JPH01139706A - Manufacture of low chlorine titanium powder - Google Patents
Manufacture of low chlorine titanium powderInfo
- Publication number
- JPH01139706A JPH01139706A JP29530087A JP29530087A JPH01139706A JP H01139706 A JPH01139706 A JP H01139706A JP 29530087 A JP29530087 A JP 29530087A JP 29530087 A JP29530087 A JP 29530087A JP H01139706 A JPH01139706 A JP H01139706A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- water
- chlorine
- washing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- HBBATKAUXPHIQN-UHFFFAOYSA-N [Cl].[Ti] Chemical compound [Cl].[Ti] HBBATKAUXPHIQN-UHFFFAOYSA-N 0.000 title 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 22
- 239000000460 chlorine Substances 0.000 claims abstract description 22
- 239000010936 titanium Substances 0.000 claims abstract description 17
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 abstract description 20
- 239000012535 impurity Substances 0.000 abstract description 17
- 239000000203 mixture Substances 0.000 abstract description 9
- -1 etc. Inorganic materials 0.000 abstract description 8
- 229910001069 Ti alloy Inorganic materials 0.000 abstract description 6
- 238000010298 pulverizing process Methods 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- 239000011261 inert gas Substances 0.000 abstract description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 abstract 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 abstract 1
- 229910001629 magnesium chloride Inorganic materials 0.000 abstract 1
- 239000011780 sodium chloride Substances 0.000 abstract 1
- 239000000956 alloy Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 238000006356 dehydrogenation reaction Methods 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910000048 titanium hydride Inorganic materials 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241001655798 Taku Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000382 dechlorinating effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明はスポンジチタンを原料として水素化脱水素法(
以下HDH法)によってチタン粉末を製造する方法に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is based on a hydrodehydrogenation method (
The present invention relates to a method for producing titanium powder by the HDH method (hereinafter referred to as HDH method).
近時チタン合金は比強度が高く、耐熱性、耐食性にも優
れて航空機器等の材料として理想的な特性を備えている
が反面、溶解、鍛造、切削などの加工性に難点がある。Nowadays, titanium alloys have high specific strength, excellent heat resistance, and corrosion resistance, making them ideal materials for aircraft equipment, etc. However, on the other hand, they have difficulties in processability such as melting, forging, and cutting.
このため加工費の低減、歩留りの向上の観点から最終形
状に近い半製品を直接的に製造する技術として粉末冶金
法が有望になっている。Therefore, from the viewpoint of reducing processing costs and improving yield, powder metallurgy has become a promising technique for directly manufacturing semi-finished products with a shape close to the final shape.
粉末冶金法によってチタン合金を製造する場合、原料と
して純チタン粉末とチタン母合金粉末の混合粉を用いる
方法の二通りがある。前者の方法は両粉末の混合比を変
えることにより種々の組成の合金を安価に製造できるこ
とから有利な方法とされている。When producing titanium alloys by powder metallurgy, there are two methods: one uses a mixed powder of pure titanium powder and titanium master alloy powder as a raw material. The former method is considered advantageous because alloys of various compositions can be manufactured at low cost by changing the mixing ratio of both powders.
純チタンの製造方法としては金属チタンとして一般に得
られるスポンジチタンを機械的に粉砕して粉末とする方
法もあるが、スポンジチタンは展延性に冨むためこれを
直接粉砕しても微粉末とすることは難かしい。One method for producing pure titanium is to mechanically crush titanium sponge, which is commonly obtained as metal titanium, into a powder, but since titanium sponge is highly malleable, even if it is directly crushed, it will still be a fine powder. That's difficult.
またスポンジチタンを溶解し電極状に成形したのちこれ
を電極として回転させながらプラズマアーク等により溶
解させて微粉末を得る方法(プラズマ回転電極法)があ
る。There is also a method (plasma rotating electrode method) in which titanium sponge is melted, formed into an electrode shape, and then melted using a plasma arc or the like while rotating as an electrode to obtain a fine powder.
この方法によれば比較的純度の良いチタン粉末が得られ
るが、粉末形状及び溶解工程を含むためのコストに難点
がある。According to this method, titanium powder with relatively high purity can be obtained, but there are drawbacks to the powder shape and the cost due to the melting process.
