを入力しその両出力に偏差が生じたときにその誤差
分を比例、積分、微分する圧力調節計の出力によって脱
気器器内圧力調節弁を開閉して補助蒸気の脱気器への導
入を制御するよう構成したことを特徴とする脱気器器内
圧力制御装置。
(1) In a deaerator system that directly contacts and heats condensate using turbine extraction air or other auxiliary steam to separate and remove dissolved gas in the condensate, the pressure setting value corresponding to the temperature of the deaerator water tank is set. It is equipped with a temperature/pressure conversion circuit that outputs an output as a constant function and a pressure detector that detects the actual pressure inside the deaerator. When a deviation occurs in the output, it is configured to open and close the pressure control valve inside the deaerator based on the output of the pressure controller that proportionally, integrally, and differentiates the error to control the introduction of auxiliary steam to the deaerator. A deaerator internal pressure control device characterized by:
JP28737687A 1987-11-16 1987-11-16 Pressure controller in deaerator Granted JPH01131801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28737687A JPH01131801A (en) 1987-11-16 1987-11-16 Pressure controller in deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28737687A JPH01131801A (en) 1987-11-16 1987-11-16 Pressure controller in deaerator

Publications (2)

Publication Number Publication Date
JPH01131801A true JPH01131801A (en) 1989-05-24
JPH0554002B2 JPH0554002B2 (en) 1993-08-11

Family

ID=17716558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28737687A Granted JPH01131801A (en) 1987-11-16 1987-11-16 Pressure controller in deaerator

Country Status (1)

Country Link
JP (1) JPH01131801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557355B2 (en) 2014-11-12 2020-02-11 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor assembly, turbine, and rotor blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557355B2 (en) 2014-11-12 2020-02-11 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor assembly, turbine, and rotor blade

Also Published As

Publication number Publication date
JPH0554002B2 (en) 1993-08-11

Similar Documents

Publication Publication Date Title
CA1218701A (en) Deaerator pressure control system for a combined cycle steam generator power plant
FI67753C (en) AONGGENERATORANLAEGGNING
KR880002362B1 (en) Deaerator level control apparatus
US2900792A (en) Steam power plant having a forced flow steam generator
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JPH01131801A (en) Pressure controller in deaerator
JPH11343814A (en) Steam control method in boiler turbine generating set
JP2588243B2 (en) Reheat steam stop valve operation test controller for steam turbine plant
JPH0694208A (en) Water level controller for deaerator
JPH07103406A (en) Water level controller in aeration device
JPH01159505A (en) Pressure controller in deaerator
KR102173808B1 (en) Method for preventing reactor trip during vacuum loss of condenser
GB2083178A (en) Deaerator level control
JPS6226403A (en) Preventive device for drain flush of feedwater heater
JPH0330687B2 (en)
JPS6017604A (en) Controller for water level of deaerator
JPH052801B2 (en)
JPS60218585A (en) Control device for deaerated steam system in condenser
JPS58178103A (en) Protective device for feedwater heater
JPS61138007A (en) Controller for water level and pressure of deaerator
JPH02225901A (en) Pressure control device for pressure in deaerator
JPS5851195B2 (en) condensate equipment
JPS63194102A (en) Drum-water flushing preventive device for exhaust heat recovery heat exchanger
JPS5891308A (en) Steam turbine device
JPS5981402A (en) Controller for water level of deaerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees