[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01138486A - Multichannel type semiconductor radiation detector - Google Patents

Multichannel type semiconductor radiation detector

Info

Publication number
JPH01138486A
JPH01138486A JP62296597A JP29659787A JPH01138486A JP H01138486 A JPH01138486 A JP H01138486A JP 62296597 A JP62296597 A JP 62296597A JP 29659787 A JP29659787 A JP 29659787A JP H01138486 A JPH01138486 A JP H01138486A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
radiation detector
semiconductor radiation
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62296597A
Other languages
Japanese (ja)
Other versions
JP2574341B2 (en
Inventor
Tetsuo Ootsuchi
大土 哲郎
Yasuichi Oomori
大森 康以知
Hiroshi Tsutsui
博司 筒井
Matsuki Baba
末喜 馬場
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62296597A priority Critical patent/JP2574341B2/en
Publication of JPH01138486A publication Critical patent/JPH01138486A/en
Application granted granted Critical
Publication of JP2574341B2 publication Critical patent/JP2574341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the spatial resolution of a sensor by providing earth electrodes between charge collecting electrodes. CONSTITUTION:The earth electrodes 4 are provided between the charge collecting electrodes 2 on one surface of Si crystal 1, and a surface barrier electrode 3, is formed on the other surface. Consequently, lines of electric force in the detector become straight and charges generated by semiconductor crystal between electrodes are gathered to the earth electrode. Therefore, charges gathered by channels are generated by radiation incident below the charge collecting electrodes, pulses having small crest values decrease, and the energy resolution of each channel is improved. Further, the separation between channels is improved and the spatial resolution of the sensor is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放射線線量計、医用放射線診断装置工業用X線
非破壊検査装置などに用いられる半導体放射線検出器に
間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor radiation detectors used in radiation dosimeters, medical radiation diagnostic equipment, industrial X-ray nondestructive testing equipment, and the like.

従来の技術 一般に半導体放射線検出器にはSi、  Geなとの元
素半導体より構成されるものと、CdTe、 GaAs
、 CdSe、11g12などの化合物半導体により構
成されるものがある。これらのうち、CdT’eは禁制
帯幅が室温で約L5eVと広く室温動作が可能であると
ともに、放射線に対する吸収が大きいため高感度が得ら
れる。
Conventional technology In general, semiconductor radiation detectors include those composed of elemental semiconductors such as Si and Ge, as well as those composed of elemental semiconductors such as CdTe and GaAs.
, CdSe, 11g12, and other compound semiconductors. Among these, CdT'e has a wide forbidden band width of about L5 eV at room temperature, allowing operation at room temperature, and has high radiation absorption, so high sensitivity can be obtained.

半導体放射線検出器には低キャリヤ濃度の高抵抗結晶の
対向面にオーミック接合電極を形成し、結晶全体を放射
線に対する有感層とした全空乏層検出器を始め、一方の
面に表面障壁型電極、他方にオーミック接合電極を形成
し障壁近傍に発生する空乏層において放射線を検出する
表面障壁型検出器、また一方の面にpn接合、他方の面
にオーミック接合電極を形成しpn接合に逆バイアス電
圧を印加して発生させる空乏層で放射線を検出するρn
接合型検出器がある。更に、半導体結晶の一方の面に絶
縁物等からなるブロッキング層を形成し、その上に金属
電極を積層し、対向する面にオーミツク電極を設けた構
成のブロッキング型半導体放射線検出器がある。これら
の構造からなる半導体検出器のオーミック電極は半導体
内の有感層で発生した電荷を収集するものである。また
、半導体結晶の両面にブロッキング層と金属電極を積層
したものもあるが、この場合は電荷のトンネリングによ
り一方の電極が電荷収集電極となる。
Semiconductor radiation detectors include full-depletion layer detectors, in which ohmic junction electrodes are formed on opposing surfaces of a high-resistance crystal with a low carrier concentration, and the entire crystal is a radiation-sensitive layer, as well as full depletion layer detectors, in which a surface barrier type electrode is formed on one surface. , a surface barrier type detector that forms an ohmic junction electrode on the other side and detects radiation in a depletion layer generated near the barrier, and a pn junction that forms a pn junction on one side and an ohmic junction electrode on the other side and reverse biases the pn junction. ρn detects radiation in a depletion layer generated by applying a voltage
There is a junction type detector. Furthermore, there is a blocking type semiconductor radiation detector in which a blocking layer made of an insulator or the like is formed on one surface of a semiconductor crystal, a metal electrode is laminated thereon, and an ohmic electrode is provided on the opposing surface. The ohmic electrode of a semiconductor detector made of these structures collects charges generated in a sensitive layer within the semiconductor. There is also a structure in which a blocking layer and a metal electrode are laminated on both sides of a semiconductor crystal, but in this case, one electrode becomes a charge collection electrode due to charge tunneling.

