JPH01138497A - Method for decontaminating radiation metal waste - Google Patents
Method for decontaminating radiation metal wasteInfo
- Publication number
- JPH01138497A JPH01138497A JP19749987A JP19749987A JPH01138497A JP H01138497 A JPH01138497 A JP H01138497A JP 19749987 A JP19749987 A JP 19749987A JP 19749987 A JP19749987 A JP 19749987A JP H01138497 A JPH01138497 A JP H01138497A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- decontamination
- decontaminating
- solution
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010814 metallic waste Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 24
- 230000005855 radiation Effects 0.000 title 1
- 238000005202 decontamination Methods 0.000 claims abstract description 57
- 230000003588 decontaminative effect Effects 0.000 claims abstract description 44
- 238000009390 chemical decontamination Methods 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 150000002500 ions Chemical class 0.000 claims abstract description 24
- 238000005498 polishing Methods 0.000 claims abstract description 21
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002253 acid Substances 0.000 claims abstract description 19
- 230000002285 radioactive effect Effects 0.000 claims abstract description 18
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 14
- 239000011707 mineral Substances 0.000 claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 12
- 230000007935 neutral effect Effects 0.000 claims abstract description 6
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 4
- 239000006228 supernatant Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 20
- 239000012670 alkaline solution Substances 0.000 claims description 12
- 239000003929 acidic solution Substances 0.000 claims description 11
- 239000012857 radioactive material Substances 0.000 claims description 7
- 239000000941 radioactive substance Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 239000008151 electrolyte solution Substances 0.000 claims description 5
- 239000012266 salt solution Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 5
- 239000002699 waste material Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 abstract description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 abstract description 3
- 235000011152 sodium sulphate Nutrition 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 2
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 230000009467 reduction Effects 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002901 radioactive waste Substances 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 2
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、原子力発電所などの放射性物質取り扱い施設
から゛発生する表面が汚染された放射性金属廃棄物の除
染方法に係り、特に、放射性金属廃棄物を一般廃棄物並
の放射能レベルにまで除染して放射性廃棄物量を減容す
る除染方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for decontaminating radioactive metal waste whose surface is contaminated and which is generated from facilities handling radioactive materials such as nuclear power plants. This article relates to a decontamination method for reducing the volume of radioactive waste by decontaminating metal waste to a level of radioactivity comparable to that of general waste.
(従来の技術)
従来、この種の放射性金属廃棄物は、細かく切断される
等して、ドラム缶詰にし、放射性廃棄物貯蔵庫に貯蔵さ
れている。しかし、貯蔵中のドラム缶の数は、年々増加
の傾向に有り、また将来予測される原子力発電所の廃炉
解体時には、放射性金属廃棄物だけで、数万本のドラム
缶の発生が予想される。(Prior Art) Conventionally, this type of radioactive metal waste has been cut into pieces, canned in drums, and stored in a radioactive waste storage. However, the number of drums in storage is increasing year by year, and when nuclear power plants are decommissioned and dismantled in the future, it is expected that tens of thousands of drums will be generated from radioactive metal waste alone.
このことから、前記の放射性金属廃棄物の減容化が望ま
れており、この放射性廃棄物を一般廃棄物並に除染する
方法が検討されている。For this reason, it is desired to reduce the volume of the radioactive metal waste, and methods for decontaminating this radioactive waste in the same manner as general waste are being studied.
その方法として、電気化学的に被除染物の表面を溶解し
て放射性物質を除去する電解器に除染法と化学的に被除
染物の表面を溶解して放射性物質を除去する化学除染法
が知られている。Two methods are used: an electrolytic decontamination method that electrochemically dissolves the surface of the object to remove radioactive materials, and a chemical decontamination method that chemically dissolves the surface of the object and removes the radioactive material. It has been known.
電解研磨除染法は、除染速度は速いが、被除染物に対極
を対峙する必要があり、複雑な形状物には適用しにくい
という欠点がある。これに対し、化学除染法は、除染剤
の化学的作用により、金属表面を溶解する方法であり、
除染速度は遅いが複雑な形状物にも適用できるという長
所がある。Although the electrolytic polishing decontamination method has a fast decontamination speed, it has the disadvantage that it is difficult to apply to objects with complex shapes because it requires a counter electrode to be placed opposite the object to be decontaminated. On the other hand, the chemical decontamination method is a method that dissolves the metal surface through the chemical action of a decontamination agent.