このためスポンジチタンを水素化処理して脆弱なチタン
水素化物とし、これをボールミル等で粉砕してチタン水
素化物の微粉末としたのち、真空加熱等により脱水素し
てチタン粉末を得る水素化脱水素法(HDH法)による
方法が一般的に採用されている。For this reason, titanium sponge is hydrogenated to form a brittle titanium hydride, which is then ground in a ball mill to form a fine powder of titanium hydride, and then dehydrogenated by vacuum heating to obtain titanium powder.Hydrodehydration A method based on the elementary method (HDH method) is generally employed.
しかしながら粉末の原料であるスポンジチタンは四塩化
チタン(TiCj4)をナトリウムやマグネシウムによ
って還元して製造されており、スポンジチタン中には塩
素、マグネシウム、ナトリウム等の不純物が存在する。However, titanium sponge, which is a raw material for powder, is produced by reducing titanium tetrachloride (TiCj4) with sodium and magnesium, and impurities such as chlorine, magnesium, and sodium are present in titanium sponge.
このような不純物は従来の水素化脱水素法による粉末製
造のプロセスでは除去されず、粉末の中に持込まれる。Such impurities are not removed in the conventional hydrodehydrogenation powder manufacturing process, but are introduced into the powder.
すなわちHDH法で得られたチタン粉末にも0.02%
〜0.1%程度の塩素が残留しており、その他ナトリウ
ムやマグネシウムも含まれている。In other words, titanium powder obtained by the HDH method also contains 0.02%
Approximately 0.1% of chlorine remains, and sodium and magnesium are also included.
この粉末を合金原料として焼結製品等を製造した場合、
これらの不純物、特に塩素は塩化物として介在物の役割
を果たし製品の疲労強度、寿命等の材質特性に影響を与
えることになる。When producing sintered products etc. using this powder as an alloy raw material,
These impurities, especially chlorine, play the role of inclusions as chlorides and affect the material properties such as fatigue strength and life of the product.
本発明は塩素等の不純物の少ないチタン粉末を提供する
ことを目的とするものであり、この粉末を出発原料とし
た焼結部材の機械的性質、特に疲労強度と寿命を改善す
ることを可能にしようとするものである。The purpose of the present invention is to provide titanium powder with less impurities such as chlorine, and it is possible to improve the mechanical properties, particularly fatigue strength and life, of sintered parts using this powder as a starting material. This is what I am trying to do.
すなわち本発明は水素化脱水素法によりチタン粉末を製
造する方法において、原料チタンを水素化して粉砕後、
粉末を水洗して粉末中の塩素分を除去せしめたのち脱水
、乾燥するものである。That is, the present invention provides a method for producing titanium powder by a hydrodehydrogenation method, in which raw material titanium is hydrogenated and pulverized, and then
The powder is washed with water to remove the chlorine content, then dehydrated and dried.
本発明を以下詳細に説明する。The present invention will be explained in detail below.
HDH法におけるチタン粉末の製造は7iCJ 4を金
属Na又はMgで高温レトルト内で還元されて得られる
通常スポンジチタンと称される海綿状又は粗粉末状の金
属チタンを原料とする。The production of titanium powder in the HDH method uses spongy or coarse powdered titanium metal, usually called sponge titanium, which is obtained by reducing 7iCJ 4 with metal Na or Mg in a high-temperature retort.
このスポンジチタンをステンレス鋼又はアルミナ等の耐
火物容器に入れ、熱処理炉に装入し炉内に水素を供給し
水素化処理を行なう。水素化反応は520°C近傍より
開始するが反応の進行に伴なう発熱による昇温は水素の
供給量又は水素分圧で制御する。発熱の終了後、水素中
で冷却し水素化処理を終了する。This titanium sponge is placed in a refractory container made of stainless steel or alumina, and charged into a heat treatment furnace, and hydrogen is supplied into the furnace to perform hydrogenation treatment. The hydrogenation reaction starts at around 520°C, but the temperature increase due to heat generated as the reaction progresses is controlled by the amount of hydrogen supplied or the hydrogen partial pressure. After the end of heat generation, it is cooled in hydrogen to complete the hydrogenation treatment.