多チャンネル型半導体放射線検出器では、何れの方式に
よるものも電荷を収集する側の電極が特定のピッチをお
いて複数個配列されている。
In any multi-channel semiconductor radiation detector, a plurality of charge collecting electrodes are arranged at a specific pitch.

発明が解決しようとする問題点 多チャンネル型半導体放射線検出器を動作させるには、
何れの方式の場合も対向する電極間に直流電圧を印加す
る。これにより電極間に電界が発生ずる。この際、第5
図に示す様に多チャンネル型半導体放射線検出器18内
の電気力線12は一方の電極が複数個に分割されている
ために直線にならず、電極間の電気力線も聡で電荷収集
電極に集束する。このため電極間の半導体結晶9に生じ
た電荷も収集される。この電荷は第6図の放射線特性図
に示す様に低い波高を持つパルスとして現れ、光電ビー
クの半値幅が大きくなり、検出器のエネルギー分解能に
も影響する。また、チャンネル間の分離が悪くなり、ラ
インセンサとして使用する際の空間分解能が低くなる。
Problems to be Solved by the Invention In order to operate a multi-channel semiconductor radiation detector,
In either method, a DC voltage is applied between opposing electrodes. This generates an electric field between the electrodes. At this time, the fifth
As shown in the figure, the lines of electric force 12 in the multi-channel semiconductor radiation detector 18 are not straight lines because one electrode is divided into multiple pieces, and the lines of electric force between the electrodes are also deep and the charge collecting electrode focus on. Therefore, charges generated in the semiconductor crystal 9 between the electrodes are also collected. This charge appears as a pulse with a low wave height as shown in the radiation characteristic diagram of FIG. 6, and the half width of the photoelectric peak becomes large, which also affects the energy resolution of the detector. Furthermore, separation between channels becomes poor, resulting in low spatial resolution when used as a line sensor.

問題点を解決するための手段 放射線検出用半導体を電極で挟んだ構造を有し、少なく
とも前記電極の一方が多数に分割された電荷収集電極を
構成する多チャンネル型半導体放射線検出器おいて、前
記電荷収集電極のあいだに接地電極を設ける。
Means for Solving the Problems A multi-channel semiconductor radiation detector has a structure in which a radiation detection semiconductor is sandwiched between electrodes, and at least one of the electrodes constitutes a charge collecting electrode divided into many parts. A ground electrode is provided between the charge collection electrodes.

作   用 電荷収集電極間に接地電極を設けることにより、検出器
内の電気力線が直線になり、電極間の半導体結晶で発生
した電荷は接地電極に収集される。
By providing a ground electrode between the active charge collecting electrodes, the electric lines of force within the detector become straight lines, and the charges generated in the semiconductor crystal between the electrodes are collected on the ground electrode.

従って、各チャンネルに収集される電荷は電荷収集電極
下に入射した放射線により発生したものであり、小さな
波高値を持つパルスが減少し、各チャンネルのエネルギ
ー分解能が上がる。また、各チャンネル間の分離が良く
なり、センサの空間分解能が向上する。
Therefore, the charge collected in each channel is generated by the radiation incident under the charge collection electrode, and pulses with small peak values are reduced, increasing the energy resolution of each channel. Also, there is better separation between each channel, improving the spatial resolution of the sensor.

実施例 以下に本発明の実施例を示す。Example Examples of the present invention are shown below.

実施例1 第1図は本発明の一実施例である。S1結晶1の一方の
面に電荷収集電極2と接地電極4をオーミック接合が得
られるAuをパターン蒸着した。
Example 1 FIG. 1 shows an example of the present invention. On one surface of the S1 crystal 1, a pattern of Au was deposited to form an ohmic connection between the charge collection electrode 2 and the ground electrode 4.

他方の面にはAIを真空蒸着により被着させ表面障壁電
極3を構成した。電荷収集電極2と接地電極4のギャッ
プは5μrnとした。電荷収集電極2と表面障壁電極3
のあいだに直流高電圧を印加し、24’ A mにたい
する放射線特性を測定した。第2図に測定結果を示す。
On the other surface, AI was deposited by vacuum evaporation to form a surface barrier electrode 3. The gap between the charge collection electrode 2 and the ground electrode 4 was 5 μrn. Charge collection electrode 2 and surface barrier electrode 3
A DC high voltage was applied during this period, and the radiation characteristics at 24' A m were measured. Figure 2 shows the measurement results.

各チャンネルとも2”Amの60KeV光電ピークが、
従来の検出器の放射線特性を示す第6図よりシャープに
なり、低い波高を持つパルスが減少した。即ち、電荷収
集電極間に生じた電荷が電荷収集電極2により収集され
ていないことを示す。
Each channel has a 60KeV photoelectric peak of 2”Am,
It is sharper than in Figure 6, which shows the radiation characteristics of the conventional detector, and the number of pulses with low wave heights has decreased. That is, this indicates that the charge generated between the charge collection electrodes is not collected by the charge collection electrode 2.