Although the decontamination speed is slow, it has the advantage of being applicable to objects with complex shapes.
このことから、電解研磨除染法と化学除染法の両者の長
所を活かし、あらゆる形状の被除染物にも対応でき、且
つ二次廃棄物量の少ない除染方法として、単純な形状物
を中性塩溶液を用いる電解研磨除染法によって除染し、
複雑な形状物を化学除染法で除染し、化学除染における
使用済液を中和した後、放射性物質を分M除去し、電解
研磨除染の電解液として再使用する方法が提案されてい
る。Therefore, by taking advantage of the advantages of both the electrolytic polishing decontamination method and the chemical decontamination method, it is possible to deal with objects of any shape and produce less secondary waste. Decontaminated by electrolytic polishing decontamination method using a neutral salt solution,
A method has been proposed in which complex-shaped objects are decontaminated using chemical decontamination methods, the used solution from chemical decontamination is neutralized, radioactive substances are removed by a fraction, and the solution is reused as an electrolyte for electrolytic polishing decontamination. ing.
(発明が解決しようとする問題点)
しかしながら、電解研磨除染法は、電気化学的に表面を
溶解する方法であることから、炭素鋼やステンレス鋼等
、一般に原子力発電所から発生する大部分の材質の金属
廃棄物に適用できるが、化学除染法は、化学的な作用を
用いるため、被除染物の材質によって除染液を選ぶ必要
があ志。例えば、炭素鋼の場合、放射性物質の大部分を
含む酸化皮膜は、マグネタイト(Fc、On)とへマタ
イト(Few o2)とから出来ていると言われており
、これは、硫酸(HfSO4)を用いて容易に溶解可能
であり、また、炭素鋼の母材自体も容易に溶解すること
から硫酸を用いた化学除染を適用できる。しかし、ステ
ンレス鋼の場合、放射性物質の大部分を含む酸化皮膜は
、マグネタイト(FeJ4)、ヘマタイト(FezO+
)の他、クロムフェライト(FeCr 204)からで
きていると言われており、この酸化皮膜の成分であるク
ロムフェライト(FeCrzOt)は、硫酸(llzs
O*)に溶解しないため、これらの鉱酸に浸漬する前に
、クロムを3価から6価に酸化溶解し、皮膜を鉱酸に溶
解しやすい形態に変える方法が検討されており、その好
適な方法として、過マンガン酸カリウムを含む酸性溶液
或いはアルカリ性溶液に浸漬する方法が考えられている
。(Problem to be solved by the invention) However, since the electrolytic polishing decontamination method is a method of electrochemically dissolving the surface, most of the materials generated from nuclear power plants, such as carbon steel and stainless steel, However, since chemical decontamination methods use chemical action, it is necessary to select a decontamination solution depending on the material of the object to be decontaminated. For example, in the case of carbon steel, the oxide film that contains most of the radioactive substances is said to be made of magnetite (Fc, On) and hematite (Fewo2), which is made of sulfuric acid (HfSO4). Chemical decontamination using sulfuric acid can be applied because the base material of carbon steel itself is also easily dissolved. However, in the case of stainless steel, the oxide film that contains most of the radioactive substances is magnetite (FeJ4), hematite (FezO+
), it is said to be made of chromium ferrite (FeCr 204), and chromium ferrite (FeCrzOt), which is a component of this oxide film, is made of sulfuric acid (llzs
Since chromium does not dissolve in mineral acids, a method of oxidizing and dissolving chromium from trivalent to hexavalent before immersing it in these mineral acids to change the film to a form that is easily soluble in mineral acids is being considered, and this is the preferred method. As a possible method, immersion in an acidic or alkaline solution containing potassium permanganate has been considered.
したがって、本発明に係る、単純な形状物を中性塩を用
いる電解研磨除染法で除染し、複雑な形状物を化学除染
法で除染して、化学除染における使用済液を中和した後
、放射性物質を分離除去し電解研磨除染の電解液として
再使用する除染方法において、ステンレス鋼製の複雑形
状物を化学除染するためには、硫酸(IhSOt)や重
硫酸ソーダ(NaHSO3,)等の鉱酸に被除染物を浸
漬する前に、過マンガン酸カリウムを含む酸性溶液或い
はアルカリ性溶液に浸漬する必要がある。Therefore, according to the present invention, objects with simple shapes are decontaminated by the electrolytic polishing decontamination method using neutral salts, objects with complex shapes are decontaminated by the chemical decontamination method, and the used liquid in chemical decontamination is removed. In a decontamination method that separates and removes radioactive substances after neutralization and reuses them as an electrolyte for electropolishing decontamination, sulfuric acid (IhSOt) and bisulfuric acid are used to chemically decontaminate complex-shaped objects made of stainless steel. Before an object to be decontaminated is immersed in a mineral acid such as soda (NaHSO3,), it is necessary to immerse it in an acidic or alkaline solution containing potassium permanganate.
然るに、過マンガン酸カリウムは、一般に十分な反応性
をもたせるため過剰量で添加するのが普通であり、反応
後の液には未反応の過マンガン酸イオン(MnO6)が
残っている。そのため使用済液を中和後、電解研磨除染
の電解液として使用すると、この過マンガン酸イオン(
MnO4)が電解除染性能を阻害するという問題があっ
た。However, potassium permanganate is generally added in excess in order to provide sufficient reactivity, and unreacted permanganate ions (MnO6) remain in the solution after the reaction. Therefore, when the used solution is neutralized and used as an electrolyte for electropolishing decontamination, the permanganate ions (
There was a problem that MnO4) inhibited the electrolytic dedying performance.
本発明の目的は、前記従来技術の欠点を解消し、過マン
ガン酸カリウムを含む酸性溶液或いはアルカリ性溶液と
鉱酸を用いた化学除染液を中和して、電解研磨除染の電
解液として再使用する放射性金属廃棄物の除染方法にお
いて、電解研磨除染における除染性能の低下を防止する
ことにある。An object of the present invention is to eliminate the drawbacks of the prior art and to neutralize a chemical decontamination solution using an acidic solution containing potassium permanganate or an alkaline solution and a mineral acid, and to use it as an electrolytic solution for electrolytic polishing decontamination. In a method for decontaminating radioactive metal waste to be reused, the objective is to prevent deterioration in decontamination performance during electrolytic polishing decontamination.
(問題点を解決するための手段)
本発明は、電解研磨除染での効率の低下が、過マンガン
酸カリウムを含む酸性溶液或いはアルカリ性溶液と鉱酸
を使用した化学除染の使用済中和液に含まれる過マンガ
ン酸イオン(MnO4)が電解研磨除染の電解液に混入
しているためであることを、実験により確認し、この過
マンガン酸イオン(MnO4−)を除去した後、化学除
染の使用済液を電解除染の電解液として、再使用するよ
うに構成したものである。(Means for Solving the Problems) The present invention shows that the decrease in efficiency in electropolishing decontamination is caused by the use of spent neutralization of chemical decontamination using acidic or alkaline solutions containing potassium permanganate and mineral acids. It was confirmed through experiments that this was due to permanganate ions (MnO4) contained in the electrolytic polishing decontamination electrolyte solution, and after removing this permanganate ion (MnO4-), chemical This system is designed to reuse the used decontamination solution as an electrolytic solution for decontamination.
すなわち、本発明による、放射性金属廃棄物の除染方法
は、単純な形状物を中性塩溶液を用いる電解研磨除染法
によって除染し、複雑な形状物を過マンガン酸カリウム
を含む酸性溶液或いはアルカリ性溶液と鉱酸溶液を用い
て化学的に除染し、この化学除染の使用済液を中和し、
大部分の放射性物質を沈澱として分離除去し、その上澄
液を電解研磨除染の電解液として再使用する放射性金属
廃棄物の除染方法において、化学除染の使用済液を中和
する前に過マンガン酸イオン(MnO4−)を二酸化マ
ンガン(MnO□)に還元して析出させ、放射性物質の
分離工程と同じ工程で前記二酸化マンガン(MnO□)
を分離した後、電解研磨除染の電解液として再使用する
ことを特徴とする。That is, in the decontamination method for radioactive metal waste according to the present invention, objects with simple shapes are decontaminated by an electrolytic polishing decontamination method using a neutral salt solution, and objects with complex shapes are decontaminated with an acidic solution containing potassium permanganate. Alternatively, chemical decontamination is performed using an alkaline solution and a mineral acid solution, and the spent chemical decontamination solution is neutralized.
