JPH01138485A - Radiation image device - Google Patents
Radiation image deviceInfo
- Publication number
- JPH01138485A JPH01138485A JP62296596A JP29659687A JPH01138485A JP H01138485 A JPH01138485 A JP H01138485A JP 62296596 A JP62296596 A JP 62296596A JP 29659687 A JP29659687 A JP 29659687A JP H01138485 A JPH01138485 A JP H01138485A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- pulse width
- pulse
- sensor
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 230000006870 function Effects 0.000 abstract description 4
- 229910004613 CdTe Inorganic materials 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は医療用や工業用の放射線画像装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a radiation imaging apparatus for medical or industrial use.
従来の技術
放射線受像方法として、半導体検出器アレイを用いて、
放射線量子何個の信号を検知し、その信号の計数値を画
素濃度として、画像を表示する方法が開発されている(
特開昭59−100885号公報)。この方法によれば
放射線量子何個のエネルギ情報を、例えば、波高弁別回
路を用いることにより、検知することができる。このた
め、例えば、X線CT装置に適用すれば、X線ハードニ
ングの影響の除去や、゛さらにはX線エネルギを可変に
した場合のデータをもとに計算処理することによる被検
体の原子量分布測定等が可能となり、放射線画像測定に
おいては、画期的なものである。As a conventional radiation image receiving method, a semiconductor detector array is used.
A method has been developed to display an image by detecting the number of radiation quantum signals and using the count value of the signal as the pixel density (
(Japanese Unexamined Patent Publication No. 100885/1985). According to this method, energy information about the number of radiation quanta can be detected by using, for example, a pulse height discrimination circuit. For this reason, if applied to an X-ray CT device, for example, it will be possible to eliminate the effects of It enables distribution measurement, etc., and is revolutionary in radiation image measurement.
しかし、パルス検出技術歯、半導体材料の開発や電子回
路技術の向上により、はぼ実用的なレベルに達している
が、高計数率における数え落しを原因とした直線性の補
正が成されにくいため、高いコンストラスト特性を持つ
高精度画像には適用されにくかった。However, with the development of pulse detection technology, semiconductor materials, and improvements in electronic circuit technology, it has reached a practical level, but it is difficult to correct linearity due to missed counts at high counting rates. , it was difficult to apply to high-precision images with high contrast characteristics.
従来個個のセンサの直線性の補正には、非線型素子等が
用いられてきたが、計算機の発達により、近年は計算に
よる補正が実用化されはじめている。Conventionally, nonlinear elements and the like have been used to correct the linearity of individual sensors, but with the development of computers, calculation-based correction has begun to be put into practical use in recent years.
しかし、高精度画像用センサアレイでは、センサの数が
多く、また個個のセンサの感度や直線性が異なるため実
用的な手段がないのが現状である。However, in the case of high-precision image sensor arrays, the number of sensors is large, and the individual sensors have different sensitivities and linearities, so there is currently no practical means.
発明が解決しようとする問題点
本発明においては、半導体センサアレイの直線性の補正
を、センサ個別に、かつ高精度に行う手段を提供するも
のである。Problems to be Solved by the Invention The present invention provides means for correcting the linearity of a semiconductor sensor array individually and with high precision for each sensor.
問題点を解決するための手段
放射線量子を何個のパルス信号として検出するセンサア
レイの、個々のセンサの回路に対応して、少なくとも1
つ以上のパルス幅を一定にする機能を有する回路を付加
することにより高計数率場における直線性の補正を行う
。Means for Solving the Problem Corresponding to the circuit of each sensor of a sensor array for detecting radiation quanta as a number of pulse signals, at least one
By adding a circuit that has the function of making more than one pulse width constant, linearity in a high count rate field is corrected.