なお、ゲルマニウムを用いた場合も同様の結果が得られ
た。
Note that similar results were obtained when germanium was used.

実施例2 第3図は本発明の他の実施例である。第3図に示す多チ
ャンネル半導体放射線検出器は全空乏層型で、抵抗率1
06から109ΩcmのCdTe結晶5の一方の面にオ
ーミック電極6をptの無電解メツキ法により形成し、
他方の面にAuのパターン蒸着によりオーミック接合を
形成し、電荷収集電極7と接地電極8とした。この多チ
ャンネル型半導体放射線検出器の放射線特性を第4図に
示す。各チャンネルとも241Amの60 KeV光電
ビークが、従来の検出器よりシャープになり、低い波高
を持つパルスが減少し、空間分解能とエネルギー分解能
のが向上した。
Embodiment 2 FIG. 3 shows another embodiment of the present invention. The multi-channel semiconductor radiation detector shown in Figure 3 is a fully depleted layer type with a resistivity of 1.
An ohmic electrode 6 is formed on one side of the CdTe crystal 5 of 06 to 109 Ωcm by electroless plating of PT.
An ohmic contact was formed on the other surface by pattern vapor deposition of Au to form a charge collection electrode 7 and a ground electrode 8. The radiation characteristics of this multi-channel semiconductor radiation detector are shown in FIG. The 60 KeV photoelectric peak of 241 Am in each channel is sharper than that of conventional detectors, pulses with low wave heights are reduced, and spatial and energy resolution are improved.

放射線検出器として用いることのできる材F[としては
他ここCue、CdSe、GaAs、Hg I2等があ
るが同様な結果が得られた。
Although there are other materials F that can be used as a radiation detector, such as Cue, CdSe, GaAs, and Hg I2, similar results were obtained.

発明の効果 本発明によれは、チャンネル間の分離が良く空間分解能
の高い、かつ、各チャンネルが優れたエネルギー分解能
を有する多チャンネル型半導体放射線検出器が提供され
る。
Effects of the Invention According to the present invention, a multi-channel semiconductor radiation detector is provided which has good separation between channels and high spatial resolution, and each channel has excellent energy resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は、おのおの本発明の第一の実
施例における多チャンネル型半導体放射線検出器の構成
を示す平面図及び断面図、第2図は本発明の第一の実施
例における多チャンネル型半導体放射線検出器の放射線
特性図、第3図(a)及び(b)は、おのおの本発明の
第二の実施例における多チャンネル型半導体放射線検出
器の構成を示す平面図及び断面図、第4図は本発明の第
二の実施例における多チャンネル型半導体放射線検出器
の放射線特性図、第5図は従来の多チャンネル型半導体
放射線検出器の電気力線を示す断面模式図、第6図は従
来の多チャンネル型半導体放射線検出器の放射線特性図
、第7図は本発明の多チャンネル型半導体放射線検出器
の電気力線を示す断面模式図である。 1・・・S1結晶、2・・・電荷収集電極、3・・・表
面障壁電極、4・・・接地電極。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 3表面R壁電欲 第2図 第4図 パルス液高 第5必
FIGS. 1(a) and (b) are a plan view and a cross-sectional view showing the configuration of a multi-channel semiconductor radiation detector according to a first embodiment of the present invention, respectively, and FIG. 2 is a first embodiment of the present invention. The radiation characteristic diagrams of the multi-channel semiconductor radiation detector in the example, FIGS. 4 is a radiation characteristic diagram of a multi-channel semiconductor radiation detector according to the second embodiment of the present invention, and FIG. 5 is a schematic cross-sectional diagram showing lines of electric force of a conventional multi-channel semiconductor radiation detector. , FIG. 6 is a radiation characteristic diagram of a conventional multi-channel semiconductor radiation detector, and FIG. 7 is a schematic cross-sectional view showing lines of electric force of the multi-channel semiconductor radiation detector of the present invention. 1... S1 crystal, 2... Charge collection electrode, 3... Surface barrier electrode, 4... Ground electrode. Name of agent Patent attorney Toshio Nakao 1 person Figure 1 3 Surface R wall voltage Figure 2 Figure 4 Pulse liquid height 5

Claims (2)