In a radioactive metal waste decontamination method in which most radioactive materials are separated and removed as precipitates and the supernatant liquid is reused as an electrolyte for electropolishing decontamination, before neutralizing the spent chemical decontamination liquid. permanganate ion (MnO4-) is reduced to manganese dioxide (MnO□) and precipitated, and the manganese dioxide (MnO□) is removed in the same process as the radioactive substance separation process.
It is characterized by being separated and then reused as an electrolyte for electrolytic polishing decontamination.
次に、図面に基づいて本発明を具体的に説明する。第1
図は、本発明による除染装置の一実施態様を示す系統図
である。この装置は、第一化学除染槽1、第二化学除染
槽2、過マンガン酸イオン還元槽3、中和槽4、固液分
離槽5、電解研磨除染槽6から成る。Next, the present invention will be specifically explained based on the drawings. 1st
The figure is a system diagram showing one embodiment of the decontamination device according to the present invention. This device consists of a first chemical decontamination tank 1, a second chemical decontamination tank 2, a permanganate ion reduction tank 3, a neutralization tank 4, a solid-liquid separation tank 5, and an electropolishing decontamination tank 6.
第1図に示した装置において、バルブ、ポンプ等の複雑
な形状の放射性金属廃棄物は、過マンガン酸カリウムを
含む酸性溶液或いはアルカリ性溶液が入っている第1化
学除染槽に浸漬し、主にクロムを含有している酸化皮膜
からクロムを6価のイオンとして酸化溶解した後、硫酸
、重硫酸ナトリウム、硝酸等の鉱酸の溶液を除染液とし
た第二化学除染槽2に浸漬して除染され、直管、ティー
ズ等の単純な形状の放射性金属廃棄物は、硫酸ナトリウ
ム溶液又は硝酸ナトリウム溶液等の中性塩の溶液を電解
液とした電解研磨除染槽6で除染される。In the apparatus shown in Figure 1, radioactive metal waste with complex shapes such as valves and pumps is immersed in the first chemical decontamination tank containing an acidic or alkaline solution containing potassium permanganate. After oxidizing and dissolving chromium as hexavalent ions from the oxide film containing chromium, the chromium is immersed in the second chemical decontamination tank 2 using a solution of mineral acids such as sulfuric acid, sodium bisulfate, and nitric acid as the decontamination liquid. Radioactive metal waste with simple shapes such as straight pipes and tees is decontaminated in an electrolytic polishing decontamination tank 6 using a neutral salt solution such as sodium sulfate solution or sodium nitrate solution as the electrolyte. be done.
化学除染液として使用する、過マンガン酸カリウムを含
むアルカリ性溶液及び酸性溶液、鉱酸の濃度並びに電解
研磨除染液の電解液として使用する硫酸ナトリウム又は
硝酸ナトリウムの濃度は、これらの除染方法に通常使用
される濃度であってよい。The concentrations of alkaline and acidic solutions containing potassium permanganate, mineral acids used as chemical decontamination solutions, and the concentrations of sodium sulfate or sodium nitrate used as electrolytes in electrolytic polishing decontamination solutions are determined by these decontamination methods. It may be at a concentration commonly used for.
他方、第一化学除染槽1には、酸化剤として過マンガン
酸カリウムを使用しているので、反応に寄与しなかった
過マンガン酸イオンが溶存している。この過マンガン酸
イオンが電解研磨除染の電解液に混入すると、電解研磨
除染での効率が低下するため、この過マンガン酸イオン
を還元して二酸化マンガン(MnO□)として析出させ
、液中から分離するため、第一化学除染槽1の除染液は
過マンガン酸イオン還元槽3に導入される。この際、第
一化学除染槽1の除染液が、水酸化ナトリウム溶液、硝
酸ナトリウム溶液等のアルカリ性溶液である場合には、
還元剤としてシュウ酸((COOH) t〕をそのまま
添加して良いが、硫酸や硝酸などの酸性溶液である場合
には、水酸化ナトリウムで強アルカリ性溶液にした後、
シュウ酸((Cool)! )を添加する。この操作に
よって過マンガン酸イオンは、次式の反応によって二酸
化マンガン(MnO□)に還元され析出する。On the other hand, since potassium permanganate is used as an oxidizing agent in the first chemical decontamination tank 1, permanganate ions that do not contribute to the reaction are dissolved. If this permanganate ion mixes into the electrolytic solution for electrolytic polishing decontamination, the efficiency of electrolytic polishing decontamination will decrease, so this permanganate ion is reduced and precipitated as manganese dioxide (MnO The decontamination liquid in the first chemical decontamination tank 1 is introduced into the permanganate ion reduction tank 3 in order to separate it from the permanganate ion reduction tank 3. At this time, if the decontamination liquid in the first chemical decontamination tank 1 is an alkaline solution such as a sodium hydroxide solution or a sodium nitrate solution,
Oxalic acid ((COOH) t) may be added as is as a reducing agent, but if it is an acidic solution such as sulfuric acid or nitric acid, after making it a strong alkaline solution with sodium hydroxide,
Add oxalic acid ((Cool)!). Through this operation, permanganate ions are reduced to manganese dioxide (MnO□) and precipitated by the following reaction.
2 Mid、 + 4 !hO+ 3 C2O4,”
−→2 Mn0z + 80H−+ 6 coz次に、
この液は、中和槽4に導入され、第二化学除染槽2の使
用済液と混合される。ここで、第二化学除染槽2では除
染液として、硫酸、重硫酸ナトリウム、硝酸等の鉱酸を
使用しているので、第二化学除染槽2からの使用済液に
は、放射性金属がイオンとして溶存しているが、過マン
ガン酸イオン還元槽3から導入される第一化学除染槽の
使用済液はアルカリ性であるため、放射性金属は中和槽
3では金属水酸化物となり、析出される。2 Mid, +4! hO+ 3 C2O4,”
−→2 Mn0z + 80H−+ 6 coz Next,
This liquid is introduced into the neutralization tank 4 and mixed with the used liquid in the second chemical decontamination tank 2. Here, since the second chemical decontamination tank 2 uses mineral acids such as sulfuric acid, sodium bisulfate, and nitric acid as decontamination liquid, the used liquid from the second chemical decontamination tank 2 contains radioactive materials. Metals are dissolved as ions, but since the spent liquid in the first chemical decontamination tank introduced from the permanganate ion reduction tank 3 is alkaline, radioactive metals become metal hydroxides in the neutralization tank 3. , is precipitated.
しかし、この操作において、酸濃度とアルカリ濃度のバ
ランスがどちらかに偏っている場合には、酸又はアルカ
リを添加し、pl+を中性に調整する。However, in this operation, if the balance between acid concentration and alkali concentration is biased to either side, acid or alkali is added to adjust pl+ to neutrality.
この際、酸としては、第二化学除染槽2に入れられてい
ると同じ鉱酸を使用する。こうして得た中和後の除染液
は、電解研磨除染槽6の使用済液と同様に、固液分離槽
5に導入される。固液分離槽5で分離された上澄液は、
電解研磨除染槽6へ移送され、電解液として循環、再使
用される。At this time, the same mineral acid contained in the second chemical decontamination tank 2 is used as the acid. The neutralized decontamination liquid thus obtained is introduced into the solid-liquid separation tank 5 in the same manner as the used liquid in the electropolishing decontamination tank 6. The supernatant liquid separated in the solid-liquid separation tank 5 is
It is transferred to the electrolytic polishing decontamination tank 6, where it is circulated and reused as an electrolyte.
また、濃縮スラッジは、固化処理工程7に導入され処理
される。Further, the concentrated sludge is introduced into a solidification treatment step 7 and treated.
(実施例)
次に、実施例に基づいて本発明を詳述するが、本発明は
、これに限定されるものではない。(Example) Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.
実施例1
放射性物質で汚染されたポンプ(材質:5IJS304
)及び直管(材質:5S41)を第1図に示した本発明
の方法と、第2図に示した、過マンガン酸イオン還元槽
を設けない従来の方法により除染し、電解研磨除染での
直管の除染性能を比較した。Example 1 Pump contaminated with radioactive materials (Material: 5IJS304
) and straight pipes (material: 5S41) were decontaminated by the method of the present invention shown in Fig. 1 and the conventional method without a permanganate ion reduction tank shown in Fig. 2, followed by electropolishing decontamination. The decontamination performance of straight pipes was compared.
各工程の除染条件は、以下の通りである。The decontamination conditions for each process are as follows.