作用
パルス計数において、まひ時間τ(SEC)を有するセ
ンサにおいては、測定された計数率をN (CPS)と
すると、真の計数率N o (CPS)は以下の式で表
されることが知られている。In active pulse counting, it is known that for a sensor with paralysis time τ(SEC), if the measured counting rate is N (CPS), the true counting rate N o (CPS) is expressed by the following formula. It is being
No=N/1−Nτ (1)例えば半導
体センサでは、半導体内部でのパルス発生の自称は非常
に高速であり、l −10n5ec以下であるが、実際
に検出されるパルス出力は、電荷収集家庭の差、パルス
アンプの応答特性の差、あるいは波高弁別回路の応答特
性のばらつきなどにより、波高弁別回路より出力される
パルス幅は、はぼ10nSeCから100 n5ecと
ばらつく。そのためにこのままでは各センサに個別の補
正係数を付与しなければならない。そこで各センサにパ
ルス幅を一定にする回路を付与することにより、出力パ
ルス幅(τ)のばらつきをなくすことにより5、個々の
センサでの直線性をただ1個の係数で補正することがで
きる。No=N/1-Nτ (1) For example, in a semiconductor sensor, the pulse generation inside the semiconductor is said to be very fast, less than l -10n5ec, but the actual pulse output detected is The pulse width output from the pulse height discrimination circuit varies from approximately 10 nSeC to 100 n5ec due to differences in the response characteristics of the pulse amplifiers, or variations in the response characteristics of the pulse height discrimination circuit. Therefore, as is, it is necessary to provide each sensor with an individual correction coefficient. Therefore, by providing each sensor with a circuit that makes the pulse width constant, eliminating variations in the output pulse width (τ), it is possible to correct the linearity of each sensor with just one coefficient. .
実施例
第1図に本発明の1実施例を示す。センサアレイ1、例
えば、CdTeの半導体センサを線状に配列した個別素
子2よりの放射線量子信号を、パルスアンプ3で増幅す
る。増幅された前記信号は、波高弁別回路4によって、
ノイズとの分離や放射線エネルギに対応したデジタル信
号に分離される。Embodiment FIG. 1 shows an embodiment of the present invention. A pulse amplifier 3 amplifies radiation quantum signals from a sensor array 1, for example, individual elements 2 in which CdTe semiconductor sensors are arranged in a line. The amplified signal is processed by the pulse height discrimination circuit 4,
It is separated into digital signals corresponding to noise and radiation energy.
波高弁別回路4は、−船釣には第2図に示すように、比
較電圧源22を有したコンパレータ21で構成される。For boat fishing, the wave height discrimination circuit 4 is composed of a comparator 21 having a comparison voltage source 22, as shown in FIG.
コンパレータ21の出力信号のパルス幅(τ)は、パル
スアンプ3よりの出力信号のパルス幅と、コンパレータ
21の応答速度に依存する。いまパルスアンプ3よりの
出力信号Vinが、基準電圧Vdを越える時間をtlV
inがVd以下になってから、コンパレータ21がOF
Fになる時間をt2とすると、コンパレータ21の出力
信号のパルス幅t3は、
t3=t、1+ t2 (2)となる
。しかし、第4図に示すようにtlはVdの高さにより
、大きく変化する。また、コンパレータの応答速度やセ
ンサ個体間のばらつきも、±50%程度存在するため、
τを全素子について一定化することは困難である。The pulse width (τ) of the output signal of the comparator 21 depends on the pulse width of the output signal from the pulse amplifier 3 and the response speed of the comparator 21. Now, the time tlV for which the output signal Vin from the pulse amplifier 3 exceeds the reference voltage Vd is tlV.
After in becomes below Vd, the comparator 21 turns OF.
Assuming that the time when the signal becomes F is t2, the pulse width t3 of the output signal of the comparator 21 is as follows: t3=t, 1+t2 (2). However, as shown in FIG. 4, tl changes greatly depending on the height of Vd. In addition, the response speed of the comparator and the variation between individual sensors are around ±50%, so
It is difficult to make τ constant for all elements.
そこで、本発明においては、波高弁別回路4の後にパル
ス幅一定化回路5を1す設し、パルス幅の一定化を行う
。第3図にパルス幅一定化回路の一実施例を示す。回路
素子は単安定マルチバイブレータ31を使用し、コンパ
レータ出力信号の立ち上がり・をトリガとして、パルス
信号を出力するようにする。パルス幅一定化回路5のパ
ルス幅は単安定マルチバイブレータ21の外部に取り付
けられたコンデンサC31と抵抗R33とによる時定数
で決定されるパルス幅を持つ。パルスアンプ出力との関
係を第4図に示す。パルス幅一定化の方法について、本
実施例では、波高弁別回路4の後にパルス幅一定化回路
5を付設したが、波高弁別回路4において、同等の機能
を付与することも可能である。パルス幅一定化回路5の
出力は、カウンタ6で計数され、計算装置(CPU)7
の記憶装置(メモリ)8に記憶される。計数されたデー
タは前記(1)式により補正される。Therefore, in the present invention, a pulse width constant circuit 5 is provided after the pulse height discrimination circuit 4 to stabilize the pulse width. FIG. 3 shows an embodiment of the pulse width constant circuit. A monostable multivibrator 31 is used as the circuit element, and a pulse signal is output using the rising edge of the comparator output signal as a trigger. The pulse width of the pulse width stabilization circuit 5 has a pulse width determined by a time constant of a capacitor C31 and a resistor R33 which are attached to the outside of the monostable multivibrator 21. The relationship with the pulse amplifier output is shown in FIG. Regarding the pulse width stabilization method, in this embodiment, a pulse width stabilization circuit 5 is provided after the pulse height discrimination circuit 4, but it is also possible to provide the same function in the pulse height discrimination circuit 4. The output of the pulse width constantization circuit 5 is counted by a counter 6, and the output is counted by a calculation device (CPU) 7.
is stored in a storage device (memory) 8. The counted data is corrected using equation (1) above.
補正係rJIrは、前記マルチバイブレータの時定数で
決定される。また、実測によっても容易に求めることが
できる。第4図では、τ>r3の様に表したが、コンパ
レータの高速駆動回路との鞘合せにより、τ≦τ3とす
ることも出来る。高速駆動回路の一例を第5図に示す。The correction factor rJIr is determined by the time constant of the multivibrator. It can also be easily determined by actual measurement. In FIG. 4, it is expressed as τ>r3, but it can also be set as τ≦τ3 by combining it with the high-speed drive circuit of the comparator. An example of a high-speed drive circuit is shown in FIG.
τ市、記憶装置8に記憶され、計算に際して読み出すこ
とが出来る。τ city is stored in the storage device 8 and can be read out during calculation.
Tを個別の素子について読み出す必要がないため高速処
理が可能である。更ζこ、係数が一定であることより独
立した演算@路を付加し、真の計数値を計算することも
可能である。Since there is no need to read T for each individual element, high-speed processing is possible. Furthermore, since the coefficients are constant, it is also possible to add an independent calculation @path and calculate the true count value.
発明の効果
本発明によれば、簡単な構成で、多数個のセンサアレイ
の高精度な補正が実現できる。このため、高いSN比と
広いダイナミックレンジを融資、ざらにJエネルギ弁別
機能を用いることが可能なパルス計数法による放射線受
像が簡単な構成で実現可能となる。これにより、低被爆
線員であっても、高画質で、かつ高機能な装置を実現で
きる。Effects of the Invention According to the present invention, highly accurate correction of a large number of sensor arrays can be realized with a simple configuration. Therefore, it is possible to realize radiation image reception using a pulse counting method with a high S/N ratio, a wide dynamic range, and a rough J-energy discrimination function with a simple configuration. This makes it possible to realize a device with high image quality and high functionality even for radiation workers with low radiation exposure.
第1図は本発明の一実施例における放射線画像装置のブ
ロック図、第2図は波高弁別回路の例を示す回路図、第
3図はパルス幅一定化回路の例を示す回路図、第4図は
これらの回路の動作を説明するための波形図、第5図は
高速動作をする波高弁別回路の例を示すブロック図であ
る。
l・・・・センサアレイ、2・・・・個別素子、3・・
・・パルスアンプ、4・・・・波高弁別回路、5・・・
・パルス幅一定化回路、6・・・・カウンター。
第1図
第 2 図
Vλ
第3図
第4図
嘔
第5図
51ゴンパレーク
、s2フィードバック回路FIG. 1 is a block diagram of a radiation imaging apparatus according to an embodiment of the present invention, FIG. 2 is a circuit diagram showing an example of a pulse height discrimination circuit, FIG. 3 is a circuit diagram showing an example of a pulse width constant circuit, and FIG. The figure is a waveform diagram for explaining the operation of these circuits, and FIG. 5 is a block diagram showing an example of a pulse height discrimination circuit that operates at high speed. l...Sensor array, 2...Individual element, 3...
... Pulse amplifier, 4... Wave height discrimination circuit, 5...