このようにして水素化したチタンの水素化物は極めて脆
弱となっており、回転ボールミルあるいはビンミル等各
種の機械的な粉砕法により所要の粒度に粉砕することが
できる。粉砕にあたってはAr等の不活性ガス雰囲気中
で行ない酸化防止策を十分に講じておく必要がある。粉
末の平均粒径、粒度分布は粉砕方法、粉砕条件によって
制御する。The titanium hydride thus hydrogenated is extremely brittle and can be ground to the desired particle size by various mechanical grinding methods such as a rotary ball mill or a bottle mill. The pulverization must be carried out in an inert gas atmosphere such as Ar, and sufficient measures must be taken to prevent oxidation. The average particle size and particle size distribution of the powder are controlled by the grinding method and grinding conditions.
チタン粉末としては0.2μ〜200μ程度に粉砕する
。The titanium powder is ground to about 0.2μ to 200μ.
水洗によるCj等不純物除去の効果は処理する粉末の量
と水の量の比率、使用する水のpl+や塩素分1水洗方
法により影響される。処理する粉末と水の量との比率は
水と粉末との接触、不純物の溶出を効率的に行わせるた
め1:5〜20であり、好ましくは1:lO〜20であ
る。The effect of removing impurities such as Cj by water washing is influenced by the ratio of the amount of powder to be treated and the amount of water, the pl+ of the water used, and the chlorine content 1 water washing method. The ratio of the amount of powder to be treated and the amount of water is 1:5 to 20, preferably 1:10 to 20, in order to ensure efficient contact between water and powder and elution of impurities.
水洗回数は処理する粉末の量と水の量との比率が小さい
場合は3回以上、比率が大きい場合は2回程で十分であ
る。また、水温は常温でも良いが50〜100°Cの温
水の方が効率的である。The number of times of water washing is three or more times when the ratio between the amount of powder to be treated and the amount of water is small, and about two times when the ratio is large. Further, the water temperature may be room temperature, but warm water of 50 to 100°C is more efficient.
水洗に使用する水にアンモニア等を加えpH9〜10の
アルカリ側にすることも塩素の除去効率上有効である。Adding ammonia or the like to the water used for washing to make it pH 9-10 on the alkaline side is also effective in terms of chlorine removal efficiency.
洗浄の最終段階ではイオン交換等でCQイオンを除去し
た純水を用いることが好ましい。なお、水洗時に超音波
を付加する等の撹拌を加えることにより洗浄効果を上げ
ることができる。In the final stage of washing, it is preferable to use pure water from which CQ ions have been removed by ion exchange or the like. Note that the cleaning effect can be increased by adding agitation such as applying ultrasonic waves during washing with water.
粉末粒径が20μ以下の微細な場合、水洗回数は3回以
上各lO分以上の水洗時間、20μ以上の場合は回数、
時間共2回10分以下と簡略化出来るが最終のC1等除
去効率は粉末が微細な程、効率が良い。If the powder particle size is fine, 20μ or less, the number of washings is 3 times or more, each washing time is 10 minutes or more, and if the particle size is 20μ or more, the number of washings is
Although the time can be simplified to 10 minutes or less twice, the final C1 etc. removal efficiency is more efficient as the powder is finer.
以上のような洗浄は前述したようなパンチ処理に限るこ
となく、ドリンブあるいはオーバーフロ一方式等連続処
理の場合にも適用することが出来る。The cleaning described above is not limited to the above-mentioned punch processing, but can also be applied to continuous processing such as one-sided drinbu or overflow processing.
水洗後の脱水、乾燥は濾過後、真空あるいは温風乾燥す
る。酸化防止の点から真空乾燥が望ましい。不純物を水
洗除去し乾燥したチタン水素化物の粉末からチタンと化
合している水素を除去すること(脱水素処理)によりチ
タン粉末を得る。脱水素処理は通常行われる条件で行な
えば良いが、好ましくは650〜700°Cで30分〜
2時間程度真空中で加熱するものである。650°C以
下では脱水素に長時間を必要とじ700“C以上では脱
水素処理中に粉末の固結が著しくなる。またこの処理に
おいては得られるチタン粉末の酸化及び窒化を防止し、
同時に脱水素を完全に行なうために10−5Torr以
下の真空下で加熱処理することが望ましい。脱水素処理
によってチタン粉末は軽度に固結していることが多いが
これら固結した粉末は回転ボールミルあるいはクラッシ
ャーミル、ビンミル等により、再度粉砕することにより
水素化処理後に粉砕して調整した所定の粉末粒度に戻す
ことが出来る。この際の酸化防止も前述の場合と同様必
要である。After washing with water, dehydration and drying are performed by filtration and vacuum or hot air drying. Vacuum drying is desirable from the viewpoint of oxidation prevention. Titanium powder is obtained by removing impurities by washing with water and removing hydrogen combined with titanium from the dried titanium hydride powder (dehydrogenation treatment). The dehydrogenation treatment may be carried out under the usual conditions, but preferably at 650 to 700°C for 30 minutes to
It is heated in a vacuum for about 2 hours. At temperatures below 650°C, dehydrogenation requires a long time, and at temperatures above 700"C, powder solidification becomes significant during the dehydrogenation process. In addition, this process prevents oxidation and nitridation of the titanium powder obtained.
At the same time, it is desirable to conduct the heat treatment under a vacuum of 10 -5 Torr or less in order to completely dehydrogenate. Titanium powder is often slightly consolidated due to dehydrogenation treatment, but these consolidated powders can be re-pulverized using a rotary ball mill, crusher mill, bottle mill, etc. to form the predetermined powder prepared by crushing after hydrogenation treatment. It can be returned to powder particle size. In this case, oxidation prevention is also necessary as in the case described above.
このようにして塩素等の不純物の少ないチタン粉末を得
ることができる。In this way, titanium powder containing less impurities such as chlorine can be obtained.
なお、これらの不純物を水洗除去する場合、スポンジチ
タンを水素化して粉砕し、脱水素処理したのちに水洗を
行っても良いが、粉砕後の加熱によってチタンの表面拡
散により塩化物溶出を抑制するためか、塩素は除去でき
るものの除去効率は低下する。In addition, when removing these impurities by washing with water, titanium sponge may be hydrogenated and pulverized, and then washed with water after dehydrogenation treatment.However, heating after pulverization suppresses chloride elution through surface diffusion of titanium. Perhaps because of this, although chlorine can be removed, the removal efficiency decreases.
塩素が除去されるメカニズムはスポンジチタン中にNa
CjあるいはMgα、、 FeC1g+ FeCl3の
形で夾雑物として捕捉されているこれらの不純物が粉末
化によって粉末表面に露出され、これらの不純物が水溶
性であるため水で洗浄することにより溶解。The mechanism by which chlorine is removed is Na in the titanium sponge.
These impurities captured as impurities in the form of Cj or Mgα, FeClg+ FeCl3 are exposed on the powder surface by powdering, and since these impurities are water-soluble, they are dissolved by washing with water.
除去されるためである。This is because it will be removed.
第1表Aに示すようなMg還元法によって製造されたス
ポンジチタン1kgを蓋のないステンレス鋼製容器(S
US304)に入れ、これを真空及び水素焼鈍が可能な
熱処理炉に装入して10−5Torrの真空度に到達後
、10°C/minで600 ’Cまで昇温し炉中に水
素を導入した。1 kg of titanium sponge produced by the Mg reduction method as shown in Table 1 A was placed in a stainless steel container without a lid (S
US304) and put it into a heat treatment furnace capable of vacuum and hydrogen annealing to reach a vacuum of 10-5 Torr, then raise the temperature to 600'C at a rate of 10°C/min and introduce hydrogen into the furnace. did.
直ちにスポンジチタンは水素化反応を開始した。Immediately, the titanium sponge started a hydrogenation reaction.
スポンジチタン内に予め埋め込んだ熱電対により水素化
反応をしているスポンジチタンの温度をチエツクし水素
ガスの供給量を制御して過度の発熱を抑制した。水素吸
収に伴なう発熱が停止したのち炉中に水素ガスを流しな
がら冷却した。チタン水素化物を容器より取り出し、こ
れをボールミルで一次粉砕したのちビンミルで二次粉砕
し0.5〜40μ、平均15μのチタン水素化物の粉末
を得た。The temperature of the titanium sponge undergoing a hydrogenation reaction was checked using a thermocouple embedded in the titanium sponge in advance, and the amount of hydrogen gas supplied was controlled to suppress excessive heat generation. After the heat generation due to hydrogen absorption stopped, the furnace was cooled while flowing hydrogen gas. The titanium hydride was taken out from the container, firstly ground in a ball mill, and then secondarily ground in a bottle mill to obtain a titanium hydride powder with a particle size of 0.5 to 40μ, with an average size of 15μ.