第1化学除染の条件:
除染液 NaOH3,6モル/lKMnO4
1モル/1
温度 80℃
時間 2時間
第二化学除染の条件:
除染液 H2SO,1,8モル/2温度
80℃
時間 1時間
過マンガン酸イオン還元槽
シュウ酸添加量 1.5モル/1
電解研磨除染の条件
対極 炭素鋼
電解液 Na25Ot O,9モル/1電
流密度 0.3 A/cnl交番条件
陰極60秒、陽極60秒ポンプの放射能面密度は、
除染後に検出限界(IXIO−’μCi / ctA
)以下であった。First chemical decontamination conditions: Decontamination liquid NaOH3.6 mol/lKMnO4
1 mole/1 Temperature: 80°C Time: 2 hours Conditions for second chemical decontamination: Decontamination liquid H2SO, 1.8 mole/2 temperature
80℃ Time: 1 hour Permanganate ion reduction tank Oxalic acid addition amount: 1.5 mol/1 Electrolytic polishing decontamination conditions Counter electrode Carbon steel electrolyte Na25Ot O, 9 mol/1 Current density: 0.3 A/cnl Alternating conditions
The radioactive surface density of the cathode pump for 60 seconds and the anode pump for 60 seconds is
After decontamination, the detection limit (IXIO-'μCi/ctA
) or less.
直管の電気除染結果を第3図に示した。Figure 3 shows the results of electrical decontamination of straight pipes.
従来の方法では、放射能面密度が検出限界(lXIO−
’μCi/cnl)以下になル(D ニ約1009 カ
かるのに対し、本発明方法では、約30分で検出限界以
下に達した。In conventional methods, the radioactive areal density is below the detection limit (lXIO-
In contrast, in the method of the present invention, the detection limit was reached in about 30 minutes.
この実施例においては、第一化学除染槽の除染液として
アルカリ性溶液を用いたが、酸性溶液を用いた場合には
、過マンガン酸イオン還元槽において、アルカリ性にし
た後、シュウ酸を添加すれば、同様の効果が得られる。In this example, an alkaline solution was used as the decontamination solution in the first chemical decontamination tank. However, if an acidic solution is used, oxalic acid is added after making it alkaline in the permanganate ion reduction tank. The same effect can be obtained by doing so.
(発明の効果)
本発明によれば、過マンガン酸カリウムを含む酸性溶液
あるいはアルカリ性溶液と鉱酸を用いる化学除染液を中
和した後、電解研磨除染の電解液として再使用しても、
除染性能の低下がみられず、放射性金属廃棄物を一般廃
棄物並の放射能レベルにまで効率的に除染できる。(Effects of the Invention) According to the present invention, after neutralizing a chemical decontamination solution using an acidic solution containing potassium permanganate or an alkaline solution and a mineral acid, it can be reused as an electrolyte for electropolishing decontamination. ,
There is no deterioration in decontamination performance, and radioactive metal waste can be efficiently decontaminated to the same level of radioactivity as general waste.
第1図は本発明方法を実施する装置の系統図、第2図は
従来の方法を示す系統図、第3図は直管を電解除染した
場合の電解時間と放射能面密度の関係を示すグラフ図で
ある。
符号の説明
1・・・第一化学除染槽、2・・・第二化学除染槽、3
・・・過マンガン酸イオン還元槽、4・・・中和槽、5
・・・固液分離槽、6・・・電解研磨除染槽Figure 1 is a system diagram of an apparatus for carrying out the method of the present invention, Figure 2 is a system diagram showing a conventional method, and Figure 3 is a diagram showing the relationship between electrolysis time and radioactive surface density when straight pipes are electrolytically destained. It is a graph diagram. Explanation of symbols 1...First chemical decontamination tank, 2...Second chemical decontamination tank, 3
... Permanganate ion reduction tank, 4... Neutralization tank, 5
...Solid-liquid separation tank, 6...Electrolytic polishing decontamination tank
Claims (1)
の放射性金属廃棄物を除染するため、単純な形状物を中
性塩溶液を用いる電解研磨除染法によって除染し、複雑
な形状物を、過マンガン酸カリウムを含む酸性溶液或い
はアルカリ性溶液と鉱酸溶液を用いて化学的に除染し、
この化学除染の使用済液を中和した後、放射性物質を分
離除去し、その上澄液を電解研磨除染の電解液として再
使用する放射性金属廃棄物の除染方法において、化学除
染の使用済液を中和する前に過マンガン酸イオン(Mn
O_4^−)を二酸化マンガン(MnO_2)に還元し
て析出させ、放射性物質の分離工程と同じ工程で前記二
酸化マンガン(MnO_2)を分離除去した後、電解研
磨除染の電解液として再使用することを特徴とする放射
性金属廃棄物の除染方法。(1) In order to decontaminate radioactive metal waste of various shapes generated from facilities handling radioactive materials, simple shaped objects are decontaminated by electrolytic polishing decontamination method using a neutral salt solution, and complicated shaped objects are decontaminated. , chemical decontamination using an acidic or alkaline solution containing potassium permanganate and a mineral acid solution;
After neutralizing this spent chemical decontamination solution, radioactive substances are separated and removed, and the supernatant liquid is reused as an electrolyte solution for electrolytic polishing decontamination. Permanganate ions (Mn