・Pulse width constant circuit, 6...counter. Figure 1 Figure 2 Figure 2 Vλ Figure 3 Figure 4 Figure 5 51 Gomparake, s2 feedback circuit
Claims (1)
検知し、前記パルス信号の計数値および、あるいは前記
計数値を計算処理して得られた計算値を画素濃度として
、画像を形成する放射線画像装置において、前記センサ
アレイの個個のセンサに対応して、各々のセンサ出力信
号パルスのパルス幅を一定にする機能を有する回路を付
加したことを特徴とする放射線画像装置。In a radiation imaging apparatus that detects radiation quanta as individual pulse signals with a sensor array, and forms an image by using a count value of the pulse signal and/or a calculated value obtained by calculating the count value as a pixel density. . A radiation imaging apparatus, further comprising a circuit having a function of making constant the pulse width of each sensor output signal pulse corresponding to each sensor of the sensor array.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62296596A JPH01138485A (en) | 1987-11-25 | 1987-11-25 | Radiation image device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62296596A JPH01138485A (en) | 1987-11-25 | 1987-11-25 | Radiation image device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01138485A true JPH01138485A (en) | 1989-05-31 |
Family
ID=17835595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62296596A Pending JPH01138485A (en) | 1987-11-25 | 1987-11-25 | Radiation image device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01138485A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001502424A (en) * | 1996-10-15 | 2001-02-20 | シマゲ オユ | Imaging device for radiation imaging |
JP2016540979A (en) * | 2013-11-22 | 2016-12-28 | ゼネラル・エレクトリック・カンパニイ | Active pulse shaping of solid state photomultiplier tube signals. |
JP2020027073A (en) * | 2018-08-16 | 2020-02-20 | 日本電子株式会社 | X-ray analysis device and counting rate correction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100885A (en) * | 1982-12-01 | 1984-06-11 | Matsushita Electric Ind Co Ltd | Array for detecting element of radiant rays |
JPS62134585A (en) * | 1985-12-09 | 1987-06-17 | Hitachi Ltd | Method for measuring radioactive rays by correcting counting loss |
-
1987
- 1987-11-25 JP JP62296596A patent/JPH01138485A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100885A (en) * | 1982-12-01 | 1984-06-11 | Matsushita Electric Ind Co Ltd | Array for detecting element of radiant rays |
JPS62134585A (en) * | 1985-12-09 | 1987-06-17 | Hitachi Ltd | Method for measuring radioactive rays by correcting counting loss |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001502424A (en) * | 1996-10-15 | 2001-02-20 | シマゲ オユ | Imaging device for radiation imaging |
JP2011174936A (en) * | 1996-10-15 | 2011-09-08 | Siemens Ag | Imaging device for imaging radiation |
JP2015004681A (en) * | 1996-10-15 | 2015-01-08 | ジーメンス アクティエンゲゼルシャフト | Semiconductor imaging element |
JP2016540979A (en) * | 2013-11-22 | 2016-12-28 | ゼネラル・エレクトリック・カンパニイ | Active pulse shaping of solid state photomultiplier tube signals. |
JP2020027073A (en) * | 2018-08-16 | 2020-02-20 | 日本電子株式会社 | X-ray analysis device and counting rate correction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4323977A (en) | Non-uniformity energy correction method and apparatus | |
EP0429977B1 (en) | Radiation imaging apparatus | |
EP2773103B1 (en) | Radiation imaging apparatus and radiation imaging system | |
US7511264B2 (en) | Method of resolving ambiguity in photon counting-based detectors | |
JPH04274791A (en) | Detecting method and apparatus wherein base potential is corrected | |
JPS63115080A (en) | Scintillation camera | |
JPH01138485A (en) | Radiation image device | |
US4090082A (en) | Circuitry for improving linearity of a counting system | |
JPS63236988A (en) | Choke detecting circuit for radiation measuring instrument using semiconductor detector | |
JPH095445A (en) | Radiological image pickup device | |
US20040200968A1 (en) | Apparatus and method for detecting alpha-ray | |
US4051373A (en) | Delay line clipping in a scintillation camera system | |
JP2856815B2 (en) | X-ray thickness gauge | |
JPH01132984A (en) | Device for correcting radiation image | |
JP3765915B2 (en) | Amplifier temperature zero point correction device | |
JPH04286477A (en) | Infrared image pickup device | |
JPH0533354B2 (en) | ||
JP2584747B2 (en) | Image processing device | |
JP2998362B2 (en) | Measurement data correction method | |
JP3533774B2 (en) | X-ray imaging device | |
JPH03135785A (en) | Method and circuit for processing pulse under pile-up status | |
JPS61709A (en) | Solar sensor | |
JP3023157B2 (en) | Light incident position detector for sun sensor | |
JPH0325387A (en) | Radiograph receiving device | |
JPH065659Y2 (en) | Scintillation radiation measuring device |