なお粉砕はいずれもAr雰囲気中で行った。しかるのち
、この粉末を洗浄用の容器に移し、これに70″Cの水
道水を加えて第1回目の洗浄を行った。Note that all the pulverization was performed in an Ar atmosphere. Thereafter, this powder was transferred to a washing container, and tap water at 70''C was added thereto for the first washing.
水量はチタン重量の約10倍とし容器外より超音波を付
加し強く撹拌した。10分間撹拌ののち停止し、上澄み
水を排出した。2回目以降は同様の作業を塩素分のない
イオン交換水で実施し3回目で終了した。洗浄の各回毎
に撹拌後の洗浄液を採取し、洗浄液中の塩素及び?Ig
の濃度を分析した推移を第1図に示す。第1図かられか
るように3回の洗浄により洗浄液中の塩素、マグネシウ
ム濃度は著しく低減しており、粉末中の塩素、マグネシ
ウムの溶出、除去がほぼ終了していることがわかる。The amount of water was approximately 10 times the weight of titanium, and ultrasonic waves were applied from outside the container to vigorously stir the mixture. After stirring for 10 minutes, it was stopped and the supernatant water was drained. From the second time onwards, similar operations were carried out using chlorine-free ion-exchanged water, and the work was completed on the third time. Collect the cleaning solution after stirring after each cleaning, and check for chlorine and chlorine in the cleaning solution. Ig
Figure 1 shows the analysis of the concentration over time. As can be seen from FIG. 1, the concentrations of chlorine and magnesium in the cleaning solution were significantly reduced after three washings, and the elution and removal of chlorine and magnesium from the powder was almost completed.
洗浄後の粉末はフィルター(濾紙)で水分を1次除去し
たのち真空乾燥炉中で水分を除去した。After washing, the powder was subjected to first removal of water using a filter (filter paper) and then removed in a vacuum drying oven.
しかるのち水素化処理時と同様の容器にこの粉末を入れ
真空熱処理炉に収め、10−’Torr以下の真空度に
到達後、700°Cで2時間加熱し脱水素処理をした。Thereafter, this powder was placed in the same container as used for hydrogenation treatment, placed in a vacuum heat treatment furnace, and after reaching a degree of vacuum of 10-'Torr or less, it was heated at 700°C for 2 hours to perform dehydrogenation treatment.
この間600°C近傍より水素の放出が開始され650
〜700°Cで活発になった。脱水素反応中は放出水素
のため真空度は悪くなったが反応が終了すると再び10
−’Torr台に戻り高真空となった。そのまま炉中で
冷却し脱水素処理を終了とした。純チタン粉末は脱水素
処理後に軽度に固結しているので再びArガスで封入し
たボールミルで軽く粗粉砕し、次いでビンミルで微細化
した。During this time, hydrogen release started from around 600°C and 650°C.
It became active at ~700°C. During the dehydrogenation reaction, the degree of vacuum deteriorated due to released hydrogen, but once the reaction was completed, it returned to 10
- Returned to the Torr stand and became a high vacuum. The dehydrogenation treatment was completed by cooling in the furnace. Since the pure titanium powder was slightly consolidated after the dehydrogenation treatment, it was again lightly ground coarsely in a ball mill sealed with Ar gas, and then finely ground in a bottle mill.
得られたスポンジチタン粉末ならびに比較のため従来の
HD H法によって製造されたチタン粉末の各々につい
ての成分及び粒度を第1表B、Cに示した。The components and particle sizes of the obtained sponge titanium powder and the titanium powder produced by the conventional HDH method for comparison are shown in Tables B and C.
第1表かられかるように本発明法で得られたチタン粉末
の塩素は50ppm以下と原料のスポンジチタンに比べ
て大幅に低下しておりまた従来のチタン粉末と比べても
塩素、マグネシウム、その他の不純物の極めて少ないも
のである。As can be seen from Table 1, the chlorine content of the titanium powder obtained by the method of the present invention is 50 ppm or less, which is significantly lower than the raw material sponge titanium. It has extremely low impurities.
このように不純物の少ないチタン粉末を焼結合金として
用いた場合の特性を確認するためチタン粉末を素粉末と
し、これにへ尼60%V40%の組成の母合金粉末を混
合し6%AA−4%V〜残チタンの合金組成に調整した
。この混合した合金粉末を予めプレス成形したのちΔr
ガス中で1トン/ cfflの圧力下で900 ”C2
時間の熱間静水圧焼結処理(HIP)を行ないチタン合
金棒を得た。これより各種JISに基いた試験片を削り
出し材質及び疲労試験を実施した。In order to confirm the characteristics when titanium powder with few impurities is used as a sintered alloy, titanium powder was used as a base powder, and a master alloy powder with a composition of 60% V40% was mixed with it. The alloy composition was adjusted to 4% V to residual titanium. After press-forming this mixed alloy powder in advance, Δr
900”C2 under pressure of 1 ton/cffl in gas
A titanium alloy rod was obtained by performing hot isostatic pressure sintering (HIP) for several hours. From this, various JIS-based test pieces were cut out and subjected to material and fatigue tests.
なお、比較のため従来の方法によって製造されたスポン
ジチタン粉末を素粉末として上記と同様の組成(6%A
I!、−4%■−残チタン)に混合した合金粉末ならび
に上記と同様の組成に溶製した合金からプラズマ回転電
極法によって製造した合金粉末について同様に成形、焼
結して得た焼結晶および上記と同様の組成で溶解、熱間
鋳造して得た鋳造品についても同様の試験を行った。こ
れらの合金の組成および粒度を第2表に、機械的性質を
第3表に、また疲労試験の結果を第2図に示す。For comparison, sponge titanium powder manufactured by the conventional method was used as base powder and the composition was the same as above (6%A
I! , -4% - remaining titanium) and the sintered crystals obtained by molding and sintering the alloy powder produced by the plasma rotating electrode method from the alloy melted to the same composition as above, and the above. Similar tests were also conducted on cast products obtained by melting and hot casting with the same composition. The compositions and grain sizes of these alloys are shown in Table 2, the mechanical properties are shown in Table 3, and the results of fatigue tests are shown in FIG.
本発明の方法によって製造したチタン粉末を素粉末とし
て使用した焼結材の材質、疲労特性は従来HDH法によ
るチタン粉末を素粉末として使用した焼結材のそれに比
べて向上しており特に疲労特性の向上が著しく、回転電
極材(REP法)によって得られた合金粉末を用いた焼
結材あるいは溶解、熱間鋳造による合金材と同等の特性
が得られた。The material quality and fatigue properties of the sintered material using the titanium powder produced by the method of the present invention as the base powder are improved compared to those of the sintered material using the titanium powder as the base powder produced by the conventional HDH method, especially the fatigue properties. The improvement in properties was remarkable, and properties equivalent to those of a sintered material using alloy powder obtained by a rotating electrode material (REP method) or an alloy material produced by melting or hot casting were obtained.
本発明の方法によりスポンジチタンを水素化し粉砕、脱
塩素、脱水素して得られるチタン粉末は従来のものと比
べて塩素、マグネシウム等の不純物が極めて少なく、こ
の結果、本発明法によるチタン粉末を素粉束として用い
たチタン合金焼結製品は強度及び疲労特性の優れたもの
である。The titanium powder obtained by hydrogenating, pulverizing, dechlorinating, and dehydrogenating titanium sponge by the method of the present invention has extremely less impurities such as chlorine and magnesium compared to conventional ones.As a result, the titanium powder obtained by the method of the present invention The titanium alloy sintered product used as the raw powder bundle has excellent strength and fatigue properties.
第1図は水素化チタン粉末洗浄水中の塩素ならびにマグ
ネシウムの濃度と洗浄回数との関係を示す図、第2図は
各種の製造方法によって得られたチタン合金粉末を用い
た焼結製品の疲労特性(操り返し数と最大応力との関係
)を示す図である。
第1図
箋l可 芽2」 手3回
沈 琢 回 歓Figure 1 shows the relationship between the concentration of chlorine and magnesium in the titanium hydride powder washing water and the number of washings, and Figure 2 shows the fatigue characteristics of sintered products using titanium alloy powder obtained by various manufacturing methods. It is a figure showing (relationship between number of repetitions and maximum stress). 1st paper sheet 1 bud 2" hand 3 times sink taku times huan
Claims (1)
て、原料チタンを水素化して粉砕後、粉末を水洗して粉
末中の塩素分を除去したのち脱水乾燥することを特徴と
する低塩素チタン粉末の製造方法。A method for producing titanium powder by a hydrodehydrogenation method, in which the raw material titanium is hydrogenated and pulverized, the powder is washed with water to remove the chlorine content in the powder, and then dehydrated and dried. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29530087A JPH01139706A (en) | 1987-11-25 | 1987-11-25 | Manufacture of low chlorine titanium powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29530087A JPH01139706A (en) | 1987-11-25 | 1987-11-25 | Manufacture of low chlorine titanium powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01139706A true JPH01139706A (en) | 1989-06-01 |
Family
ID=17818823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29530087A Pending JPH01139706A (en) | 1987-11-25 | 1987-11-25 | Manufacture of low chlorine titanium powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01139706A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168644B1 (en) | 1996-07-30 | 2001-01-02 | Toho Titanium Co., Ltd. | Titanium-base powders and process for production of the same |
WO2019124325A1 (en) * | 2017-12-20 | 2019-06-27 | トーホーテック株式会社 | Titanium powder and method for producing same |
WO2019176700A1 (en) * | 2018-03-16 | 2019-09-19 | トーホーテック株式会社 | Titanium powder and method for producing same |
-
1987
- 1987-11-25 JP JP29530087A patent/JPH01139706A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168644B1 (en) | 1996-07-30 | 2001-01-02 | Toho Titanium Co., Ltd. | Titanium-base powders and process for production of the same |
WO2019124325A1 (en) * | 2017-12-20 | 2019-06-27 | トーホーテック株式会社 | Titanium powder and method for producing same |
JPWO2019124325A1 (en) * | 2017-12-20 | 2020-12-03 | トーホーテック株式会社 | Titanium powder and its manufacturing method |
WO2019176700A1 (en) * | 2018-03-16 | 2019-09-19 | トーホーテック株式会社 | Titanium powder and method for producing same |
CN112055628A (en) * | 2018-03-16 | 2020-12-08 | 东邦技术服务股份有限公司 | Titanium-based powder and method for producing same |
JPWO2019176700A1 (en) * | 2018-03-16 | 2021-03-11 | トーホーテック株式会社 | Titanium powder and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011152359A1 (en) | Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same | |
JPS62238344A (en) | Mechanical alloying method | |
JPS5925003B2 (en) | Manufacturing method of sinterable alloy powder mainly composed of titanium | |
TWI611025B (en) | High-purity glutinous powder and preparation method thereof | |
TWI596215B (en) | A fine tantalum powder and its preparation method | |
JP2024526261A (en) | Tantalum-tungsten alloy powder and method for preparing same | |
JPH0261531B2 (en) | ||
JPH03122205A (en) | Manufacture of ti powder | |
DE60304996T2 (en) | METHOD FOR PRODUCING HIGH - PURITY METALS AND ALLOYS IN THE SAME. CHROME | |
JPH01139706A (en) | Manufacture of low chlorine titanium powder | |
CN111408728A (en) | Preparation method of prealloy powder for diamond tool | |
CN114749655B (en) | High-purity tantalum powder and preparation method thereof | |
JP2000226601A (en) | Production of reproduced tungsten raw material powder from tungsten alloy scrap and production of tungsten base sintered heavy alloy using same | |
US1968067A (en) | Alloy and method of making same | |
Schroth et al. | Mechanical alloying for heat-resistant copper alloys | |
JPH03107453A (en) | Ti-w target and production thereof | |
CN114192774A (en) | Silver-tungsten electrical contact material with high dispersion degree and high compactness and preparation method thereof | |
JPS63303017A (en) | Production of w-ti alloy target | |
JPS619533A (en) | Manufacture of rare earth metal | |
JPH04362105A (en) | Production of fine intermetallic compound powder | |
JPH086121B2 (en) | Method for producing low oxygen metal chromium powder | |
JP2000178721A (en) | Ruthenium sputtering target, ruthenium raw material powder for producing the target and production thereof | |
JP3652993B2 (en) | Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy | |
CN118814003B (en) | A powder metallurgy precipitation strengthened cobalt-based high-temperature alloy and preparation method thereof | |
JP2560566B2 (en) | Method for producing hydrogen storage alloy |