O_4^-) is reduced to manganese dioxide (MnO_2) and precipitated, and after the manganese dioxide (MnO_2) is separated and removed in the same process as the radioactive substance separation process, it is reused as an electrolyte for electropolishing decontamination. A method for decontaminating radioactive metal waste characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19749987A JPH01138497A (en) | 1987-08-07 | 1987-08-07 | Method for decontaminating radiation metal waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19749987A JPH01138497A (en) | 1987-08-07 | 1987-08-07 | Method for decontaminating radiation metal waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01138497A true JPH01138497A (en) | 1989-05-31 |
Family
ID=16375488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19749987A Pending JPH01138497A (en) | 1987-08-07 | 1987-08-07 | Method for decontaminating radiation metal waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01138497A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100444844B1 (en) * | 2001-05-31 | 2004-08-18 | 대한원자력산업 주식회사 | Electrolytic polishing utilization radioactive contamination meatal type clear system |
KR100485973B1 (en) * | 2002-11-20 | 2005-05-03 | 주식회사 데콘엔지니어링 | A preliminary acid cleansing device of a high radioactive contamination metal |
JP2016142573A (en) * | 2015-01-30 | 2016-08-08 | 三菱重工業株式会社 | Chemical decontamination method |
-
1987
- 1987-08-07 JP JP19749987A patent/JPH01138497A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100444844B1 (en) * | 2001-05-31 | 2004-08-18 | 대한원자력산업 주식회사 | Electrolytic polishing utilization radioactive contamination meatal type clear system |
KR100485973B1 (en) * | 2002-11-20 | 2005-05-03 | 주식회사 데콘엔지니어링 | A preliminary acid cleansing device of a high radioactive contamination metal |
JP2016142573A (en) * | 2015-01-30 | 2016-08-08 | 三菱重工業株式会社 | Chemical decontamination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6386262B2 (en) | Method and system for treating radioactive organic waste | |
EP0071336B1 (en) | Process for the chemical dissolution of oxide deposits | |
US11289232B2 (en) | Chemical decontamination method using chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface | |
EP1422724B1 (en) | System and method for chemical decontamination of radioactive material | |
EP3491651B1 (en) | Electrolytic treatment for nuclear decontamination | |
JPS6331279B2 (en) | ||
KR900000343B1 (en) | Method for decontaminating metals contaminated with radioactive substances | |
WO1996014640A1 (en) | Decontamination processes | |
US4701246A (en) | Method for production of decontaminating liquid | |
Murray | A chemical decontamination process for decontaminating and decommissioning nuclear reactors | |
US5386078A (en) | Process for decontaminating radioactive metal surfaces | |
JP2004170278A (en) | Chemical decontamination method and system for radioactive chemical | |
EP0859671B1 (en) | Method for decontamination of nuclear plant components | |
JPH0466187A (en) | Treatment of waste water containing heavy metal and organic matter | |
JPH01138497A (en) | Method for decontaminating radiation metal waste | |
JP2004286471A (en) | Method and device for chemical decontamination of radioactivity | |
JP2010151596A (en) | Method for treating radioactive metal waste | |
US7384529B1 (en) | Method for electrochemical decontamination of radioactive metal | |
US5545795A (en) | Method for decontaminating radioactive metal surfaces | |
JPS638599A (en) | Method of decontaminating radioactive metallic waste | |
JPS63188799A (en) | Decontaminating method of radioactive metallic waste | |
JPH0222597A (en) | Chemical decontamination method for radioactive metal waste | |
JPH0222596A (en) | Chemical decontamination method for stainless steel | |
JPS6083000A (en) | Method of decontaminating radioactive contaminated metal | |
JPH03216599A (en) | Chemical decontamination method of radioactive metallic waste |