【特許請求の範囲】[Claims] (1)放射線検出用半導体を電極で挟んだ構造を有し、
少なくとも前記電極の一方が多数に分割された電荷収集
電極を構成する多チャンネル型半導体放射線検出器おい
て、前記電荷収集電極のあいだに接地電極を有すること
を特徴とする多チャンネル型半導体放射線検出器。
(1) It has a structure in which a semiconductor for radiation detection is sandwiched between electrodes,
A multi-channel semiconductor radiation detector in which at least one of the electrodes constitutes a charge collection electrode divided into many parts, the multi-channel semiconductor radiation detector having a ground electrode between the charge collection electrodes. .
(2)半導体がテルル化カドミウム、セレン化カドミウ
ム、ひ化ガリウム、ヨウ化水銀、シリコン、ゲルマニウ
ムを用いたものであることを特徴とする特許請求の範囲
第1項記載の多チャンネル型半導体放射線検出器。
(2) A multi-channel semiconductor radiation detection device according to claim 1, characterized in that the semiconductor is one using cadmium telluride, cadmium selenide, gallium arsenide, mercury iodide, silicon, or germanium. vessel.
JP62296597A 1987-11-25 1987-11-25 Multi-channel semiconductor radiation detector Expired - Fee Related JP2574341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296597A JP2574341B2 (en) 1987-11-25 1987-11-25 Multi-channel semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296597A JP2574341B2 (en) 1987-11-25 1987-11-25 Multi-channel semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPH01138486A true JPH01138486A (en) 1989-05-31
JP2574341B2 JP2574341B2 (en) 1997-01-22

Family

ID=17835609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296597A Expired - Fee Related JP2574341B2 (en) 1987-11-25 1987-11-25 Multi-channel semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JP2574341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677539A (en) * 1995-10-13 1997-10-14 Digirad Semiconductor radiation detector with enhanced charge collection
WO1998018166A1 (en) * 1996-10-18 1998-04-30 Simage Oy Imaging detector and method of production
US6002134A (en) * 1995-10-13 1999-12-14 Digirad Corporation Cross-strip semiconductor detector with cord-wood construction
US6037595A (en) * 1995-10-13 2000-03-14 Digirad Corporation Radiation detector with shielding electrode
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid X-ray detector with improved spatial resolution
JP2006513406A (en) * 2002-12-13 2006-04-20 オイ アジャト, リミテッド Switching / depolarizing power supply for radiation imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162372A (en) * 1981-03-30 1982-10-06 Toshiba Corp Semiconductor radiation detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162372A (en) * 1981-03-30 1982-10-06 Toshiba Corp Semiconductor radiation detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677539A (en) * 1995-10-13 1997-10-14 Digirad Semiconductor radiation detector with enhanced charge collection
US6002134A (en) * 1995-10-13 1999-12-14 Digirad Corporation Cross-strip semiconductor detector with cord-wood construction
US6037595A (en) * 1995-10-13 2000-03-14 Digirad Corporation Radiation detector with shielding electrode
US6046454A (en) * 1995-10-13 2000-04-04 Digirad Corporation Semiconductor radiation detector with enhanced charge collection
WO1998018166A1 (en) * 1996-10-18 1998-04-30 Simage Oy Imaging detector and method of production
JP2006513406A (en) * 2002-12-13 2006-04-20 オイ アジャト, リミテッド Switching / depolarizing power supply for radiation imaging device
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid X-ray detector with improved spatial resolution

Also Published As

Publication number Publication date
JP2574341B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US5627377A (en) Single carrier-type solid-state radiation detector device
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
JP3093799B2 (en) Semiconductor radiation detector with enhanced charge collection ability
US6034373A (en) Semiconductor radiation detector with reduced surface effects
JP4170411B2 (en) High-speed radiation detector
JPH09275223A (en) Semiconductor radiation detector
JP4037917B2 (en) X-ray detection element and method of operating the element
JPH0481352B2 (en)
US6350989B1 (en) Wafer-fused semiconductor radiation detector
US7161155B1 (en) X-ray detector with increased detective quantum efficiency
US7060523B2 (en) Lithium-drifted silicon detector with segmented contacts
JPH01138486A (en) Multichannel type semiconductor radiation detector
US6975012B2 (en) Semiconductor radiation detector having voltage application means comprises InxCdyTez on CdTe semiconductor substrate
US5111052A (en) Radiation sensor and a radiation detecting apparatus using the same
US20050056829A1 (en) Reducing dark current of photoconductor using heterojunction that maintains high x-ray sensitivity
JP2608311B2 (en) Ionized particle detector
US4060822A (en) Strip type radiation detector and method of making same
JPS603792B2 (en) Multichannel semiconductor radiation detector
JPS62115391A (en) Cdte radiant ray detector
JPS6328076A (en) Semiconductor radiation detector
JPH0690291B2 (en) Radiation detector
JPH07218642A (en) Semiconductor radiation detector
JPH0221284A (en) Particle beam detector
EP3730972A1 (en) Radiation detection device for detecting gamma or x-ray radiation quanta
JPS6364368A (en) Radiation detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees